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In an effort to meet an ever increasing demand for more accurate and realistic integrated 
photonics simulations, we have developed a multidimensional, nonlinear finite difference time 
domain (NL-FDTD) Maxwe11's equations solver. The NL-FDTD approach and its application 
to the modeling of the interaction of an ultrashort, optical pulsed Gaussian beam with a Kerr 
nonlinear material will be described. Typical examples from our studies of pulsed-beam self- 
focusing, the scattering of a pulsed-beam from a linear-nonlinear interface, and pulsed-beam 
propagation in nonlinear waveguides will be discussed. 

1. INTRODUCTION 

With the continuing and heightened inter- 
est in linear and nonlinear semiconductor and 

optically integrated devices, more accurate and 
realistic numerical simulations of these devices 
and systems are in demand. Such calculations 
provide a test-bed in which one can investigate 
new basic and engineering concepts, materials, 
and device configurations before they are fab- 
ricated. This encourages multiple concept and 
design iterations that result in enhanced perfor- 
mances and system integrations of those devices. 
They also provide a framework in which one can 
interpret complex experimental results and sug- 
gest further diagnostics or alternate protocols. 
Thus the time from device conceptualization to 
fabrication and testing could be enormously im- 
proved with numerical simulations tha.t incorpo- 
rate more realistic models of the linear and non- 

linear material responses and the actual device 
geometries. 
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To date, most of the modeling of pulse prop- 
agation in and scattering from complex linear 
and nonlinear media has been accomplished with 
one-dimensional, scalar models. These models 
have become quite sophisticated; they have pre- 
dicted and explained many of the nonlinear as 
well as linear effects in present devices and sys- 
tems. Unfortunately, they cannot be used to ex- 
plain many observed phenomena, and expecta- 
tions are that they are not adequately modeling 
linear and nonlinear phenomena that could lead 
to new effects and devices. It is felt that vector 

and higher-dimensional properties of Maxwell's 
equations that are not currently included in ex- 
isting scalar models, in addition to more detailed 
materials models, may significantly impact the 
scientific and engineering results. Moreover, be- 
cause they are limited to simpler geometries, cur- 
rent modeling capabilties are not adequate for 
linear/nonlinear optical-component engineering 
design studies. 

In this paper we describe numerically 
obtained, multidimensional, full-wave, vector 
Maxwell's equations solutions to problems de- 
scribing the interaction of ultrashort, pulsed 
beams with a nonlinear Kerr material having a 
finite response time. These numerical solutions 
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have been obtained [Ziolkowski and Judkins, 
1992a, b, c, 1993a, b, c] in two space dimen- 
sions and time with a nonlinear finite difference 

time domain (NL-FDTD) method which com- 
bines a generalization of a standard, FDTD, full- 
wave, vector, linear Maxwell's equations solver 
with a currently used phenomenological time re- 
laxation (Debye) model of a nonlinear Kerr ma- 
terial. This NL-FDTD approach has been used 
to obtain numerical solutions in two space dimen- 
sions and time for nonlinear self-focusing in bulk, 
thermal Kerr media, for normal and oblique 
incidence linear-nonlinear interface problems, 
and for the propagation of pulses in nonlinear 
waveguiding strutures. Although these basic ge- 
ometries are straightforward, the NL-FDTD ap- 
proach can readily handle more complex, realistic 
structures. 

