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A multidimensional, nonlinear finite-difference time-domain (NL-FDTD) simulator, which is constructed from
a self-consistent solution of the full-wave vector Maxwell equations and dispersive (Lorentz), nonlinear (finite-
time-response Raman and instantaneous Kerr) materials models, is used to study finite-length, corrugated, op-

tical waveguide output couplers and beam steerers.

Multiple-cycle, ultrashort-optical-pulse interactions with

these corrugated, nonlinear, dispersive waveguides are characterized. An all-optical nonlinear beam-steering
device is designed, and its output-coupling performance is characterized with this NL-FDTD simulator.

1. INTRODUCTION

With the continuing and heightened interest in linear
and nonlinear semiconductor and optically integrated de-
vices, more-accurate and -realistic numerical simulations
of these devices and systems are in demand. Such cal-
culations provide a testbed in which one can investigate
new basic scientific and engineering concepts, materials,
and device configurations before they are fabricated. The
process from device conceptualization to fabrication and
testing should therefore be enormously improved with nu-
merical simulations that incorporate more-realistic mod-
els of the linear and the nonlinear material responses
and the actual device geometries. It is felt that vector
and higher-dimensional properties of Maxwell’s equations
(e.g., polarizations, reflections, longitudinal field effects,
and transverse power flows) that are not currently in-
cluded in existing scalar approaches, such as traditional
beam-propagation methods and nonlinear-Schriodinger-
(NLS) equation methods, in addition to more-detailed ma-
terials models, may significantly affect the scientific and
engineering results.

We have numerically constructed solutions to the mul-
tidimensional, full-wave, vector Maxwell equations de-
scribing the interaction of ultrashort pulsed beams with
a dispersive nonlinear material having a finite response
time. These numerical solutions have been obtained*
in two space dimensions and time with a nonlinear finite-
difference time-domain (NL-FDTD) method that com-
bines a generalization of a standard finite-difference
time-domain (FDTD), full-wave, vector, linear Maxwell
equations solver with a Lorentz linear dispersion model,
a nonlinear (thermal) Raman model, and an instanta-
neous Kerr model. In particular, we are solving in a
self-consistent manner the following system of equations:
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where the polarization P = Pt + PN is composed of the
linear contribution P and the nonlinear contributions

PY = ¢ x"'E + e xX"|E|?E, 5)

with y¥°T being the instantaneous Kerr susceptibility.
The susceptibility x™“ encompasses all the retarded
nonlinear effects. For simplicity only, we treat the
nonlinearities as being thermal rather than electronic.
Goorjian and co-workers®” are developing a similar ca-
pability to model pulse propagation under the influence
of linear and nonlinear dispersive, linear and nonlinear
diffractive, and time-retardation effects in the medium.
By coupling the linear and the nonlinear dispersion
models simultaneously, as well as using the natural
boundary conditions arising from dielectric discontinu-
ities, for example, at gratings and corrugated interfaces,
we have the ability to design all-optical switching devices
and beam steerers for ultrashort pulses. The NL-FDTD
approach can readily handle complex realistic structures.
This permits a thorough investigation of the wave propa-
gation in the presence of complicated scatterers built into
a nonlinear waveguiding structure. In contrast to stan-
dard approaches, such as the beam-propagation method,
the NL-FDTD approach allows one to study the effects
of the reflected and the longitudinal field components,
which become significant when complex scatterers or
nonlinearities are present, and the nonlinear coupling
between the longitudinal and transverse components,
which becomes significant depending on the polarization
of the fields. For the straightforward one-dimensional
or two-dimensional (2D) waveguide structures treated in
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Refs. 5-7, the full-wave vector Maxwell results replicate
those expected from NLS studies.® The NL-FDTD tech-
nique is, however, more potent than the NLS method; it
can be applied to much more complex situations and can
provide new information not obtainable with the standard
linear—nonlinear modeling methods.

The NL-FDTD approach is not a panacea for all optical
modeling problems. It is useful because it can straight-
forwardly incorporate complicated structures and all the
relevant physics that one is willing to build into the
material models. The Raman and instantaneous Kerr
nonlinearities used in the current NL-FDTD simulator
are idealized, phenomenological models, but they have
been chosen because of their widespread use. Addition-
ally, because of the bandwidth of the pulses that are
used in the examples below, one could argue that more
than one resonance line should be included in the models.
Multiple-resonance Lorentz and Raman models could be
designed to mimic the behavior of most materials. How-
ever, we typically choose not to run problems in which
the optical pulses have frequency spectra that are cen-
tered directly on the resonance lines; these models sim-
ply absorb most of the energy presented to them and
hence generally lead to only modest scattering results.
More realistic multilevel atomic models of the materi-
als can be incorporated into the NL-FDTD simulator;
these models are currently under development in coop-
eration with John Arnold at Glasgow University. De-
spite the ability of the approach to handle complicated
structures and material models, the NL-FDTD simula-
tion model is memory and time bound. It is an explicit
approach whose time step is connected to the spatial dis-
cretization through the Courant stability condition. The
amount of memory required is directly proportional to
the number of unknowns, which is determined by the
number of grid cells and the number of equations in the
combined field—material models. Finer spatial resolu-
tion or a more complex material model requires more
memory and more time steps for a given time-record
length. Even 2D problems dealing with nonlinear struc-
tures that are millimeters in size and with pulses that
are picoseconds long and have wavelengths of the order
of a micrometer are truly enormous and challenge the
largest machines available today. Larger problems sim-
ply await larger simulation platforms. Despite the abil-
ity of the NL-FDTD approach to handle reasonably sized
design problems of current interest, we emphasize below
the design and simulation of futuristic output couplers
and beam steerers, those appropriate for ultrashort op-
tical pulses and are of the order of several wavelengths
in size.

