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Abstract—Various grating configurations are introduced to
develop structures for the mode conversion of an ultrafast,
ultrawide-bandwidth optical pulse propagating in a layered di-
electric waveguide. Introducing a new technique for efficient,
real-time mode extraction, we examine these schemes with a
full-wave, vector, finite difference time domain (FDTD) Maxwell
equation simulator. The resulting FDTD simulator is very flexible
and accurate; it is capable of modeling the interaction of few- or
many-cycle optical pulsed modes with finite, aperiodic gratings
with complex material configurations. The grating structure can
be tailored to the pulsed optical modes of interest with this FDTD
simulator. It is used to design a composite mode-conversion
grating structure that realizes a 29.45% increase in the converted
mode energy for an ultrafast six-cycle optical pulse over that
achieved with standard uniform grating convertors.

Index Terms—Dielectric waveguides, FDTD, mode conversion,
mode extraction, numerical modeling, ultrafast optical pulses.

I. INTRODUCTION

W ITH the development of techniques for generating
ultrafast laser pulses and the increasingly apparent

potential for their applications, there is a corresponding need to
understand the interaction between such ultrawide-bandwidth
optical pulses and advanced materials and devices. In this
paper we develop further the time domain numerical mod-
eling tools that can be used to simulate mode conversion of
optical pulsed modes by grating structures in planar dielectric
waveguides. Our desire to model such grating structures,
particularly with ultrafast pulse interactions, stems from the
recognition, for example, that optical communication systems
are being driven to shorter pulse regimes to increase the
available information bandwidths. Devices will then need to
be designed for these ultrafast pulses to meet traditional needs.
For instance, one designs a dielectric waveguide so that the
major portion of the propagating energy of its fundamental
mode resides in its core region. To attenuate or measure the
power in this waveguide mode, one common approach is to
convert it into a higher order mode with a grating so that the
propagating energy will be re-distributed from the core into
the cladding region. The amount of attenuation or measured
power can be adjusted by selectively designing the amount of
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absorption in the cladding material. While most of these issues
are well understood for single frequency operation, traditional
designs prove to be inefficient for ultrawide-bandwidth, ultra-
fast pulsed modes. The grating structure must be tailored to
the frequency content in the pulsed guided mode.

The design on gratings in single frequency applications
is well established. Among these applications are the elec-
tromagnetic diffraction and scattering problems under plane
wave incidence [1], and the guidance problems for electro-
magnetic mode propagation in waveguides [2], [3]. Mode
conversion is achieved in the latter when the propagation
constants of the modes of interest satisfy an appropriate phase
matching condition. A number of methods, both analytical
and numerical, have been proposed to analyze these grating
structures for single frequency excitation. Most of them treat
the gratings as periodic structures of infinite extent with
reasonably homogeneous, nondispersive materials in each unit
cell. However, the ultrafast pulse environment will require
aperiodic finite grating structures in the presence of dispersive
materials that can be effective over a few optical cycles
which corresponds to a large frequency content. Fabrication
technologies for wavelength-sized structures of this type are
currently available in several formats and are being improved
constantly. However, few modeling approaches can handle
finite, aperiodic structures in complex material environments.

The modeling of optical pulse propagation in complex
media has generally been accomplished with one-dimensional,
scalar models (see, for example, [4]). These traditional models
have become extremely complex, but are attractive since
they quickly provide reasonable explanations for a variety of
observed phenomena. However, they are inadequate as the
wavelength approaches the device size. The beam propagation
method (see, for example, [5]–[8]) has become a very popu-
lar numerical method for numerical modeling optical beam
propagation in complex media and waveguides. However,
without many of the recent corrective augumentations, these
beam propagation method (BPM) algorithms are inaccurate
for highly reflective, polarization dependent materials and
structures. Many of these analytical and numerical approaches
also assume that the pulses are constructed around a carrier
frequency and extremely narrow bandwidth envelopes. They
are traditionally analyzed in linear media with Fourier analysis
and stepped-frequency techniques. In linear media gratings can
then be designed by adopting an optimization approach on the
basis of the Fourier spectrum of the pulses. Yet with the large
number of parameters to be optimized, such as grating periods,
grating modulation depths, and material properties, as well as
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different grating configurations, such an optimization becomes
very complicated and cumbersome to achieve.

