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The extension of the conventional finite-difference time-domain solution of the full vector Maxwell equations to
modeling femtosecond optical-pulse propagation in a nonlinear Kerr medium that exhibits a finite response
time is presented. Numerical results are given for nonlinear self-focusing in two space dimensions and time;
the technique can be generalized to three space dimensions with adequate computer resources. Comparisons
with previously reported and anticipated results are made. Several novel phenomena that are not observed
with scalar models of self-focusing and that can be attributed only to the complete solution of the vector

Maxwell equations are discussed.

INTRODUCTION

The nonlinear self-focusing of optical beams has been
known for more than two decades,’® but the only time-
dependent theories that were advanced to describe the
phenomena were based on a variety of lower-dimensional
and scalar models, including the paraxial wave equa-
tion®>”® or modifications of it.*!* With continuing and
heightened interest in nonlinear semiconductor and opti-
cally integrated devices, more-accurate and realistic nu-
merical simulations of these devices and systems are in
demand. Until recently practical full-wave analyses of
the vector, space-time Maxwell equations were not avail-
able even in the linear regime. Algorithm and hardware
developments now provide a means to achieve fully three-
dimensional vector approaches to extremely complex lin-
ear time-domain electromagnetics problems and the
potential for applications of these techniques to the more
difficult and demanding nonlinear problems.

In this paper we report the modeling in two space
dimensions and time of self-focusing of an ultrashort
pulsed beam in a nonlinear Kerr material with a finite
response time; the model uses a generalization of a stan-
dard, finite-difference time-domain (FDTD), full-wave,
vector, linear Maxwell’s equation solver. A currently
used phenomenological time relaxation (Debye) model of a
nonlinear Kerr material was incorporated with the elec-
tromagnetic FDTD solver so that the effects of finite re-
sponse times could be studied. It will be shown that the
full-wave, vector approach recovers the physical effects
that are predicted with standard scalar-equation models
of the self-focusing phenomena. In addition, we report a
number of effects that are not recoverable from those
scalar models. Comparisons with anticipated simulation
and known experimental results are made.

There have been a number of recently reported numeri-
cal solutions of the full-wave, vector, time-independent
Maxwell equations'™** and of vector paraxial equa-
tions.”™ These efforts have provided, for instance, the
modal fields and the propagation of beams in nonlinear
waveguides. In contrast, the following time-dependent
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analysis accounts for the complete time evolution of the
system as a pulse propagates in a Kerr medium with a
finite response time; in particular, the analysis provides a
complete picture of the pulse behavior during the nonlin-
ear self-focusing process. Note that because of the non-
linearities such a pulse solution cannot be obtained from
any sequence of single-frequency, time-independent re-
sults; it can only be obtained from a direct time integra-
tion of Maxwell’s equations. Thus the time-independent
and the time-dependent approaches yield additional and
complementary information.

In addition, we note that the nonlinear FDTD approach
presented below accounts for all the nonlinear effects in-
duced by the presence of the Kerr medium. However, we
have not yet included linear dispersion in our model, nor
do we claim to be modeling all possible nonlinear mate-
rials. There are, of course, materials for which the dis-
persive rather than the nonlinear effects dominate.
Nonetheless, the following results are applicable to mate-
rials in which the nonlinear effects dominate the disper-
sive effects; the results apply, for instance, to dispersive
media in which the propagation distance is shorter than
the dispersion length. Since we are trying to discover
what new phenomena may occur when the full vector na-
ture of Maxwell’s equations is taken into account, we
choose to include the nonlinear-medium effects first. As
is noted, linear dispersion effects can be straight-
forwardly incorporated into the nonlinear FDTD ap-
proach. The versatility of the FDTD approach is one of
its strong characteristics. More-complex media can be
readily modeled simply by incorporating a model of more-
complex materials.

FULL-WAVE VECTOR MAXWELL'S
EQUATIONS

Transverse Magnetic Case

By leaving Maxwell’s equations in first-order form, we do
not ignore the vector properties of the solution and the
sources and couplings induced by the nonlinear polariza-
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tion terms. In particular, a TM-polarized wave has the
components (E,, E,, H,). In two space dimensions and
time with coordinates (x, z, ) and with the choice of these
TM field components, Maxwell’s equations reduce to the
form

o.H, = —— (0,E, — 3.E,), e
0
1 T eff
atEx = ——azH - _Ex; )
€eff €eff
1 O eff
oE, = +— axHy - Ez; 3)
€eff €Eeff

where the effective permittivity and the conductivity of
the Kerr medium are

€t = €, + € x" 4)
Tott = €00 X", (5)

with ' being the third-order nonlinear susceptibility of
the medium. Below, since the effective conductivity o
depends only on the nonlinear susceptibility, we refer to
o as the nonlinear conductivity. The divergence equa-
tion associated with this system exhibits a nonlinear
source term:

VD= -vV.PN, (6)

where
D! =¢E, N
PN = 3Ny, ¢, |E|DE. 8

The definition of y"* is dependent on the medium model
and is discussed below.

Transverse Electric Case

In contrast to the TM case, a TE-polarized wave has the
components (E,, H,, H,). In two dimensions and time
with coordinates (x, z,¢) Maxwell’s equations reduce to
their TE form:

1

0 H, = +—0,E,, 9
Mo
1

G,Hz = _'—axEy, (10)
Mo

N 1 o

8,E, = +— 3,H, — 8,H,) - =, an
€eff Eoff

where the effective permittivity and conductivity of the
Kerr medium are again given by Egs. (4) and (5). The
divergence equation associated with this system also ex-
hibits a nonlinear source term as given by Egs. (6)-(8).