Corrugated waveguides are an example of a 2D scat-
tering structure that requires inclusion of both the trans-
verse and the longitudinal field components in its design.
These structures have been of considerable interest in
integrated optics because of their potential applications
as couplers, converters, filters, or steering devices of the
Bragg type. However, they have been analyzed mainly
in the linear regime as infinite periodic structures® by
use of Floquet mode theory. To design a useful nonlin-
ear corrugated structure that is only a few wavelengths
long for any of these applications, one must resort to a
numerical modeling tool such as the NL-FDTD approach
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that allows the dielectric waveguide or the corrugations
themselves to be nonlinear materials and allows for
arbitrary groove spacings and depths, tapering of the
corrugations, single-cycle or multiple-cycle pulses, and
either TE or TM polarization. One rapidly realizes that
the currently available analysis tools, such as the beam-
propagation and NLS methods, cannot provide the desired
results. The inadequacy of analytical approaches, such
as perturbation techniques, even in the general linear
case has been recognized.'>!? In addition, the NL-FDTD
approach permits one to visualize all the physical scat-
tering processes involved in the interaction of the pulses
with the corrugated structure. It is our aim in this pa-
per to demonstrate the efficacy of using the NL-FDTD
approach to design finite corrugated waveguide struc-
tures as output couplers and beam steerers for ultrashort
pulses.

The NL-FDTD approach can handle single-cycle cases
as readily as multiple-cycle cases that have an intrinsic
carrier wave. Since most current optical systems deal
directly with a carrier-wave-type signal, the NL-FDTD
approach is used here to simulate the propagation and the
scattering effects associated with those signals. It can
also simulate the behaviors of single-cycle optical devices
and systems as presented in Ref. 2. The single-cycle
results represent behaviors that should be observed with
optical systems currently under investigation and those
being developed for future studies by the international
optics community. However, in either case the full pulse
is modeled with the NL-FDTD approach rather than only
the envelope of the carrier wave, as it is with the NLS
models. The increase in computational costs associated
with the NL-FDTD approach over the NLS models is war-
ranted by the corresponding increase in phase and vector
information retained by the former and generally ignored
or included only in an approximate sense in the latter.
The NL-FDTD approach handles the corrugations directly
without any of the standard assumptions that are neces-
sitated by the beam-propagation or NLS method. This
enhanced modeling capability of the NL-FDTD approach
allows one to model and distinguish the effects that arise
in both the single- and the multiple-cycle TE and TM
polarization cases.

2. CORRUGATED WAVEGUIDE PROBLEM

We specifically present NL-FDTD results for the simula-
tion and design of linear and nonlinear slab waveguiding
structures that can be built with corrugated sections to
provide efficient energy extraction and beam-steering
mechanisms for ultrashort optical pulses. This is one
example of the linear—-nonlinear interface class of prob-
lems that we have been investigating with the NL-FDTD
approach.>* Interest in the corrugated waveguide prob-
lem follows from our desire to design wavelength-sized
all-optical guided wave couplers and beam steerers. Ex-
pected efficiencies of conversion from the guided mode
energy to the radiated field energy have been observed
in the linear cases and reproduce the results reported
by McLeod and Hawkins in Ref. 14. The correspond-
ing nonlinear waveguiding structures have presented
us with interesting challenges in their analysis and in-
terpretation. Previous analyses'®'® of related wave-
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Fig. 1. NL-FDTD approach applied to linear or nonlinear di-
electric waveguides with the indicated corrugation profiles. The
corrugations are uniform, uniformly spaced, and present in the
high-field region of the waveguide, extending into the interior of
the guide. These corrugations are taken to be perfect conduc-
tors for all but cases TM-1 and TE-1.

guide corrugation problems dealt only with the case of
nonlinear-dielectric teeth and have not considered the
corrugations with metallic teeth that we have studied.
Moreover, unlike those studies, the present analysis does
not deal with a pump—probe configuration. We are sim-
ply looking at the possibility of efficiently coupling out
energy from the waveguide in a particular direction.
NL-FDTD simulations of potentially realistic device con-
figurations are presented below.

The basic corrugated waveguide geometries that we
have considered are illustrated by the generic configu-
ration given in Fig. 1. A thin-film slab waveguide is
sandwiched between two materials, the cover and the
substrate. The corrugation region resides between the
waveguide and the cover; it is excited by an incident wave-
guide mode. The teeth of the corrugations that we have
studied have been both dielectric (similar dielectric teeth
extended out of the dielectric waveguide or dissimilar lin-
ear and nonlinear dielectric teeth embedded in or on top
of the waveguide) and metallic (embedded in or deposited
on top of the dielectric waveguide). Various spacings of
the corrugations and their lengths have been considered.