The NL-FDTD method is beginning to re- 
solve several very basic physics and engineering 
issues concerning the behavior of the full electro- 
magnetic field during its interaction with a non- 
linear medium. The various examples of trans- 

nonlinear optics problems described by 
Ziolkowski and Judkins [1992a, b, c, 1993a, b, c] 
highlight the differences between the scalar and 
the vector approaches, the effects of polarization, 
and the effects of the finite response time of the 
medium. Applying the NL-FDTD approach to 
self-focusing problems in bulk media, (1) we have 
shown the existence of back reflected power from 
the nonlinear selLfocus when the medium is re- 

sponding nearly instantaneously to the applied 
optical field; (2) we have discovered optical vor- 
tices are formed in the trailing wakefield behind 
the nonlinear selLfocus; and (3) we have identi- 
fied that the longitudinal field component plays 
a significant role in limiting the selLfocusing pro- 
cess. Applying the NL-FDTD approach to both 
the TM and TE nonlinear interface problems, (1) 
we have characterized the performance on an op- 
tical diode (linear-nonlinear interface switch) to 
single-cycle pulsed Gaussian beams including the 
appearance of a nonlinear Goos-H'Knchen effect, 
the stimulation of stable surface modes, and the 
effects of a finite response time of the Kerr ma- 
terial; (2) we have shown definitively that the 

linear-nonlinear interface does not act like an op- 
tical diode for a tightly focused, single-cycle 
pulsed Gaussian beam; and (3) we have char- 
acterized the performance of some basic linear- 
nonlinear slab waveguides as optical threshold 
devices. 

In all of these analyses we have identified the 
role of the longitudinal field component (which 
is not taken into account in the scalar models), 
and the resulting transverse power flows in the 
associated scattering-coupling processes. 

The Debye model for the Kerr nonlinearity 
is a standard choice and has been used to in- 

vestigate finite response effects in Kerr media 
by several groups [e.g., Mitchell and Moloney, 
1990, Hayata et al., 1990, Hayata et al., 1992]. 
Nonetheless, we have been extended this NL- 
FDTD model recently [Ziolkowski and Judkins, 
1993b] to materials described by a Lorentz linear 
dispersion model and a Raman nonlinear model. 
Thus the NL-FDTD model can now deal with li- 

brational effects [Reintjes, 1984] as well as many 
other known nonlinear behaviors. 

There have been a number of groups deal- 
ing with the numerical modeling of optical wave 
propagation in nonlinear materials using the full- 
wave, vector, time-independent Maxwell's equa- 
tions by Miyagi and S. Nishida [1974, 1975] and 
Pohl [1970] and using the vector paraxial equa- 
tions by Pohl [1972], Sodha et al. [1974], Hayata 
and Koshiba [1988], and Hayata et al. [1990]. 
These efforts have provided, for instance, the 
modal fields present in nonlinear waveguides and 
the resulting propagation behavior of beams in 
those guides. In contra. st, the NL-FDTD ap- 
proach is time dependent and accounts for the 
complete time evolution of the system as a pulse 
propagates in a Kerr medium having a finite re- 
sponse time with no envelope approximations. In 
particular, it provides a complete picture of the 
pulse behavior during the nonlinear self-focusing 
process and the scattering from a linear- 
nonlinear interface. Note that, because of the 
nonlinearities, such a pulse solution cannot be 
obtained from any sequence of single frequency, 
time-independent results; it can only be obtained 
from a direct time integration of Maxwell's equa- 
tions. Thus, these time-independent and time- 
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dependent modeling approaches yield additional 
and complementary information. 

Related modeling of optical pulse propaga- 
tion in nonlinear media has also been reported 
[Goorjian and Tafiove, 1991, 1992a, 1992b; Goor- 
jian et al., 1992a; Goorjian et al., 1992b; Goor- 
jian et al., 1993; and Jamid and Al-Bader, 1993]. 
The work by Goorjian and his coworkers (to 
date) has emphasized modeling soliron propa- 
gation effects; they have recovered one dimen- 
sional solirons (one space dimension and time) 
and solirons in two-dimensional TE guiding stru- 
tures. One-dimensional nonlinear soliron prop- 
agation has also been modeled with a FDTD 
approach by Hile and Kath [1993]. They have 
shown that the one-dimensional model recovers 

known nonlinear SchrSdinger equation results. 
Nonlinear guided-wave structures are also being 
modeled now by several groups [e.g., Ziolkowski 
and Judkins, 1992b, c, 1993b; Goorjian et al., 
1992a; Goorjian et al., 1993; and Jamid and Al- 
Bader, 1993]. The interest in these nonlinear 
guided wave structures stems from their poten- 
tial applications to integrated photonics devices 
and circuits. Because of the versatility of the 
NL-FDTD approach, all of these groups hope to 
be able to simulate the behavior of more compli- 
cated nonlinear guided wave structures and de- 
vices in the near future. 