It is thus desirable to have a simple and efficient way to
provide some insight into the behavior of grating structures
interacting with ultrafast optical pulses. The finite-difference
time-domain method (FDTD) is a very good choice for these
simulations. First introduced by Yee [9], this discrete numer-
ical method directly solves the full-wave vector Maxwell’s
equations in differential form. It has become a very popular
method in the microwave regime and has been used recently
to model ultrafast optical pulse propagation in linear and
nonlinear media [10], [11] and to model the interactions with
linear and nonlinear interfaces [12] and gratings [13]–[15].
It provides an extremely flexible simulation environment that
can model arbitrary geometries and material distributions,
including dispersion and nonlinearities. It can handle pulses
consisting of one cycle or thousands.

To understand quantitatively the mode conversion process
for ultrafast optical pulses, we have developed an efficient
real-time mode extraction technique for use with our FDTD
simulator. This augmented FDTD simulator has enabled us to
carry out a thorough investigation of various grating structures
that could be used to mode convert ultrafast optical pulses.
These include periodic and aperiodic rectangular and sinu-
soidal gratings whose unit-cell lengths are adjusted coarsely
or finely. We have found that the aperiodic gratings with
coarse adjustments in the unit cell lengths that are designed to
convert different frequency components in the pulsed modes
at different times and locations within the grating structure are
the most efficient.

In Section II, we present the FDTD numerical simulator
used to describe the interaction of ultrafast pulsed modes with
finite, aperiodic grating structures. In Section III, we describe
the technique we have developed to extract the desired mode
information from these numerical FDTD results. Several cases
with uniform gratings are presented to validate our approach.
In Section IV, various composite grating structure designs
are explored and their efficiency in converting pulsed optical
waveguide modes are characterized. It will be shown that an
aperiodic mode-conversion grating structure can be designed
that results in a 29.45% increase in the converted mode
energy for an ultrafast six-cycle optical pulsed mode over that
achieved with standard uniform grating convertors.

II. NUMERICAL SIMULATOR

Because of its ability to model complex structures and mate-
rials as well as single or many cycle pulses, the finite difference
time domain approach to solving Maxwell’s equations [10]
was selected for the present mode conversion investigation.
The associated geometric, material, and source flexibilities
makes the FDTD simulator the method of choice for our prob-
lems. In FDTD simulations Maxwell’s equations are solved to
second-order accuracy by replacing the differential relations
by centered finite differences, both in space and in time. The
electric and magnetic field components reside on a staggered
grid (the components of the electric and magnetic fields and
the material properties are interleaved in a precise manner

on the grid) and the resulting update equations for these
field components are integrated forward in time in a leapfrog
fashion. For all of the simulations to be presented below, the
regions of interest were discretized into square cells whose
sides were 1/30 of the free space wavelength defined by the
carrier frequency of the source. The corresponding FDTD time
step size is restricted to insure numerical stability; it was taken
to be the two-dimensional (2-D) Courant value [10].

The basic structure for our investigations, hereafter referred
to as the basis waveguide, was a two dimensional dielectric
slab waveguide supporting TE modes. The direction of prop-
agation was taken to be along the-axis; the infinite direction
was taken along the-axis. Thus the components of a TE
mode were , , and ; and the material discontinuites
representing the waveguide boundaries were along the-axis.
The basis waveguide consists of three layers and is surrounded
by free space. The center layer is the core region and has a
dielectric constant of 2.25. The upper and lower layers are the
cladding regions and have a dielectric constant of 2.03. All of
these layers are taken to be 1.0m thick.

The possible modes of the basis waveguide are calculated
with a standard frequency domain technique [16]. For the
carrier frequency of 3 1014 Hz, the basis waveguide can
support seven propagating modes, denoted by mode 1 through
mode 7. To initiate a certain mode, the known transverse
mode field distribution [16] is multiplied by the desired time
excitation. The excitation signal is an envelope of choice times
a sinusoidal wave at the carrier frequency. For the simulations
to be presented below, the selected signal results in a six-
cycle pulse containing two smooth turn-on cycles, two unit
sinusoidal cycles, and two smooth turn-off cycles. It is referred
to as the 2-2-2 pulse. Fig. 1 shows its spectrum. For the
simulation cases treated below this 2-2-2 pulse spectrum has
most of its frequency content above the cutoffs of the first
seven propagating modes. This 2-2-2 pulsed mode is launched
into the simulation region from a total field/scattered field
boundary [10]. The fields are followed throughout the entire
simulation region as they evolve in time.