As is described in detail in Ref. 2, the NL-FDTD ap-
proach proceeds by discretizing space (in two dimensions)
with a mesh of squares. The time is also discretized,
with the spatial and temporal discretizations being speci-
fied by the Courant stability criterion. The electric and
the magnetic field components, the linear polarization
vector components, and the Raman nonlinear suscep-
tibility are readily calculated with spatially and tem-
porally centered, finite-difference approximations to the
system of Egs. (1)—(5). For the cases treated below a
spatial discretization of Ax = Az = A/30 and a tempo-
ral discretization slightly below the 2D Courant condition,
At = 0.707(Az/+/2v), where v is the maximum group ve-
locity in any of the materials, were used. The presence
of the physical loss terms in the material models relaxed
the discretization requirements that we found in Ref. 2.
This real-loss mechanism results in a numerical behavior
that is analogous to the artificial-viscosity effects that one
realizes with flux-conserving schemes in computational
fluid-dynamics simulations.

The NL-FDTD problem is initiated at a specified
planar aperture located within the simulation region
with a modified total-field—scattered-field boundary that
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accounts for the presence of the dispersive nonlinear
material. For the waveguide problems treated here this
aperture is taken to be transverse to the direction of
propagation, i.e., along the waveguide. The aperture
is driven either with a pulsed TE, or a TM, waveguide
mode; i.e., the initial transverse amplitude distribution in
the source plane is taken to the value of the TE,; or TM,
mode there multiplied by a specified time signal. The
total electromagnetic field is calculated from the source
plane in the direction of propagation; the scattered fields
are calculated at all points before the source plane. The
simulation mesh is truncated at all its boundaries with
second-order Miir conditions.!® This approach minimizes
the numerical artifacts that arise from the finite aper-
ture (non-plane-wave) incident pulsed field and allows for
backreflections from the corrugated structures through
the source plane. The source plane is generally located
near the left absorbing boundary to facilitate removal of
this reflected power from the simulation region.

We refer to ultrashort pulses as those pulses that are
single-cycle or multiple-cycle envelopes containing only
a few cycles. Sources in the laboratory have produced
pulses compressed to as short as four optical cycles. By
using these sources we illustrate two advantages of the
time-domain approach: (1) the ability to carry phase in-
formation over a wide spectrum and (2) the ability to
model transient effects that occur either quickly or slowly
relative to the time scale of the pulse. The evolution of
the pulse in the medium can be dependent on both the
material’s resonances in the presence of the beam as well
as the initial shape of the exciting pulse. Switching or
steering of this type of pulsed beam in a wavelength-sized
structure requires one to take advantage of interference
effects and the materials’ transient responses.

To initiate the simulations, we have used both a cw (or
monochromatic) signal,

F(t) = sin@2wt/T,), (6)

and a time-limited, multiple-cycle sine pulse given by the
function

F(t) = sin(27t/T,)(1 — 22 H(1 — |xl),
x=2t-T)/T;:, N

where H(x) is Heaviside’s function, T, is the optical pe-
riod of the carrier, and T, is the time-record length of
the pulse. Initial driving function (6) is continuous ev-
erywhere; initial driving function (7) is continuous and
has at least its first two time derivatives continuous at
the endpoints of the time interval [0, T]. For the cor-
rugated waveguide cases in which there are N, periods
of a unit cell whose characteristic length is A, we refer
specifically to a short pulse as a signal whose equivalent
length ve T, is of the order of the entire corrugation length
N_A, ie., vgT, = N,A, where vg is the group velocity in
the waveguide. Our shortest-pulse case that will be pre-
sented below contains 10 optical cycles over a corrugated
waveguide section composed of 11 unit cells. This is a
sufficient number of cycles for the pulse to be essentially
a narrow-bandwidth cw signal and for the pulse train to
span a distance smaller than the total corrugation length
for a period of time. However, because of the (1 — x2)*
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amplitude taper, this 10-cycle pulse has only ~6 cycles
of nontrivial magnitude to be considered. Because the
bandwidth increases as the number of cycles decreases,
the effective frequency® of the signals seen by the corru-
gation section is slightly increased.

The corrugated waveguide with dielectric or metallic
teeth can be viewed as a leaky-wave antenna. The corru-
gation section is a slow-wave structure whose impedance
properties determine the properties of its radiated fields.
The field radiated by an infinite linear or nonlinear cor-
rugated structure can be modeled with a Floquet mode
representation. The resulting fields have to satisfy a
phase-matching or Bragg condition resulting from the
electromagnetic boundary conditions. Physically this
means that because of the regular placement of the teeth
in the corrugation section the individual scattered fields
will interfere constructively only along certain preferred
directions, and the leaked energy will appear in the form
of pulsed beams that radiate at angles specified by the
Bragg condition both into the cover and into the sub-
strate regions.