2. NL-FDTD APPROACH 

The NL-FDTD method discussed by 
Ziolkowski and Judkins [1992a, b, c, 1993a, c] 
solves numerically Maxwell's equations 

o #1- -v x R Ot 

0 -. - 0 o7 v x 

(1) 

(2) 

where the nonlinear polarization term jGNL _ 
e0 xNL(• ', t, ]/•l 2)/• is specified by solving simulta- 
neously a Debye model for the third-order, non- 
linear susceptibility X NL of the Kerr medium' 

0 NL 1 NL 1 
07x q--x --e2l/l 2. (3) T T 

The nonlinear susceptibility X NL is incorporated 
most simply in the FDTD approach by introduc- 
ing the effective permittivity and conductivity of 
the Kerr medium 

•eff -- eL -{-eo X NL (4) 

0 NL 
O'eft -- e0 • X , (5) 

where eœ is the linear permittivity, and by rewrit- 
ing Maxwell's equations in the form 

I 
VxE 

1 
V x H- O'eff 

eeff 

(6) 

E. (7) 

This approach models the medium as having a 
finite response time r. If T represents the pulse 
width, then by setting T >> r, one obtains an in- 
stantaneous response model' X NL • e2 I/•l 2, that 
is, the medium follows the pulse. On the other 
hand, if T << r, then the finite response time 
effects are maximal, and the reedJura's response 
significantly lags the pulse. The NL-FDTD ap- 
proach can treat both extremes. Moreover, the 
divergence equation associated with this sy•em 
includes the nonlinear source term: V. [eL E] = 
--X7. jGNL which in the TM case provides the 
mechanism that couples the longitudinal to the 
transverse electric field components. 

Because of the quadratic nature of the non- 
lineartry in (3), the nonlinear susceptibility, 
hence, permittivity must be strictly positive. 
However, the nonlinear conductivity, which from 
(5) is obtained as the time derivative of the non- 
linear susceptibility, can be both positive and 
negative. This represents both loss and gain, 
respectively, in the medium. In the absence of 
any other dispersion mechanism, one would then 
expect some erosion of the pulse amplitude in 
the pulse's leading half as it propagates in this 
Kerr medium. On the other hand, the conductiv- 
ity changes its sign along the trailing half of the 
pulse. This causes growth in the pulse amplitude 
and a shocklike structure to form along the trail- 
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ing portion of the pulse. The sharpness and in- 
tensity of this shocklike structure depends on the 
finite response time; the structure will be more 
peaked the more instantaneous the medium's re- 
sponse is. 

In two space dimensions and time with the 
coordinates (x,z,t) and with the choice of a 
TMz-polarized wave, the NL-FDTD method 
solves for the complete time history of each of 
the components (Ex, Ez, Hy). The equations for 
a TEz-pol•arizecl•wave can be obtained by reci- 
procity' E -• H and H -• -E, and they lead 
to the NL-FDTD solution of the components 
(Ey, Hx, Hz). Whereas the nonlinear source term 
strongly couples the transverse and longitudinal 
electric field components in the TM case, the cor- 
responding magnetic field components in the TE 
case are driven by the transverse electric field 
component which exhibits the nonlinear growth. 
Additionally, when the linear-nonlinear interface 
problem is treated, Maxwell's equations natu- 
rally provide the boundary conditions appropri- 
ate for this lossy dielectric interface. Thus the 
linear- nonlinear interface problem can be han- 
dled without imposing any additional constraints 
on the fields. Moreover, more complex structures 
can be added to the simulation with little dif- 

ficulty, giving the NL-FDTD approach a great 
deal of flexibility, particularly in comparison to 
the scalar models. 