The mode conversion is realized by a grating structure
which is constructed by deforming the boundaries between the
core region and the cladding regions in either a rectangular or
a sinusoidal profile. The sinusoidal profile is approximated
in a stair-stepped fashion; this representation is very good
approximation with the specified spatial discretization. The
various rectangular gratings we have considered are illustrated
in Fig. 2.

It is well known [2] that for a monochromatic excitation, the
grating period in a mode conversion grating is dictated by a
phase matching condition. To convert from theth waveguide
mode with the propagation constant to the th waveguide
mode with the propagation constant, this phase matching
condition requires the grating period to satisfy the relation

(1)

The grating periods for the mode conversion between mode 1
and mode 5 in the basis waveguide that are associated with
various frequencies contained in the 2-2-2 excitation pulse are
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Fig. 1. Spectrum of the 2-2-2 pulse.

(a)

(b)

(c)

Fig. 2. Finite rectangular grating structures investigated. (a) Uniform, (b)
frequency chirped, and (c) frequency chirped and depth modulated.

listed in Table I. These grating periods are specified in terms
of the number of FDTD cells required to model them in the
simulation region.

III. PULSED MODE EXTRACTION

The FDTD approach gives the complete description of the
time evolution of the fields. However, we are interested pri-
marily in how much energy exists in any one waveguide mode.
A mode is strictly a frequency domain concept; the pulsed
waveguide field is merely a composite structure consisting of
a single or multiple waveguide modes excited with different
frequencies. Thus the total energy in one mode will be a
superposition of all of the single frequency energies in that
mode excited by the source. To quantify the degree to which
one pulsed mode is converted into another pulsed mode, we
have augmented the basic FDTD simulator with the following
pulsed mode extraction scheme. It is a straightforward gener-
alization of the standard monochromatic method which uses
mode orthogonality to decompose a given guided wave into
each of its modal components so that one can quantify how
much energy is in a specified mode for a single frequency of
excitation.

TABLE I
GRATING PERIODS IN TERMS OF THENUMBER OF FDTD GRID CELLS FOR

CONVERSION FROMMODE 1 TO MODE 5 AT THE INDICATED FREQUENCIES

Let be the transverse field distribution of theth TE
mode. The total electric field in the waveguide is
a superposition of all possible modes, namely

(2)

The mode amplitude factor contains complete infor-
mation about the longitudinal distribution of the electric field
as a function of the time. All of the radiation mode effects
have been lumped together in the term . Since the
radiation and guided modes are orthogonal and since the
simulation is excited initially with a propagating mode, very
little energy will be found in any of the radiation modes until
some discontinuity such as the grating structure is encountered.
Even then, since the waveguide itself is only weakly modulated
by the grating structure, most of the energy of interest remains
in the propagating modes.

Just as it does in the frequency domain, mode orthogonality
allows us to extract all the desired time domain mode infor-
mation from the fields. This includes the energy present in a
specified mode of interest. In particular, we take the transverse
mode distribution at the carrier frequency. With mode
orthogonality

(3)

and normalization of the mode distribution

(4)

the mode amplitude factor is obtained via projection
of the field onto the th mode as

(5)

Note that this mode amplitude factor is also the equivalent
voltage for the th mode. The equivalent current for theth
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Fig. 3. Spectrum of extracted mode 1.

mode is obtained in a similar manner from the transverse
component of the magnetic field

(6)

where is the normalized transverse magnetic field mode
distribution. Therefore, the energy in the th mode passing
through a plane const is given by

(7)

The orthogonality of the transverse mode distributions thus
allows us to determine in time the mode amplitude factors at
any longitudinal location. This result also reflects the way the
initial signal is excited, which is given by first specifying a
spatial transverse mode distribution and then multiplying it by
a certain time envelope. Thus by using the FDTD simulator
to obtain the electric and magnetic fields in any specified

constplane, we can calculate the energy in a mode directly
by this transverse mode projection algorithm.