In particular, let 8; be the angle that the radiated beam
subtends with respect to the normal of the waveguide, ng
be the index of refraction in the region outside of the guide
adjoining the corrugations, and ng = npg + nsl be the
index of refraction in the waveguide, which includes the
effective waveguide index np (which varies slightly from
the TE and TM cases to achieve the desired TE, and TM,
initial spatial amplitude distributions) and the intensity-
induced index change nsl. This Bragg condition then
takes the form

w . %) 27
—c—no sm0t=—c-ng+m—:

A
wherem =0, *1,+2,...,

or
0t=sin‘1( o8 @I+m—}l—)s
no ng I‘LoA
wherem =0,%1,%2,.... (8)

This immediately translates into a practical device: the
output beam from the corrugation section can be steered
away from the normal by the strength of the intensity
of the input waveguide pulsed beam, the size of the unit
cell, or the strength of the nonlinearity. For all the cases
considered below the first-order beam is given by the
m = —1 value.

A special case of this relationship suggests the design
denoted below as geometry 3. If we design the corru-
gation spacing so that A = A/np, then the first-order

(m = —1) output beam from the corrugation section of
the waveguide has the transmission angle
9,=sin'1<5‘—21) ~22r 9)
no no

Thus the angle of the output beam from the corrugation
section can be controlled directly by the choice of the
parameters for the input waveguide pulsed beam or the
waveguide material.
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3. NUMERICAL RESULTS

A variety of TE, and TM, cases for the corrugated slab-
waveguide configuration have been considered with our
NL-FDTD simulator. There are 10 TM cases reported
below, TM-1 to TM-10; there are eight corresponding
TE cases, TE-1 to TE-6, TE-8, and TE-10. All but two
of the TM and the TE cases use the driving signal of
Eq. (6); cases TM-10 and TE-10 use the driving signal of
Egs. (7). In all these cases the initial spatial distribu-
tions are the corresponding TM, and the TE, even wave-
guide modes. The maximum electric-field value of the
incident modes is normalized to unity, giving a peak in-
tensity of 1.0 V/m. The nonlinear coefficients are nor-
malized in a corresponding manner. The basic problem
configuration dimensions are shown in Fig. 2. We refer
to the specific geometries used, which are characterized
by the unit cell length A, the number of unit cells in the
corrugated section N,, and the tooth height A as

Geometry 1, A = 0.20 um, N, = 6, h = 0.02 um;
Geometry 2, A = 0.20 um, N, =6, h = 0.04 um;
TE geometry 3, A = 0.105 um, N, =11, A = 0.02 pm;
TM geometry 3, A = 0.110 um, N, = 11, A = 0.02 pm.

The waveguide thickness d = 0.12 um; the tooth length
! = A/2.0; the background index in the thin-film wave-
guide ny = +/2.0, giving the effective background indexes
for guided mode propagation ng™ = /1.740 and ng™ =
4/1.804; and the substrate linear index and the cover lin-
ear index were set to the free-space value, n; = n, = 1.0.

In all cases the free-space cw wavelength of interest
was taken to be A = 0.15 um. This choice of wavelength
was made simply to permit comparisons with the linear
results obtained by McLeod and Hawkins!4 and to extend
them to the corresponding nonlinear regimes. The pa-
rameters were not chosen with a specific laser system
or material in mind. Since the grating physics is deter-
mined in terms of relative wavelengths, many of the re-
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Fig. 2. NL-FDTD corrugated waveguide problem geometry.
The various power sensor locations are indicated by dashed
lines.
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sults can be scaled to different frequency regimes with an
appropriate change in the material parameters.

Within a specific dielectric waveguide configuration the
nonlinear coefficients are varied from case to case to pro-
vide the desired comparisons. In addition we consider
two compositions of the grating structure itself. In one
configuration the teeth have the same dielectric prop-
erties as the cover, so they actually appear as gaps in
the waveguide. In the other configuration the teeth of
the corrugations are composed of perfect electric conduc-
tors. We found that the metal-teeth corrugations caused
a much more efficient output coupling than the conven-

tional dielectric-teeth (gap) case. As a result our stud- -

ies have concentrated on the metallic corrugation cases.
From linear theory the indicated value of the tooth length
causes the TE and TM cases to radiate strongly in oppo-
site directions as discussed below. Linear theory'? also
indicates that the leaked-energy coefficient should satu-
rate if the tooth height is increased beyond the value
h = 0.2 A. Additionally, since the electric-field behav-
ior near the edges of the teeth is significantly different
between the TE and TM polarizations, the resulting radi-
ated field structures should reflect this difference. Note
that the waveguide dispersion and the impedance caused
by the presence of the corrugation are different for the
different polarization and material cases. We found the
fields radiated in the TM cases to be superior in quality to
those generated in the TE cases, thus providing another
reason to stress the TM configurations.