Note that the model defined by (1)-(7)ig- 
nores any linear dispersion effects and have taken 
the linear permittivity to be a constant eL = 
e0. This physically means that it is appropri- 
ate only for propagation distances shorter than 
the dispersion length of the material. As noted 
above, we have incorporated Lorentz linear dis- 
persion and Raman nonlinearity models into the 
NL-FDTD approach [Ziolkowski and Judkins, 
1993b]. We had investigated the nuances of a 
number of techniques introduced 
recently for modeling dispersive effects in the lin- 
ear FDTD method by Luebbers et al. [1990], 
Kashiwa and Fukai [1990], Lee et al. [1991], and 
Joseph et al. [1991] and developed a stencil set 
that allows simultaneous solution of these mod- 

els with Maxwell's equations. In particular, we 
are now solving in a self-consistent manner the 

system of equations' 

where/5_/SL _+_/•NL and /SNL _ e0 )•NL/•. De- 
tails concerning this extended NL-FDTD model 
will be given in several manuscripts currently 
under preparation. Goorjian and his cowork- 
ers have also developed a similar capability to 
model pulse propagation under the influence of 
linear and nonlinear dispersive, linear and non- 
linear diffractire, and time retardation effects in 
the medium. 

Because of the versatility of the FDTD ap- 
proach, •e have been able to "turn on" the dis- 
persion effects to analyze their impact on the 
self-focusing and the linear-nonlinear interface 
reflection-transmission processes. The results we 
describe below have been reaffirmed by the more 
complex NL-FDTD model defined by (1'), (2'), 
(8), and (9). 

The NL-FDTD results to be reported below 
were obtained by carefully designing and testing 
the numerical grid, material parameters, and the 
algorithm based upon (1)-(7) to insure stability, 
accuracy, and efficiency. The basic stencils of the 
NL-FDTD algorithm in both the TE and the TM 
polarization cases are shown in Figure 1. These 
standard stencils represent two staggered grids: 
one for the electric field components and one for 
the magnetic field components. These are the 
standard choices associated with the two-space 
dimensional linear FDTD algorithm. The dis- 
crete versions of the TE and the TM forms of 

equations (3), (6), and (7) are centered in space 
and time on this numerical grid. In the TM 
case, the electric field components Ex and Ez 
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TM case TE case 

Z y Hx Z y 

E 

Electric field components are 
averaged to obtain effective 
values at the location of the 

nonlinear susceptibility 

H 

Electric field is evaluated 

at the same location as the 

nonlinear susceptibility 

Fig. 1. The NL-FDTD TE and TM unit cell stencils. 

are assigned to the edges and the magnetic field 
component H u and the nonlinear susceptibility 
X NL to the center of the unit FDTD square cell. 
The nonlinearities in the Debye model (3) are 
obtained in the TM case by averaging the edge 
values in a unit FDTD cell to form effective Ex 
and Ez values at the center of that cell. The per- 
mittivities and conductivities are averaged across 
neighboring cells when necessary. For instance, 
the linear permittivity must be averaged across 
any interface in a linear medium. In addition, 
since the nonlinear susceptibility resides at the 
center of each cell, while the TM electric field 
components exist along its edges, the susceptibil- 
ity must be averaged across every cell boundary, 
whenever the nonlinea. rity is present. The TE 
case follows immediately by reciprocity. 