This mode extraction approach is also very efficient since
it avoids the complexity of invoking any Fourier analysis for
the pulsed signal. It is implemented directly in the FDTD as
follows:

(8)

(9)

(10)

where and is the transverse dimension
of the simulation region; and where is the
number of times steps taken in the simulation. Bothand
are directly available from the FDTD simulation. Therefore,
our approach is a real-time extraction technique.

Reference [17] discussed an analogous technique for mode
extraction from FDTD field information. That approach ob-
tained the coefficients of all the guided modes by the method
of least squares which requires the inversion of a matrix
system. For mode conversion, we are interested in only a few
specific modes, typically the original mode and the converted
mode. The associated mode amplitude factors can be extracted
through (5) and (6) more efficiently by directly invoking

the mode orthogonality property, without the additional com-
putational cost required for matrix inversion. This can be
done at each computational step with little overhead and
provides additional information including the rate at which
the mode conversion is proceeding. Furthermore, from the
strict function approximation perspective (Best Approximation
Theorem [18]), the projection from the total field onto the
propagating modes is indeed in the least square sense, since
mode orthogonality holds for all modes, including the guided
modes and radiation modes.

To validate the FDTD mode extraction technique, we initi-
ated a combination of mode 1 and mode 5 with the 2-2-2 pulse
envelope into the simulation region. At a distance away
from the source plane, the mode amplitude factor for each
mode was extracted. The energy in mode 1 and mode 5 were
found to be 97.64 and 97.03% of their initial energy. The small
decrease in the energy was found to be due to the fact that the
FDTD method will excite some nonpropagating reactive field
energy in the vicinity of the source plane. Moreover, some of
the low frequency content of the spectrum is below the cut-
off frequency for these modes so it is attenuated immediately.
Taking separate measurements of the mode energies along the
waveguide outside of this aperture region showed that the
energy in each mode was well defined and well maintained
once the mode became established.

We also note that if desired, mode information at any
frequency is immediately available by Fourier transforming the
extracted mode amplitude factors into the frequency domain.
As shown in Figs. 3 and 4, the spectrum of the extracted
mode amplitude factor for each mode is in close agreement
with that of the original 2-2-2 pulse excitation (shown as a
dashed line). These results demonstrate that the information
about each individual frequency component within the pulsed
mode spectrum is correctly extracted with our mode extraction
technique. The slight differences have been shown again to be
associated with the spectral content and launching of the initial
2-2-2 pulse into the simulation region. Note also that the above
mentioned attenuation is more visible for mode 5, due to its
higher cutoff frequency.

IV. NUMERICAL EXPERIMENTS

A. Grating Profile

Two uniform grating profiles, sinusoidal and rectangular,
were considered to validate the FDTD simulator. For single
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Fig. 4. Spectrum of extracted mode 5.

Fig. 5. Comparison of the conversion efficiency achieved by a sinusoidal and a rectangular grating profile.

frequency excitation, coupled-mode theory reveals that the
fundamental spatial frequency of the grating controls the
mode conversion [2]. This means that both the sinusoidal
and rectangular profiles will have the same grating period
calculated from the phase matching condition given in (1).
Thus, it was expected that the FDTD simulator would predict
essentially the same behavior for the fields and the amount of
the mode conversion for both of these uniform profiles under
single frequency excitation. This was found to be the case. We
simulated the propagation of mode 1 at the carrier frequency,
3 1014 Hz, through a rectangular and a sinusoidal grating.
The peak to peak modulation of these profiles was varied,
and the maximum mode conversion value was determined
numerically. The optimal effective depth was nine cells for
the rectangular grating and 12 cells for the sinusoidal grating.
These values are very close to the observed ratio of/4
reported in [1]. The optimal duty factor of the grating was
found to be 1/2.

The gratings are superimposed on the basis waveguide
with the grating profile centered in the transverse direction
about the core-cladding interface. A grating period of 126
cells (4.2 ) was specified by (1) for the carrier frequency of
3 1014 Hz. The degree of mode conversion was measured
with the FDTD mode extraction technique. We define the
conversion efficiency as the ratio of the energy in mode 5
at any location along the guide to the initial energy in mode 1.
With these optimized rectangular and sinusoidal profile depths,
the FDTD simulator predicted the conversion efficiencies of
90.24 and 94.11%, respectively, from mode 1 to mode 5 in one
conversion length. Again, this result was obtained for a single
frequency excitation at 3 1014 Hz; the optimal conversion

length for both profiles was 1275 cells (about ten grating
periods). The curves showing the amount of conversion versus
distance along the waveguide are nearly identical, except for
the noted small difference in the peak values. This difference
is believed to be due to the differences in the depths of these
grating profiles and the FDTD stair-cased approximation used
to define the sinusoidal profile.