Cases TM-1 and TE-1 are linear slab-waveguide con-
figurations that use geometry 1 and are the only cases
that have dielectric teeth. Cases TM-2 and TE-2 are lin-
ear and are configured in geometry 1. Case TM-7 is also
linear but configured in geometry 3. The waveguide is
nonlinear in the remaining TM and TE cases. The sus-
ceptibility for the Lorentz dispersion model is 3.0 for dc
and 0.0 at high frequencies. A single resonance is placed
at wy, = 3.5 X 1015 rad/s, less than half the cw source ra-
dial frequency of w = 12.57 X 10% rad/s, to cause a slight
anomalous dispersion. The damping in the Lorentz
model is negligibly small with I'; = 2.0 X 101° 57!, The
nonlinear coefficients are ep = 0.15 m2/V?2, and yXer =
0.20 m2/V? for the retarded and the instantaneous non-
linearities, respectively. The Raman resonance is taken
to be wp = 8.197 X 103 rad/s; the Raman linewidth is de-
termined by the term 7z = 4.651 X 10715 s71, These ma-
terial parameters yield a weak Raman interaction. The
susceptibility obtained from the corresponding uniform-
plane-wave Lorentz-dispersion model as a function of
the frequency is given in Fig. 3(a); the analogous Raman
model results are shown in Fig. 3(b). As expected from
the parameter choices, the linewidths of the Lorentz
and Raman models are extremely narrow. Nonetheless,
the linear dispersion has an effect on the propagation
behavior in the waveguide. In contrast the nonlinear
behavior produced in this model is associated mainly
with the instantaneous Kerr nonlinearity. Cases TM-3
and TE-8 represent the weak-Raman-interaction model
version of geometry 1; cases TM-4 and TE-4 represent
the weak-Raman-interaction model version of geome-
try 2. In cases TM-5 and TE-5 geometry 1 is con-
sidered again, but the thermal Raman interaction is
now strong. To achieve this strong Raman interac-
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tion, we set the nonlinear material parameters to the
values wrp = 1.0 X 10% rad/s, 7 = 0.5 X 10718 571,
ez = 0.15 m2?/V?, and yKer = 0.20 m2/V2. The sus-
ceptibilities obtained from the corresponding uniform-
plane-wave Raman models are identical, apart from a
scale factor, to those given in Fig. 3(b). In contrast to
the weak-Raman-interaction model, the strong-Raman-
interaction model is considerably broader. Thus, in ad-
dition to the instantaneous Kerr nonlinearity, the Raman
interaction will also produce nontrivial contributions to
the dispersive and the nonlinear behavior of the system
in this case. Cases TM-6 and TE-6 deal with geome-
try 1, and both nonlinear indexes doubled to the values
er = 0.30 m2/V2 and y¥er = 0.40 m2/V2, Cases TM-8
and TE-8 treat geometry 3 with the strong Raman inter-
action of cases TM-4 and TE-4. Case TM-9 treats geom-
etry 3 with a doubling of the nonlinear coefficients used
in the strong-Raman-interaction case. Cases TM-10 and
TE-10 again treat geometry 3 with the strong-Raman-
interaction nonlinearity parameters but for a 10-cycle
pulse, Egs. (7), with a period T, = 0.5 fs and a total
record length 7', = 5.0 fs.

In each of the TM and the TE cases the power radi-
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ated through the boundaries of the simulation region in-
dicated in Fig. 2 was monitored. The percentages of the
total output power radiated into the cover, into the sub-
strate, and reflected back along the waveguide from the
corrugation section are listed in Tables 1 and 2 for all the
cases reported here. In the cw cases these values repre-
sent the percentage per period; in the short-pulse cases it
represents the total output energy (time-integrated out-
put power). The output angles of the mth-order beams
were calculated with a near-field-to-far-field transforma-
tion analogous to the one developed in Ref. 21. The
radiated fields are collected over a plane in the simula-
tion region at a specified transverse distance from the
slab waveguide. These time histories are transformed
into the frequency domain to yield the equivalent aper-
ture fields, and the Fraunhaufer pattern is then ob-
tained by use of the vector form of the Kirchhoff—Huygen
representation.?” For instance, in the TE cases we use
the electric field at the collection plane x = x;, which has
the unit normal /g = £ pointing into the cover, to obtain
the far-field expression at r:

E(r, ) = 2V X f 48Ty X Eaperture(r’, @)]G(x, T, @)
S

_ .exp(ikR) .
=y VAR exp(—im/4)

x — xg [ FHEnt
X{ dZ'E,(x;, 2")exp[—ik(z/R)2']} » (10)

R 2left
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where we use the approximate form of the 2D Green’s
function G(r, v/, w) = (i/4)HéD(w|r — r'|/e) and the dis-
tance R = [(x — x,)? + 22]"2 and have integrated over the
simulation region plane x = x; from its left boundary zjes
to its right boundary 2.gn:. Identifying the angle ¢ with
respect to the normal Ag as sin ¢ = z/R, we obtain the
far-field pattern immediately from the expression in the
braces. The numerically calculated output angles of the
first-order beams are also listed in Tables 1 and 2. In
the short-pulse cases TM-10 and TE-10 the angles listed
represent the angles of the estimated phase fronts in
the output beams measured with a ruler and protractor.
We are currently implementing the corresponding time-
domain near-field-to-far-field transformation from Ref. 21
for more accurate measurements of the output angles in
these short-pulse cases.