3. NL-FDTD RESULTS 

We will specifically present NL-FDTD results 
obtained for the scattering of a pulsed Gaussian 
beam normally incident on a linear-nonlinear in- 
terface. This problem combines both the linear- 

nonlinear interface scattering and the nonlinear 
self-focusing effects. Interest in the 
linear-nonlinear interface problem is stimulated 
by the need to assess the potential of this geom- 
etry for an all-optical switch. If the pulse ampli- 
tude is below the critical value for the medium, 
the beam senses no interface and passes through 
unscathed. If the pulse amplitude is above the 
critical value for the medium, the beam experi- 
ences a strong reflection from the interface; and 
the transmitted beam experiences self-focusing. 

In all of the interface problems we have con- 
sidered, it has been assumed that the interface 
was in the far field of the source [giolkow, ki and 
Judkin,, 1992d ]. We thus used a single bipolar 
pulse excitation for the single-cycle cases. This 
initial pulse was given by the function 

F(t) - x (1 - x2) • H(1 -I•1) ; X ---- 
2t 

(10) 

where H(x) is Heaviside's function. A total pulse 
width T = 20.0 fs corresponds to an effective 
wavelength of 4.0/•m. This initial driving func- 
tion has both first and second time derivatives 
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continuous at its endpoints, thus reducing the 
numerical noise initially generated in the grid. 
Note that the NL-FDTD approach can handle 
these single-cycle cases as readily as multiple- 
cycle cases which include pulses having an in- 
trinsic carrier wave. Since most current optical 
systems deal directly with a carrier-wave type 
signal, the NL-FDTD approach can simulate the 
propagation and scattering effects associated 
with those systems. It can also simulate the be- 
haviors of single-cycle optical devices and sys- 
tems. The single cycle results represent behav- 
iors that should be observed with optical sys- 
tems currently under investigation and those be- 
ing developed for future studies by the interna- 
tional optics community. However, in either case 
the full pulse is modeled with the NL-FDTD ap- 
proach rather than only the envelope of the car- 
rier wave, as it is with the nonlinear SchrSdinger 
equation models. This enhanced modeling capa- 
bility of the NL-FDTD approach allows one to 
model and distinguish the effects that arise in 
both the single- and muirpie-cycle cases. 

A variety of TE and TM cases have been con- 
sidered to establish the effects of the medium 

response time. This is accomplished simply by 
varying r with respect to the input pulse width 
T. In particular, we have run cases with T - 0.2r 
to T = 20.0 r. These choices provided access to 
the nonlinear phenomena associated with medi- 
ums exhibiting either finite or instantaneous re- 
sponse times. Several grid sizes have been ex- 
plored to assess the numerical stability and ac- 
curacy of the NL-FDTD approach. We found 
that an average spatial resolution of Az _< ,•/100 
was needed instead of the standard ,•/10 rule- 
of-thumb for the wavelengths of interest, par- 
ticularly in the instantaneous medium response 
cases. The signals steepened so quickly that this 
enhanced resolution was necessary to maintain 
the second-order accuracy of the FDTD 
approach. The grid size used in our 
linear-nonlinear interface model below was 

1500 x 2000, where Ax - Az - 0.020 pm or 
30.0 pm x 40.0 pm. This discretization provided 
an effective spatial resolution of Az - ,k/160 for 
the finite time pulse (4) that we considered. A 
Courant stability condition (the time step must 

be chosen for a two-dimensional problem with 
= so that zXt <_ ZXz/v) of zXt/(/Xz/) = 

0.38 was selected; this means we chose At -- 
0.045 fs and At = 0.018 fs, respectively. We 
found that the algorithm did not model the 
physics well when it was run at the linear equa- 
tion Courant limit, but did for values 
At/(Az/c) < 0.50. The nonlinear version of the 
Courant limit is not known at this time. With 

four unknowns and additional overhead, the cor- 
responding total memory requirement was ap- 
proximately 10.0 MWords. The time require- 
ment is proportional to the number of unknowns 
and the number of time steps. This 10.0 MWord 
problem took approximately 510 CONVEX/240 
cpu minutes to compute 7550 time steps, ap- 
proximately 0.5 ps per unknown. In terms of 
the problem parameters, this corresponds to the 
pulse propagating 40 pm ,,• 7 cT with a resolu- 
tion of 240 cells over the spatial pulse width cT = 
6.0 pro. The run time would be approximately 
a factor of 10 less using a single processor of a 
GRAY YMP/8-32. 