This mode conversion behavior versus distance along the
waveguide persists even in the pulsed mode case. This was
somewhat of a surprise since we felt that the smoothness of the
sinusoidal profile would make it inherently more broadband.
It was tested by exciting the basis waveguide in mode 1 with
the 2-2-2 pulse. Fig. 5 shows that the maximum conversion
length is about 1200 cells (40.0), slightly less than 10 grating
periods and slightly less than the single frequency’s value.
The latter is a result of the polychromatic nature of the 2-2-2
pulse. After the maximum conversion length is reached, mode
5 begins its conversion back into mode 1 (the phase matching
condition holds equally as well for converting mode 5 into
mode 1). At longer distances the process oscillates between
these two conversion processes. These results indicate that a
finite grating size (the grating should stop at the maximum
conversion length and be followed immediately by the basis
waveguide) will provide the optimal conversion length even
for a pulsed mode.

B. Chirped Grating Designs

Since the sinusoidal grating provides no distinct advantage
over the rectangular grating for the pulsed mode conversion,
we had to conceive of other grating schemes to convert
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Fig. 6. Mode conversion with linearly chirped gratings.

mode 1 into mode 5 more efficiently. The main issue of
mode conversion for a pulsed signal is to design a structure
which will efficiently convert major portions of the frequency
bandwidth of the excitation signal. Since a grating is inherently
a (single frequency) resonant structure, we began the design
of a composite structure which consists of several single
frequency gratings joined together.

In particular, we designed a linearly reverse-chirped rect-
angular grating structure. This aperiodic structure is shown in
Fig. 2(b). It represents a continuous variation in the unit cell
size within the grating. This was accomplished by forming the
composite grating from ten corrugations whose periods change
linearly from 131 cells to 122 cells. The total length of the
structure (1265 cells) is slightly smaller than one conversion
length of the uniform grating (1275 cells). The amount of
energy converted into mode 5 from the initial mode 1 is shown
in Fig. 6. From the figure we observe a slight increase in the
conversion efficiency over the uniform rectangular grating.
Note that this reverse-chirped grating converts the higher
frequency components in the pulse before the lower frequency
components. It was also just as easy to test the opposite
arrangement. The amount of energy converted into mode 5
from the initial mode 1 by the forward-chirped grating is
also shown in Fig. 6. It demonstrates that converting the high
frequency components first yields a better overall conversion
efficiency over the process which converts the low frequency
components first. We have found this to be true in general for
any aperiodic grating structure we tested.

C. Cascaded Grating Designs

Similar behavior was observed for a discrete reverse-
chirped, cascaded grating structure containing three periods
of 131 cells, three periods of 126 cells, and three periods of
121 cells. We decided to pursue this cascaded configuration
further since it appears that it would be easier to fabricate than
the continuous chirped grating. We found that in both discrete
forward- and reverse-chirped gratings, the increase in the
overall energy conversion of several of the major frequency
components contained in the pulse nicely compensated for the
decrease in the energy converted at the carrier frequency due
to the smaller conversion length at that frequency. However,
it was noticed that more energy at a given frequency would
be converted the closer the net length of any one segment
of the cascaded grating came to the true conversion length
for that frequency.

This design process resulted in a grating structure which
had four cascaded rectangular gratings which contained five
periods of 133 cells, followed by five periods of 126 cells,
five periods of 119 cells, and five periods of 112 cell gratings.
These grating periods correspond, respectively, to the frequen-
cies: 3.2 1014 Hz, 3.0 1014 Hz, 2.8 1014 Hz, and
2.5 1014 Hz. Fig. 7 shows the resulting energy conversion
efficiency for the conversion of mode 1 into mode 5 versus
the distance in the converter. The designed cascaded reverse-
chirped grating achieved an energy conversion efficiency from
mode 1 to mode 5 of 60.75%, a 29.45% increase over
the 46.93% value for the uniform rectangular grating. This
29.45% improvement is clearly a result of the interactions
of multiple frequency components in the signal spectrum
with the different grating sections of the composite structure.
Notice that the energy in mode 5 continues to build up after
passing the distance where the maximum conversion for the
uniform grating occurs. The final increase to the 60.75%
conversion value is reached approximately at 2200 cells, a
83.33% increase in the length of the grating from its length
of 1200 cells in the uniform grating. The maximum energy
in mode 5 exists after this much longer conversion length is
reached. It takes longer for all of the spectral components to
undergo a sufficiently large enough transition for the overall
quality of the pulsed mode to be maintained.