The basic field behavior obtained in the weakly non-
linear cases TM-3 and TE-3 is illustrated with the total
electric-field intensity plots given in Figs. 4(a) and 5(a).
Each plot is a snapshot of the intensity distribution at
approximately the same time in the simulation. Brief
computer movies of the data allow one to watch the field
evolution over the entire time-record length of interest.
The significant differences in output radiation behaviors
are immediately apparent in these single snapshots. The
majority of the power is radiated up into the cover region
in the TM case and down into the substrate in the TE case.
One can see, as is expected from the phase-matching con-
dition (8), that multiple beams are generated both above

Table 1. Coupling Efficiencies and Output Angles for the Various TM Polarization Cases

Back- Output
Above Below reflection Angle
Simulation Case (%) (%) (%) (deg)
TM-1: Geometry 1, linear guide, dielectric teeth 2.5 2.3 0.30 34.5
TM-2: Geometry 1, linear guide, metallic teeth 44.2 11.4 13.1 36.7
TM-3: Geometry 1, NLWG with weak Raman interaction 44.2 11.0 9.8 38.3
TM-4: Geometry 2, NLWG with weak Raman interaction 45.8 30.4 19.2 37.0
TM-5: Geometry 1, NLWG with strong Raman interaction 45.3 11.2 12.6 39.1
TM-6: Geometry 1, NLWG with weak Raman interaction and factor-of-2 42.3 11.0 12.6 39.3
increase in all nonlinear indexes
TM-7: Geometry 3, linear guide 28.0 34 144 -1.6
TM-8: Geometry 3, NLWG with strong Raman interaction 26.8 3.3 9.3 1.8
TM-9: Geometry 3, NLWG with strong Raman interaction 35.3 4.8 18.7 3.5
and factor-of-2 increase in all nonlinear indexes :
TM-10: Geometry 3, NLWG with strong Raman interaction, short-pulse case 49.3 8.6 5.2 -4.0

Table 2. Coupling Efficiencies and Output Angles for the Various TE Polarization Cases

Back- Output

Above Below reflection Angle
Simulation Case (%) (%) (%) (deg)
TE-1: Geometry 1, linear guide, dielectric teeth 4.3 4.6 0.06 36.3
TE-2: Geometry 1, linear guide, metallic teeth 15.4 37.2 4.9 34.7
TE-3: Geometry 1, NLWG with weak Raman interaction 14.3 21.6 13.5 36.5
TE-4: Geometry 2, NLWG with weak Raman interaction 7.6 49.3 14.6 33.5
TE-5: Geometry 1, NLWG with strong Raman interaction 14.8 26.5 3.3 39.3
TE-6: Geometry 1, NLWG with weak Raman interaction and factor-of-2 13.7 22.9 5.3 40.3

increase in all nonlinear indexes

TE-8: Geometry 3, NLWG with strong Raman interaction 19.8 33.2 5.8 4.2

TM-10: Geometry 3, NLWG with strong Raman interaction, short-pulse case 14.1 30.8 6.0 -4.0
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Fig. 4. (a) Electric-field intensity plots for the TM weak Raman
interaction, geometry 1, case TM-3. (b) Corresponding far-field
pattern. The Bragg angles correspond to the peaks that occur
at the angles 38.3° and —59.5°.

and below the corrugation section. This is further con-
firmed with the corresponding far-field patterns shown
in Figs. 4(b) and 5(b). Much of the initial radiation can
actually be seen in the simulations as arising from the
incident field with the first metallic corner. The inter-
action of the incident waveguide field with consecutive
teeth provides a set of coherent sources that creates the
resulting output beams.

One main difference between driving the specified cor-
rugated waveguide sections with the TM, and the TE,
waveguide modes is that the TM device prefers to couple
light into beams (see Figs. 2, 4, and 5) that radiate into
the cover region (adjacent to the corrugations), whereas
the TE device prefers to couple light into beams that radi-
ate into the substrate region (opposite the corrugations).
Since we were consciously trying to enhance the output
coupling, the teeth were positioned within the interior
of the dielectric waveguide rather than on its exterior.
This placement caused a larger interaction between the
teeth and the incident modes. The other main difference
between the TM- and the TE-polarization cases is that en-
ergy is radiated out of the waveguide region into the pre-
ferred beam directions more efficiently in the TM case.

These polarization-sensitive properties of the corru-
gated structure arise because in the TE case there is a
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node along the conductor (i.e., E, must be zero) and in
the TM case there is an antinode (i.e., E, is maximum, a
singular value, at the corner of the teeth). Thus in the
TE case the openings between the teeth in the corrugation
act as waveguides below or near cutoff, deflecting power
down away from them into the substrate rather than up
through them into the cover region. The TM mode, on
the other hand, sees just the opposite conditions; large
fields exist in those waveguides between the teeth without
a cutoff frequency. A small dipole array is formed, and
power then is readily coupled into a well-defined beam
propagating away from the corrugations into the cover
region.

