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ABSTRACT: The effects of dispersion on the performance of finite-length
grating-assisted output couplers driven by ultrafast pulses are studied.
Two different FDTD formulations of Lorentz dispersion are treated, and
both dispersive waveguides and grating teeth are considered. The impact
of dispersion on the output beams is quantified. © 1998 John Wiley &
Sons, Inc. Microwave Opt Technol Lett 17: 17-23, 1998.
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1. INTRODUCTION

The interaction between electromagnetic waves and materials
needs to be understood and characterized for the successful
design of any device used for ultrafast pulse applications.
Since material dispersion is the phenomenon which results
from the change of material properties with the frequency
content of the interacting electromagnetic waves, it is one of
the most intrusive effects associated with ultrafast pulse
applications. In this letter, we will investigate the effects of
dispersion on the performance of grating-assisted output
couplers. Grating structures have been studied extensively [1,
2] for their use in microwave, millimeter-wave, and optical
devices and systems. A number of methods, both analytical
and numerical, have been proposed to analyze these grating
structures for single-frequency excitation. Most of them treat
the gratings as periodic structures of infinite extent with
reasonably homogeneous, nondispersive materials in each
unit cell. However, for ultrafast pulse applications, finite,
aperiodic gratings are necessary to achieve efficient perfor-
mance. Complex material properties must also be taken into
account. Few modeling approaches can handle finite, aperi-
odic structures in complex material environments.

The finite-difference time-domain method (FDTD) [3] is a
very good choice for this purpose. First introduced by Yee [4],
this discrete numerical method directly solves the full-wave
vector Maxwell’s equations in differential form. It has be-
come a very popular method, and has been successfully
applied to a variety of electromagnetic problems [5]. Re-
cently, FDTD simulations have been shown to be very effec-
tive in modeling complicated grating structures [6, 7]. It
provides an extremely flexible simulation environment that
can model arbitrary geometries and material distributions,
including dispersion and nonlinearities.

We will examine, in the presence of dispersive materials,
grating-assisted couplers designed to convert pulsed incident
guided modes into radiated modes at certain predefined
angles. Specifically, we will examine the effects of dispersion
on the resulting far-field patterns. These patterns are ob-
tained with a near-field to far-field transform capability [8]
incorporated into the FDTD simulator. Moreover, we will
examine different approaches used in the FDTD method to

model Lorentz material dispersion. We then will study two
configurations of the grating-assisted output couplers excited
by ultrafast pulsed modes in which either the basis waveguide
or the grating teeth are composed of dispersive materials.

2. LORENTZ DISPERSION

We will use the Lorentz dispersion model to describe the
dispersion effects. This type of dispersion is frequently en-
countered; it exhibits a rapid variation in the resulting propa-
gation and absorption properties of the dielectric around its
resonance frequency. Lorentz dispersion is described in the
frequency domain by the following expression for the dielec-
tric permittivity (the engineering ¢/®’ time convention is
assumed):
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where w, is the resonance frequency, & is the damping
constant (the half-width at half-maximum of the absorption
coefficient versus frequency), and €, and €., are, respectively,
the dielectric constant at dc and infinite frequency. Figure 1
shows the real and imaginary parts of the dielectric permittiv-
ity when €, = 2.67, €, = 1.0, w, = 12.94 X 10'* rad/s, and
§=10"s""

With Lorentz dispersion, both the real part and imaginary
parts of the dielectric permittivity undergo rapid variations
near the resonance frequency. The region in which the
derivative with respect to frequency is negative (positive) is
the anomalous (regular) dispersion region. We observe that
anomalous dispersion occurs in a frequency band centered at
the resonance frequency. In addition, strong absorption oc-
curs in the anomalous dispersion region. The latter is one of
the major reasons that we only used the regular dispersion
region for the following investigation.

Lorentz dispersion can also be described in the time
domain by the polarization vector P(r, ). Lorentz material
dispersion is characterized in the time domain as a damped
harmonic oscillator according to the ordinary differential
equation

2
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where w, and I' are, respectively, the resonance frequency
and the damping coefficent (full-width at half-max of the
absorption coefficient versus frequency). This time-domain
form of the Lorentz material dispersion model must be
incorporated into the FDTD simulator to model the disper-
sion effects. It can be shown that the frequency domain (1)
and time domain (2) representations are equivalent, provided
that ' =26 and y = ¢, — 1.