The spatial mode pattern of the resulting electric field is
given in Fig. 8 for a time after this conversion length has
been reached. The corresponding-axis slice is also shown
in Fig. 9. Both figures clearly show the presence of mode 1
and mode 5. Furthermore, as expected from their different
propagation speeds, mode 1 and mode 5 are well separated
in time.

It was also found, as expected, that the individual frequency
components contained in the 2-2-2 pulse have different conver-
sion lengths. The lowest frequency component had the largest
conversion length; the highest frequency had the shortest
conversion length. Since the pulse spectrum contains different
amounts of energy at the various frequencies, we decided to
design yet another grating structure. An aperiodic cascaded
grating was constructed which tailored each segment of the
cascade to have a length proportional to the conversion length
for its grating period. The resulting grating thus had segments
which were designed to convert each frequency component at
a closer rate as to the carrier frequency. It had four cascaded
rectangular grating segments which contained four periods of
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Fig. 7. Energy building-up in mode 5 for the cascaded gratings.

Fig. 8. Field distribution at 5000 time steps.

Fig. 9. TheE field distribution along the waveguide axis at 5000 time steps.

133 cells, followed by five periods of 126 cells, six periods
of 119 cells, and seven periods of 112 cells. We expected
a higher efficiency for the overall conversion of the pulsed
mode. Unfortunately, this extra design criterion was found to
have little effect on the overall efficiency of the pulsed-mode
conversion. It was noticed that once a frequency component
had been converted, the converted mode 5 deteriorated back
to mode 1 the longer it was in contact with the remaining
grating structure. Thus while each frequency component was
more efficiently converted, the overall improvement became
negligible due to the unwanted, continued interactions with the
grating structure. We believe that the reason the more uniform
numbers of cells provided the best mode conversion was
that in addition, the spectrum had proportionately less energy
in the frequency components away from the carrier. While,
for instance, the lower frequency components needed more
conversion length, there was less need to be more efficient

at those frequencies since the pulse spectrum contained less
energy there.

One final aperiodic grating structure was simulated and
is shown in Fig. 2(c). Not only was the grating chirped in
frequency, but the depth of the individual segments was
also modulated. It was hoped that by varying the depth
of the corrugations, the effects of the deterioration of the
converted mode due to the increased interaction lengths could
be mitigated. In particular the segments of the reverse-chirped
grating were designed to be shallower the further along the
grating they were found. Thus once a frequency component
was converted in one segment of the grating structure, the
remaining segments were shallower, thus allowing that higher
component to propagate with only minor interactions. We
found this depth-modulated reverse-chirped grating did not
improve the overall conversion efficiency. Once its depth was
varied away from its optimal value, any one segment of the
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grating became less efficient. The aperiodic discrete reverse-
chirped grating consisting of four segments with five periods
in each segment was the most efficient pulsed mode converter.

V. CONCLUSION

In this paper, we have presented a numerical simulation
approach for investigating the interaction of optical pulses
with complex waveguiding geometries. This FDTD method,
together with an efficient, real-time mode extraction tech-
nique, provides us with a powerful simulation capability to
tailor the grating structures to the optical pulses present in
the waveguides. The resulting FDTD simulator was used to
study and design composite, aperiodic grating structures that
were used to convert pulsed modes propagating in dielectric
waveguides. An aperiodic discrete, reverse-chirped grating
structure was developed which provided a 29.45% improve-
ment in the pulsed mode conversion over that obtainable with
a comparable uniform periodic grating.

This FDTD approach is ideal for modeling very complicated
waveguiding geometries which involve surface irregularities
and complex materials. Detectors based upon mode conversion
into cladding modes and waveguide couplers for ultrafast
pulsed modes are currently under consideration. Preliminary
results with lossy dispersive materials in various grating struc-
tures have been obtained and will be reported elsewhere.
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