Nonlinearities in the waveguide further enhance the
differentiation between the two polarization cases. The
output coupling for the TE cases decreases with increas-
ing nonlinearity, but it remains approximately unchanged
for the TM cases. The reason for this behavior is that
the field distribution in the nonlinear waveguide becomes
more confined as the nonlinearity is increased. The TE
field is then pulled away from the corrugation toward the
substrate side of the waveguide, where the field intensity
is strongest and thus is affected less strongly by the cor-
rugation. The TM field also experiences a similar local-
ization effect. However, the increased nonlinearity also

1.0 T T —— T r
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Fig. 5. (a) Electric-field intensity plots for the TE weak Raman
interaction, geometry 1, case TE-3. (b) Corresponding far-field
pattern. The Bragg angles correspond to the peaks that occur
at the angles 36.5°, —7.6°, and —61.0°.
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Fig. 6. (a) Electric-field intensity plots for the TM linear inter-
action, geometry 3, case TM-7. (b) The corresponding far-field
pattern. The peak occurs at the angle —1.6°.

increases the field levels near the edges of the teeth, com-
pensating for the decrease in the incident field strength.
Hence the TM mode remains strongly coupled to the cor-
rugation. Additional coupling is further retarded as the
nonlinearity is increased because the field begins to form
a channel, and the remaining power in the waveguide is
trapped by it.

The simulation cases all indicate that nonlinear-
waveguide NLWG) corrugation sections are reasonably
good output-coupling and beam-steering devices. They
also suggest that these NLWG corrugation sections can
act as extremely good polarization-differentiating devices
as well. To facilitate a strong coupling of energy out
of the waveguide in a short distance, all the corruga-
tion cases constructed with the metallic teeth outper-
formed dielectric corrugation cases TM-1 and TE-1. The
coupling efficiency in the former cases is increased dra-
matically, more than an order of magnitude, over the
latter cases. Note that, for the dielectric grating, TE-
polarization case TE-1 gave slightly more output coupling
than TM-polarization case TM-1. The conducting corru-
gation TE-mode devices direct ~25% of the output power
into the substrate region, whereas the corresponding TM-
mode devices direct ~45% of the output power into the
cover region., Beams that are smaller in amplitude are
also produced that propagate at the same angles to the
waveguide but in the opposite regions. There is some
backward-propagating power in all cases, since the cor-
rugated section acts as an impedance mismatch in the
waveguide. The greater corrugation depth treated in
cases TM-4 and TE-4 provided indications that the guided
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wave and the output beams become badly distorted when
the teeth are too deep. The effect caused by doubling
the tooth depth is to pinch off the power through the
guide and to increase the reflected power. This results,
of course, because the teeth cause a stronger perturbation
of the incident guided mode.

Geometry 3, in which the grating periodicity is made
to be equal to A/ng, provided the most interesting
corrugated-waveguide device results. The expectation
was to have the corrugation couple light out of the wave-
guide into a single beam at nearly 90° with respect to the
guide. Moreover, because the term A/A < 1, only the
first-order (m = —1) beam is produced. In addition, this
configuration provides the maximum sensitivity of the
output-beam angle to the nonlinearity. Although the TE
and the TM coupling performance in total output power
was comparable, the TM beams were much more coherent
and well behaved. The total electric-field intensity plots
in cases TM-7 and TM-8 are given in Figs. 6(a) and 7(a),
respectively. The corresponding patterns are given in
Figs. 6(b) and 7(b), respectively. It is clear from these
plots that increasing the nonlinearity does in fact change
the output-beam direction. Several-degree beam shifts
are easily obtained, as is indicated in these figures and
in Table 1. The output angle in the linear TM-7 case
is not exactly 0° only because we choose to maintain the
same grid cell size for all the problems. The specific
unit cell size needed for an exact match to achieve a 0°
output beam does not correspond to an integer multiple
of the unit discretization cell length. The total electric-
field intensity plots for the TM and TE short-pulse cases
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E 0.5 +
.:%
0.0 1 1 1 1 1
-90.0 -60.0 -30.0 0.0 30.0 60.0 90.0
0

(b)
Fig. 7. (a) Electric-field intensity plots for the TM strong Ra-
man interaction, geometry 3, case TM-8. (b) The corresponding
far-field pattern. The peak occurs at the angle +1.8°.
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Fig. 8. Electric-field intensity plots for the short-pulse, TM
strong Raman interaction, geometry 3, case TM-10.

M vﬁ%@ (1l

Fig. 9. Electric-field intensity plots for the short-pulse, TE
strong Raman interaction, geometry 3, case TE-1.

TM-10 and TE-10 are given, respectively, in Figs. 8 and
9. The beam quality shown is achieved approximately
after the incident field has interacted with the first three
teeth of the corrugation section; it is maintained until
the beam stops interacting with the teeth in the corru-
gation section. The difficulty in accurately describing
the output beam direction is apparent. The beam ap-
pears to have a main direction that is different from the
constant-intensity wave normals. In cases TM-10 and
TE-10 these directions are —33° and —4°, respectively.
This output-beam pattern is maintained as the pulse
moves through the waveguide section. Moreover, as in
the cw cases, the output power in the short-pulse cases
is highly directed—into the cover region adjacent to the
corrugations in the TM case and into the substrate region
opposite the corrugations in the TE case. These results
strongly suggest that geometry 3 could be used for the
basic design of a highly sensitive beam-steering device
based on the interaction of ultrashort optical pulses with
an ultrasmall corrugated waveguide section.