3. FDTD DISPERSION FORMULATIONS

The representations expressed in Egs. (1) and (2) lead to two
different FDTD dispersion formulations: the auxiliary dif-
ferential equation (ADE) approach [19, 10], and the polariza-
tion equation (PE) approach [11, 12]. These methods both
introduce additional ordinary differential equations to be
solved self-consistently with the original Maxwell’s equations.
We note that both approaches can be used for modeling
nonlinearities as well as dispersion.
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Figure 1 Lorentz dispersion. The real part (solid line) and the imaginary part (dotted line) of the dielectric permittivity are shown as

functions of frequency

For the ADE approach, a second-order time-domain dif-
ferential equation relating D(r, ) and E(r, ¢) is introduced to
augment Maxwell’s equations. It is based on the assumption
that the electric susceptibility can be written in a rational
form as a function of the angular frequency. In contrast to
the usual update equation for E(r, ¢), one introduces a field
update equation for the electric flux density D(r, ). The
differential equation relating D(r, ¢) and E(r, ¢) is then used
to find the updated value of E(r,?). This value of E(r,?) is
then used in the standard FDTD update equation for the
magnetic field H(r, ¢). This approach requires a back store for
one previous time step for D(r, ) and E(r, t) to achieve the
corresponding FDTD updates. For the specific details of the
FDTD implementation of the Lorentz dispersion model with
the ADE approach, see [3].

For the PE approach, the polarization vector P(r,?) is
introduced instead of the electric flux vector D(r, t). Direct
treatment of the polarization vector P(r,?) is advantageous
because it is the source of the material properties. There
have been many other models developed to describe material
properties that can be treated in a similar fashion. The PE
approach requires the introduction of the polarization cur-
rent J(r, ¢):

Jd
J@r,t) = ——P(r,1t). 3)
3

The polarization field relation (2) then yields an equation for
this polarization current:

d
EJ(r,t) + TJ(r, 1) = 0i(ey xE(r,t) — P(r,1)). (4)

Equations (3) and (4) are then solved with Maxwell’s equa-
tions in a self-consistent, explicit manner as a first-order
system of differential equations.

We concentrated our study on the two-dimensional TE
polarization case in which the field components H,, E,, and
H, exist. The propagation direction in the dielectric wave-
guide is along the z-axis. For the implementation of Lorentz
dispersion with the PE approach in our FDTD simulator, we
further introduce the unknowns P, and J,, and assign them
at the same spatial locations (cell centers) as E|, and update
E, and P, at integer time steps and J, at half-integer time
steps, respectively. Using Standard central differencing nota-
tion, we obtain the following update equations:
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The update equations for H, and H, have their standard
forms [3].
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4. NUMERICAL RESULTS AND ANALYSIS

We investigated the effects of dispersion for the two
grating /waveguide combinations shown in Figure 2. Lorentz
dispersion is incorporated into the slab waveguide in the first
case and into the grating teeth in the second case. The
dispersive slab waveguide extends for five grating cells with
five perfect electric conducting (PEC) teeth imposed on the
upper side of it. For the second case, there are 11 dispersive
dielectric grating teeth. The grating period A for both cases
is 1.12 um, which is selected to scatter an incident, single-

frequency guided wave at a carrier frequency of 2 X 10'* Hz
into the direction normal to the waveguide. The PEC gratings
and dielectric gratings have a duty factor of 0.5 and depths of
0.2 and 0.4 um, respectively. The deeper dielectric grating
tooth depth is used compared to the PEC grating in order to
increase the effect of dispersion for the penetrable grating
tooth case.

The dielectric waveguide is excited [6] through a total
field /scattered field source which excites a pulsed fundamen-
tal mode that consists of the spatial fundamental mode of the

PEC grating

Dispersive slab waveguide

Normal slab waveguide

(a)

Dispersive grating

Normal slab waveguide

(b)

Figure 2 Grating-assisted output couplers problem geometries used for investigating dispersive effects for (a) a dispersive slab
waveguide with PEC grating teeth, and (b) a nondispersive slab waveguide with dispersive dielectric grating teeth
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Figure 3 Dispersion properties of the slab waveguide. The resonance frequencies of the associated Lorentz dispersion model were
taken to be 1.3w, (solid line), 1.6 w, (dashed line), and 2.2 w, (dotted line)
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waveguide multiplied by a time signal. The time signal is an
N-M-N pulse constructed from a sinusoidal time history
having carrier frequency w. and a window function which is
constructed from a smooth turn-on from 0 to 1 over N cycles,
a unit amplitude for M cycles, and a smooth turn-on from 1
to 0 over N cycles. The simulations below were initiated with
a 2-2-2 pulsed fundamental mode having a carrier frequency
of w, = 27f,, where f, =2 x 10" Hz.