The NL-FDTD results for an above- 

threshold, normally incident, pulsed TM Gaus- 
sian beam, linear-nonlinear interface results are 

shown in Figures 2a-2d. In each part the field 
structure in a windowed region of the overall sim- 
ulation space is represented by a contour plot of 
the total electric field intensity [ - IEx 12 + IEzl 2. 
The incident beam field is shown in Figure 2a. 
It represents a Gaussian tapered (space), bipo- 
lar (time) pulse with an initial transverse waist 
w0 - 10.0 pm and a total initial pulse width 
T - 20.0 rs. For the results presented below 
the nonlinear medium parameters were set to 
the nearly instantaneous-regime value r - 0.2 T, 
i.e., T - 5.0r, and e2 - 2.0 x 10 -18 (m/V) 2, 
and we set the input electric field amplitude to 
E0 - 9.33 x 10S(V/m) - 2.8 Ecrit in the Kerr 
medium. 

The interaction of the TM pulsed beam at 
the linear-nonlinear interface is showr• in Figure 
2b for a time just after the beam scatters from the 
interfa. ce which is located at z - 0. The reflected 

and transmitted pulsed beam fields are apparent. 
The transmitted pulsed beam begins to self-focus 
as it propagates into the Kerr medium a.s shown 
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Fig. 2. Contour plots of the total electric field intensi•y levi 2 q-levi 2 for the 
T = 5r case. (a) The initial field, (b) The pulsed beam has just interacted with 
the linear-nonlinear interface, (c) The •ransmitted beam is self-focusing, and (d) 
The self-focusing region. 

in Figure 2c. The intensity pattern in the focus 
region is shown in Figure 2d. Figures 2c and 2d 
recover the well-known horn pattern in which the 
front (large z) portion corresponds to the linear 
diffraction region, and the rear (smaller z) por- 
tion incorporates the nonlinear effects. 

We have found that the growth of the lon- 
gitudinal electric field component causes trans- 
verse power flows and reflections from this self- 
focusing region [Ziolkowski and Judkins, 1992a, 
b, c, 1993a, b, c]. Serf-focusing is restrained by 
•hese nonlongitudinal power flow mechanisms 
since they channel power away from the focus. 
By studying the Poynting's vector S - E•:H•t,{'- 
E•H•: in the instantaneous response cases, we 
have demonstrated the existence of nonlinear op- 
tical vortices in the wake field of the focal region 

[Ziolkowski and Yudkins, 1993c]. Negative longi- 
tudinal power flow occurs on the horn boundary, 
in the region around the focus, and in the wake 
field of •he focus. Pure reflection occurs imme- 

diately behind the region of the maximum field 
intensity. Part of the negative flow in the focal 
region feeds •he focus (power must be channeled 
into the focal region to produce the growth in the 
field components there), and part is channeled 
in•o the vortices. Positive longitudinal power 
flow occurs everywhere else and is particularly 
strong immediately within •he focal region, 
where the nonlinear field growth occurs. 

These vortices can be described in terms of 

•urbulence in the power flow of •he electromag- 
netic field in the self-focus region. The front por- 
tion of the incident beam generates a •apered 
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waveguide which focuses the rest of the pulse. 
When the nonlinearity is nearly instantaneous 
and the field levels are large, the rate of the 
taper becomes very large. Thus the number of 
modes accessible to the beam increases. As the 

taper converts some of the field structure into 
these higher-order modes, nulls in the field com- 
ponents can develop. The presence of convec- 
tive power flow is immediate and leads to the 
formation of the vortices. This behavior can oc- 