We have found that the output angles determined with
the numerically generated fields compare well with the
values predicted from phase-matching conditions (8) and
(9). For the linear dielectric gratings, cases TM-1 and
TE-1, the expected output angles are 34.7° and 36.4°,
respectively. The combined FDTD simulations and the
near-field-to-far-field transformation yielded the output
angles 34.5° and 36.3°, respectively, in good agreement
(<0.6% difference) with the analytical values. Moreover,
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the patterns are as expected for a finite grating structure:
the lowest-order response is due to a product of the Bragg
response and that of a finite slab, sin(x)/x function, and
the higher-order beams vary slightly from the expected
Bragg response. These results agree with those previ-
ously reported for linear gratings.?>?* The metallic and
the nonlinear dielectric corrugations, however, represent
significant perturbations to the effective index in the
waveguide, ng, used in those Bragg conditions. For the
TM-2 and TE-2 cases the combined FDTD simula-
tions and the near-field-to-far-field transformation yield
the output angles 36.7° and 34.7°, respectively. These
angles indicate that with the metallic teeth, the effective
index of the TM and TE waveguides is actually +/1.816
and +/1.741, respectively. With these indexes and the
cell sizes indicated for the TM geometry 3 cases, the out-
put angle expected from Eq. (8) is —0.92°; this compares
favorably with the corresponding calculated value, —1.6°.
Similar difficulties are encountered with the nonlinear
waveguide cases. The simulator output angles for cases
TM-3 and TM-6 are 38.3° and 39.3°, respectively. Know-
ing the value for the TM-3 case, we use Eq. (8) to predict
the value 89.6° for the TM-6 case. This represents only
a 1.5% difference between the analytical and the numeri-
cal results. Similarly, the output angle for case TM-9
is nearly double the value for TM-8, as is expected from
relation (9). Nonetheless, these angle values could not
have been established from Eq. (8) or relation (9) without
the initial numerical value for at least one nonlinear case.
Thus these results strongly indicate the need for numeri-
cal methods, such as the NL-FDTD simulator. Even
though they are extremely useful for indicating the ex-
pected trends of the device’s behavior, one should not rely
simply on analytical approximations based upon scalar
diffraction theory to model these finite, wavelength-sized
structures for any realistic device applications.

Another phenomenon associated with beams’ being
strongly coupled out of the guide in the TM geometry 3
is illustrated by case TM-9 and Fig. 10, which represents
the field distribution before steady-state conditions have
been reached. This phenomenon is that the output beam
can be made to focus. In particular, the corrugated sec-
tion coupled with the nonlinearity can be made to act as a
chirped grating. This effect is caused when the incident
mode in the waveguide becomes depleted quickly by radi-
ation as the mode propagates through the corrugation sec-
tion. This energy depletion results in a decrease in the
field strength, so the nonlinear refractive index is reduced
further along the corrugation section. The coupling an-
gle will then vary according to location along the corruga-
tion. Light is being scattered from the corrugations, so
there is a greater electric-field intensity at the beginning
of the corrugation than at the end. Thus, the Bragg out-
put coupling angle 6; is directed slightly more toward the
propagation direction (positive angle with respect to the
normal) at the beginning of the corrugation section than
it is later in that section, where the reduced intensity
causes the Bragg output coupling angle 4, to be directed
slightly more away from the propagation direction (nega-
tive angle with respect to the normal). This behavior
is illustrated in Fig. 10. These results imply that one
could design a tapered corrugation region that is tailored
to yield any desired focusing properties. The tapering
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Fig. 10. Electric-field intensity plots for the TM strong Raman
interaction, geometry 3, case TM-9, before steady-state conditions
have been reached. With further detailed engineering design
this configuration, combined with its beam-steering properties,
could lead to an effective all-optical switch for short pulses.

could consist of varying the distribution of the nonlinear
material in the waveguide or varying the unit cell widths
along the corrugation section so that A is varied from
one unit cell to the next. If designed to encourage focus-
ing, such an all-optical device could be used as a highly
effective switch. This configuration is currently under
investigation.

4, CONCLUSIONS

The application of the NL-FDTD approach to linear and
nonlinear corrugated waveguides was presented. A vari-
ety of cases for both TE and TM polarizations were treated
to illustrate the behavior of these waveguide structures as
output couplers and beam steerers. Comparisons were
made between the numerically predicted output-beam
angles and those given by infinite structure analytical
analyses. The results indicate the need for the numerical
simulator when the device size is finite and of the order
of a wavelength. The simulator was also used to model
the interaction of ultrashort pulses with these corrugated
structures. These results further indicate the need for
the full-wave vector simulations.

The simulations indicated significant output coupling
and usable beam-steering qualities for the corrugated
structures, particularly when the corrugations are metal-
lic and are embedded in the waveguide. The corrugated
structures are polarization sensitive, the TM cases radi-
ating the majority of the output power in a direction op-
posite to the TE cases. In one specific geometry the unit
cell length was designed to give broadside emissions that
were tunable by the magnitude of the intensity of the in-
cident fields. An example of a focusing chirped grating
structure was found; the chirped nature of the structure
arigses here from the nonlinearities. It is believed that
with further design analyses with the NL-FDTD simula-
tor a variety of corrugated linear and nonlinear waveguide
structures could be developed for a large variety of prac-
tical applications.
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