The dispersion is varied by adjusting the resonance fre-
quency w, relative to the carrier frequency w,. The closer the

carrier frequency is to the resonance frequency, the larger
the dispersive effects will be. The dispersion parameters are
selected to have small absorption associated with the imagi-
nary part of the dielectric permittivity. We used the values
€,=10 and 6 =28 X 107 s~'. Once the resonance fre-
quency was chosen, the value of e, was then calculated in
order to have the desired dielectric constant at the carrier
frequency. For the dispersive slab waveguide, the dielectric
constant at the carrier frequency is set to be 2.0. Figure 3
shows the real part of the dielectric constant for three cases
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Figure 4 Comparison between the beam patterns generated with the PE (solid line) and ADE (marker) dispersion formulations.
Shown in the dotted line is the pattern obtained with the corresponding nondispersive slab waveguide
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Figure 5 Effect of dispersion on the direction of the maximum output from the grating-assisted output coupler as a function of the

frequency ratio f,/f.
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where the resonance frequencies of the associated Lorentz
dispersion in the slab waveguide are, respectively, 1.3 (solid
line), 1.6 (dashed line), and 2.2 (dotted line) times the carrier
angular frequency w,.

We first compare the two FDTD Lorentz dispersion model
implementations described above. The far-field pattern for
the grating-assisted output coupler consisting of five PEC
grating teeth imposed on the upper side of a dispersive slab
waveguide having w, = 1.3w, was computed with both the
PE formulation and the ADE formulation. The results of
these simulations are presented in Figure 4; they show that

the two formulations produce equivalent values. Nonetheless,
we note that the PE formulation, when compared algorithmi-
cally to the ADE formulation, retains more of the physical
meaning of the polarization model, does not need any back-
stores of data, and is more straightforward to implement.
Also shown in Figure 4 is the far-field pattern obtained
with the slab waveguide being nondispersive. One can see
immediately that the dispersion causes a variation in the
output direction, an increase in the beam width, and more
distortion in the far-field pattern. To further quantify the
effects of dispersion on the far-field pattern, we measured the
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Figure 6 Effect of dispersion on the half beam width of the grating-assisted output coupler’s far-field pattern as a function of the

frequency ratio f,/f.
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Figure 7 Effect of dispersion on the output efficiency of the grating-assisted output coupler as a function of the frequency ratio

fo/fe

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 17, No. 1, January 1998 21



Beam pattern
=

0.000274 7

L)
100 180

Angle (deg.)

Figure 8 Far-field patterns obtained with a dielectric grating-assisted output coupler having dispersive (solid line) and nondispersive

(dashed line) teeth

maximum beam direction, the half beam width, and the
output coupling efficiency as the dispersion parameters var-
ied. These results are presented in Figures 5-7 respectively.
We see a shift of the beam direction, a widening of the half
beam angle, and a reduced coupling efficiency as the disper-
sion becomes more pronounced, i.e., for resonance frequen-
cies closer to the carrier frequency. This shift is a direct
result of the change due to the dispersion in the index of
refraction which directly impacts the phase-matching condi-
tion.

We also examined the effects of dispersion associated with
the dispersive dielectric grating teeth as depicted in Figure
2(b). For this case, dielectric grating teeth with Lorentz
dispersion are imposed on a nondispersive slab waveguide.
The dispersive grating teeth have a dielectric constant of 4.0
at the carrier frequency; the slab waveguide has a dielectric
constant of 2.0. Similar impacts on the far-field patters were
observed. Figure 8 shows the far-field pattern obtained from
a grating-assisted output coupler consists of 11 dispersive
dielectric grating teeth with the resonance frequency of the
Lorentz dispersion being set to w, = 1.35w,.. The pattern
obtained with the corresponding output coupler with nondis-
persive dielectric teeth having a dielectric constant of 4.0 is
included as the dashed line for comparison. The effects of
dispersion resulting from the presence of dispersion in the
teeth of the grating are now easily recognizable. We note that
these effects are smaller compared to the case when the
coupler consisting of the PEC grating teeth and a dispersive
slab waveguide. This is caused by the reduced size of the
dispersive region and radiation output coupling efficiency of
the dielectric grating.