cur whenever the power flow encounters a discon- 
tinuity in the guided-wave structure [Ziolkowski 
and Grant, 1986]. Vortices in nonlinear media 
have also been identified by several other groups 
[e.g., Coullet et al., 1989, Brambilla et al., 1991, 
Akhmanov et al., 1992, and McDonald et al., 
1992]. These vortices are observed in the field 
patterns derived from the scalar nonlinear 
Schr/Sdinger equation in planes transverse to the 
direction of propagation. In contrast, the vor- 
tices observed in the self-focus region are a direct 

result of the transverse power flow, which is inti- 
mately connected to the longitudinal field com- 
ponents, and are found in the planes containing 
the propagation axis. 

Typical self-focusing results for the normal 
incidence problem are summarized in Figure 3 in 
which the waist of the energy of the pulsed beam 
is plotted as a function of its location along the 
direction of propagation. For low intensity, the 
beam diffracts as though it were in free space; 
for high intensity, some portion of the beam re- 
flects, and the transmitted beam self-focuses in 
the Kerr medium. The actual reflection coeffi- 

cient is substantially below the value anticipated 
from an equivalent monochromatic beam. This is 
due primarily to the fact that the pulse does not 
cause the medium to respond instantly; hence, 
much of the energy penetrates into the medium 
before the boundary is sufficiently reflective. The 
transmitted beam behaves as predicted from pre- 
viously reported self-focusing beam propagation 
simulations. 

0'• 
e- 

x 

30 #m I 

Reglon 1 I Region2 
Linear Nonlinear 

I 

Low Intensity 
beam waist 

High intensity 

0 #m 15 #m 60 #m 
Distance along the propagation axis 

Fig. 3. The normal incidence problem is divided into two regions: the incident 
region which is linear and the transmission region which is nonlinear. The linear 
index is continuous across the interface so that a low-intensity beam will propagate 
unchanged. As the intensity increases, the pulse experiences some reflection and 
the transmitted pulse will self-focus if the initial transmitted field amplitude is 
above threshold. 
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4. CONCLUSIONS 

Although the current NL-FDTD models are 
two-dimensional, we believe that the observed 
transverse power flow mechanisms, which remove 
power from the focal region, limit the self- 
focusing process and will prevent catastrophic 
focusing in three dimensions. This, in contra- 
diction to the scalar nonlinear SchrSdinger equa- 
tion models, means the pulsed beam will not be 
focused to a point by the self-focusing process. 
Proof and comparisons with standard paraxial 
scalar models in three space dimensions await ad- 
equate computing resources. 

We have completed our modeling of the scat- 
tering of an obliquely incident, focused, pulsed 
Gaussian beam from a linear-nonlinear interface. 

Our NL-FDTD calculations indicate that the an- 

ticipated switching properties of this optical 
diode switch are unrealizable with a tightly fo- 
cused beam. These results recover the conclu- 

sions given theoretically by Tomlinson et al. 
[19821 and experimentally by Smith et al. [1981]. 
There is simply too much energy leakage into 
the medium from the initial pulsed beam com- 
ponents having wave vectors beyond critical and 
from the nonlinear coupling to the medium. Re- 
lated nonlinear waveguide simulations, however, 
have recovered expected solitarylike wave emis- 
sions from a linear waveguide channel into a 
background nonlinear substrate. This linear- 
nonlinear interface class of problems has poten- 
tial applications to nonlinear guided-wave cou- 
plers. 

Our future efforts will include several direc- 

tions. We will use the NL-FDTD model to study 
the interplay between the dispersive and •he non- 
linear effects of the medium in the presence of 
intense, applied optical pulsed beams. We will 
begin to include microscopic materials models in 
the NL-FDTD algorithm to study quantum ef- 
fects associated with these systems. We will also 
be applying the NL-FDTD model to realistic de- 
vice confirgurations; this will require modeling 
more complex propagation and scattering geome- 
tries. 
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