Habitat for Creative Electromagneticists

Metamaterial-Engineered Antennas


Goals

We are studying how metamaterial-inspired electrically small resonators may be used as near-field parasitics to achieve efficient, electrically small, broad bandwidth antennas.

 

Papers

  1. C.-C. Lin, R. W. Ziolkowski, J. A. Nielsen, M. H. Tanielian, and C. L. Holloway, “An efficient, low profile, electrically small, VHF 3D magnetic EZ antenna,” submitted to Appl. Phys. Lett., January 2010.

  2. P. Jin and R. W. Ziolkowski, “Multiband extensions of the electrically small metamaterial-engineered Z antenna,” submitted to IET Microwaves, Antennas & Propagation, December 2009.

  3. C.-C. Lin, P. Jin and R. W. Ziolkowski, “Electrically small dual-band and circularly polarized magnetically-coupled near-field resonant parasitic wire antennas,” submitted to IEEE Trans. Antennas Propag., October 2009.

  4. P. Jin and R. W. Ziolkowski, “Multi-frequency, linear and circular polarized, metamaterial-inspired near-field resonant parasitic antennas,” submitted to IEEE Trans. Antennas Propag., October 2009.

  5. R. W. Ziolkowski, C.-C. Lin, J. A. Nielsen, M. H. Tanielian, and C. L. Holloway,Design and experimental verification of a 3D magnetic EZ antenna at 300 MHz,IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 989–993, 2009.

  6. P. Jin and R. W. Ziolkowski, “Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements,” to appear in IEEE Trans. Antennas Propag., Feb. 2010.

  7. P. Jin and R. W. Ziolkowski “Low-Q, electrically small, efficient near-field resonant parasitic antennas,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 9, pp. 2548–2563, Sep. 2009.

  8. R. W. Ziolkowski, P. Jin, J. A. Nielsen, M. H. Tanielian, and C. L. Holloway, “Design and Experimental Verification of Z Antennas at UHF Frequencies, Antennas Wireless Propag. Lett., vol.8, pp. 1329-1333, 2009. 

  9. S. J. Franson and R. W. Ziolkowski, “Gigabit per second data transfer in high gain metamaterials structures at 60GHz,” IEEE Trans. Antennas Propag., vol. 57, pp. 2913-2925, October 2009.

  10. S. J. Franson and R. W. Ziolkowski, “Confirmation of zero-N behavior in a high gain grid structure at millimeter-wave frequencies,” IEEE Antennas Wireless Propagat. Lett., vol. 8, pp. 387-390, 2009.

  11. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. H. Tanielian D. C. Vier, S. Schultz, C. Holloway, and R. W. Ziolkowski, “Demonstration of Impedance Matching Using a Mu-Negative (MNG) Metamaterial,” IEEE Antennas Wireless Propagat. Lett., vol. 8, pp. 92-95, 2009.

  12. R. W. Ziolkowski and P. Jin, “Metamaterial-based dispersion engineering to achieve phase center compensation in a log-periodic array,” IEEE Trans. Antennas Propag., vol. 56, No. 12, pp. 3619-3629, Dec. 2008.

  13. R. W. Ziolkowski, “An efficient, electrically small antenna designed for VHF and UHF applications,” IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 217-220, 2008.

  14. R. W. Ziolkowski, “Efficient electrically small antenna facilitated by a near-field resonant parasitic,” IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 580-583, 2008.  

  15. A. Erentok and R. W. Ziolkowski, “Metamaterial-inspired efficient electrically-small antennas,” IEEE Trans. Antennas Propag., vol. 56, no. 3, pp. 691-707, March 2008.  

  16. A. Erentok and R. W. Ziolkowski, “A summary of recent developments on metamaterial-based and metamaterial-inspired efficient electrically small antennas,” Turk. J. Elec. Engin., Vol. 16, no. 1, pp. 1-12, February 2008.  

  17. A. Erentok and R. W. Ziolkowski, “Two-dimensional efficient metamaterial-inspired electrically-small antenna,” Microw. Opt. Tech. Lett., vol. 49, no. 7, pp. 1669-1673, July 2007.  

  18. A. Erentok and R. W. Ziolkowski, “An efficient metamaterial-inspired electrically-small antenna,” Microw. Opt. Tech. Lett., vol. 49, no. 6, pp. 1287-1290, June 2007.  

  19. A. Erentok, D. Lee. and R. W. Ziolkowski, “Numerical analysis of a printed dipole antenna integrated with a 3D AMC block,” Antennas Wireless Propagat. Lett., vol. 6, pp. 134-136, 2007.  

  20. A. Erentok and R. W. Ziolkowski, “A hybrid optimization method to analyze metamaterial-based electrically small antennas,” IEEE Trans. Antennas Propagat., vol. 55, no. 3, pp. 731-741, March 2007.  

  21. R. W. Ziolkowski and A. Erentok, “At and beyond the Chu limit: passive and active broad bandwidth metamaterial-based efficient electrically small antennas,” IET Microwaves, Antennas & Propagation, vol. 1, no.1, pp. 116-128, February 2007.  

  22. R. W. Ziolkowski, “Metamaterial-based Antennas: Research and Developments,” IEICE Trans. Electron., vol. E89-C, no. 9, pp. 1267-1275, September 2006.  

  23. R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propagat., vol. 54, pp. 2113-2130,  July 2006.  

  24. R. W. Ziolkowski, “Reply to Comments on ‘Application of Double Negative Materials to Increase the Power Radiated by Electrically Small Antennas,” IEEE Trans. Antennas Propagat., Vol. 54,  no. 2,  Part 2,  p. 766, Feb. 2006.  

  25. R. W. Ziolkowski, “Antennas and Propagation in the Presence of Metamaterials and Other Complex Media:  Computational Electromagnetic Advances and Challenges,” IEICE Trans. Electron., Vol. E88-B, no. 6, 2230-2238, June 2005.  

  26. A. Erentok, P. Luljak, and R. W. Ziolkowski, “Antenna performance near a volumetric metamaterial realization of an artificial magnetic conductor,” IEEE Trans. Antennas and Propagat., vol. 53, pp. 160-172, January 2005.