5. CONCLUSIONS

In conclusion, the FDTD method is an effective simulation
tool for characterizing structures in the presence of complex
material properties, including dispersion effects. The material
properties are assigned to each Yee cell, and the boundary

conditions are enforced at all material interfaces. It is thus a
general and robust method. We examined two dispersion
formulations, the PE and ADE methods, that can be used in
FDTD simulators, and found that they produce equivalent
results. We further studied the impact of dispersion on the
performance of grating-assisted output couplers. We quanti-
fied the variations in the far-field patterns generated from
grating-assisted output couplers due to the effects of disper-
sion in the material present in the couplers. The dispersion
parameters used in the FDTD simulations were relatively
weak because we purposely chose to work in the regular
dispersion regime away from the resonance frequency of the
Lorentz dispersion model, where the absorption effects would
become significant and the output coupling would have been
substantially reduced. We found that material dispersion
causes a variation in the output beam direction, a widened
output beam width, a reduced output coupling efficiency.
Dispersion was also found to cause the sidelobe levels in the
far-field patterns to increase. This investigation strongly sug-
gests that the material dispersion properties of any grating-
assisted output coupler should be taken into consideration
when excited with an ultrafast pulse since these pulses pos-
sess very wide spectral contents.
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ABSTRACT: While the majority of research with terahertz radiation
from large-aperture antennas used high-intensity femtosecond laser pulses
with low repetition rates, we used a regenerative amplifier with a repeti-
tion rate up to 300 kHz. This high repetition rate allows us to combine
a high-power large-aperture transmitter and dipole antenna detection.
© 1998 John Wiley & Sons, Inc. Microwave Opt Technol Lett 17:
23-27, 1998.
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INTRODUCTION

Pulsed electromagnetic radiation with terahertz bandwidth
but relatively limited power has been produced in the past by

means of femtosecond optical pulses incident upon Hertzian
dipoles, strip lines, and spiral antennas [1]. Various applica-
tions include time-domain spectroscopy of liquids [2], gas [3],
semiconductors [4], superconductors [5], flames [6], and or-
ganic samples [7]. In this study, we use a low-intensity fem-
tosecond laser (few nanojoules per pulse) with a high repeti-
tion rate (= 100 MHz).

For other applications such as saturation phenomena and
nonlinear processes in semiconductors, a high peak power is
required [8, 9]. This motivates the development of a large-
aperture antenna which accepts high optical fluence and high
applied voltage. You et. al. have produced high-peak-power
terahertz radiation (1.5 MW) with a Ti:Sa chirped-pulse am-
plifier system which operates at a repetition rate of 10 Hz
from a 3-cm large-aperture transmitter [10].

The detection scheme depends on the terahertz transmit-
ter. In low-power experiments, the same system is generally
used for the detector. The switch is biased by the incoming
terahertz radiation pulse. On the other hand, the measure-
ment is carried out by shortening the detector gap by means
of femtosecond optical pulses, and by measured the collected
charge versus the time delay between the pump and probe
signals. the Fourier transform of the temporal shape of the
detected current reflects the spectrum of the radiating field.
Both amplitude and phase information is available, and hence
the detection systems is a coherent process [11]. As a general
rule, the repetition rate of the femtosecond laser is crucial
for the signal-to-noise ratio. Indeed, the signal level increases
linearly with the number of sampling pulses, while the noise
increases only as the square root of the number of pulses
[11].

Under these conditions, the low repetition rate of a high-
power femtosecond laser can be troublesome for large-aper-
ture transmitter experiments. One method to measure the
spectral content of terahertz radiation employs a Michelson
interferometer with a cooled bolometer. Another method
uses a photoconductive switch as in the low-power terahertz
experiments. This detector can operate at room temperature,
but an operation at low repetition rate requires a large
detection area, with the resulting bandwidth degradation [12,
13]. In addition, recent studies emphasize the importance of
the repetition rate parameters with respect to intrinsic times
of the physical processes involved [14]. Budiarto et al. [14]
found that the output energy per pulse of the transmitter
running at 1 kHz exceeded that at 100 Hz by as much as 60%,
motivating a further increase in the repetition rate for this
kind of experiment.

In this letter, we report an experiment which uses a
high-repetition-rate system (up to 300 kHz) as an alternative
approach for producing high-power electromagnetic pulses.
For this purpose, we combine, for the first time to our
knowledge, a large-aperture emitter antenna with a small-gap
strip-line detector antenna. In addition, we have used nonsto-
chiometric low-temperature-grown GaAs samples which offer
great potential as extremely fast photoconducting detectors.

ANTENNA MATERIAL, STRUCTURE, AND FABRICATION

Low-temperature (LT)-grown GaAs epilayers were used for
implementing the detecting antenna. Unlike GaAs materials
grown at a substrate temperature of about 600°C, LT-GaAs
contains a high concentration of deep defects which promote
carrier recombination, but maintain good crystal quality. Op-
tically generated carriers thus recombine at rates orders of
magnitude larger than those grown at higher temperatures.
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