Medium Model

If the time scale over which the medium changes is
greater than the pulse width, one must take into account
the effects of the finite response time of the medium.
One can treat the nonlinear effect with a finite response
time as well as in an instantaneous manner by solving the
phenomenological susceptibility equation simultaneously
with Maxwell’s equations:

1 1
axN + :XNL = -;¢52|E|2 , (12)
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which means, explicitly,

TM case,
ne o, Lon_ 1 2 2
AN + X = :ez(IE,J + |E.|®, (13)
TE case,

1 1
X"+ S x = —alB 2, (14)

The relaxation time 7 is variable and represents the re-
sponse time of the medium. For instance, if T represents
the pulse width, then by setting T' = 7 one obtains an
instantaneous-response model: y"' = &|E|? i.e., the me-
dium follows the pulse. On the other hand, if T << 7,
then the finite-response-time effects are maximal and the
medium’s response significantly lags behind the pulse.
Since the electronic properties of materials have relaxa-
tion times of the order of 1-10 fs, the instantaneous
regime is the most appropriate for most optical systems.
However, there are a number of pulsed laser systems
available now in this regime, and the trend is toward the
development of subfemtosecond systems. For these sys-
tems the finite-response-time effects under discussion
here will play a significant role. As we demonstrate be-
low, the present analysis can treat both extremes.

Note that we take e; = ¢, below. This means that we
ignore linear dispersion for the present analysis. Since
we are investigating what new phenomena may occur
when the full vector nature of Maxwell’s equations is
taken into account, the nonlinear-medium effects were in-
cluded first. Linear dispersion was incorporated into the
FDTD approach with a number of techniques in the linear
regime.”®? The approach was recently extended to the
nonlinear regime.”* Because of the versatility of the
FDTD approach, we are able to turn on the dispersion ef-
fects to analyze their effect on the self-focusing process.
These dispersive effects will be incorporated into the next
phase of our nonlinear investigations.

Preliminary Analysis

The TM and TE system of equations have some immedi-
ate advantages. In particular, they readily accommodate
the nonlinear channeling phenomena associated with self-
focusing. The development of a nonlinear channel pro-
duces a waveguiding condition that will favor propagation
of the higher frequencies through the channel. As a re-
sult, longer-wavelength components should be removed
from the pulse through scattering to large angles and re-
flections from the throat of the waveguide channel. In
addition, the pulse will exchange energy with the medium
as the channel forms, owing to the nonlinear conductivity
term. The pulse components whose wave numbers have
been converted to extremely large values become nonpropa-
gating (evanescent) and dissipate energy to the medium.
The nonlinearity also causes frequency conversions that
lead to a compression of the pulse. If there is no linear
dispersion present in the medium, the compression will
not occur on the leading edge of the pulse, and only an
upshift (anti-Stokes) in frequencies will be realized.
Thus the focal region can be viewed as a high contrast,
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lossy dielectric region in which a steepening of the pulse
occurs.

From the equation system one can also anticipate a self-
limiting effect when the intensity level becomes extremely
high. In that high-intensity limit the full-wave vector
Maxwell equations allow the longitudinal electric-field
component to grow to a substantial level. This growth
will create a power flow transverse to the propagation di-
rection as the focal regions are approached. The result is
less intensity’s being available for, hence the limiting of,
the self-focusing process. This physical effect is absent
in all scalar models. For instance, Feit and Fleck’s*® non-
paraxial algorithm does not account for the longitudinal
field components and simply removes from the problem
the nonpropagating large-wave-number components that
arise when self-focusing is developing. The full-wave ap-
proach has no such nonphysical loss mechanism. The
mechanism for the transfer of energy from the transverse
field components to the longitudinal ones is present in the
TM case presented here; the TE case, by definition, has
no longitudinal electric-field components.

Additionally, when the linear-nonlinear interface prob-
lem is treated, Maxwell’s equations will naturally provide
the boundary conditions appropriate for this lossy dielec-
tric interface. The tangential field components must be
continuous across the interface for all times, e.g., # X
(Ex. — Ep) = 0, where # is the unit normal to the inter-
face point from the linear to the nonlinear region; and the
normal component must satisfy for all times the condition

A+ (€0 EnyL + 0ot Eny) = A ¢+ (€0 EL + oo BL). (15)

Thus the linear-nonlinear interface problem can be han-
dled without any additional constraints’ being imposed on
the fields.

Analytical representations of the solutions, for instance,
of Egs. (1)-(8) and (13) are readily obtained that permit a
qualitative description of the self-focusing effects. For
instance, the nonlinear susceptibility and the electric-
field components in the TM case satisfy

¢
X"t = exp[—(¢/m)] f dt' exp[+(t/r)] e—: IE|2, (16)
0
¢ +(0ett/ectr)t’] 3H,
E; = —exp[—(0et/ece)t] J; dt'g)ﬂ%a_zy,
17)
¢ +(Tett/eet)t’] 9H,
E, = +exp[—(oer/eap)t] L d¢’ e—xp[ (ZE:/ err) ]a_xy
18)

Thus a pulse experiences nonlinear dissipation unless
et < 0. Nonlinear growth occurs in that negative resis-
tivity region; it occurs only where y“* is decreasing
in time, i.e., when a,x~* < 0. From Eq. (12), this occurs
where Y '/[e:|E|?] > 1. The boundary between the
growth and the decay regions occurs where g « 8,y = =
0, i.e., where yN' = &|E|%. Since the longitudinal spatial
derivative 9, and the scaled time derivative —d,; yield simi-
lar results for a traveling wave, Eq. (1) or (17) then indi-
cates that the behavior of E, should be nearly coincident
with that of H, except where the axial component E, is
large. Assuming excitation with a symmetric space-time
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pulse, there should be a negligible value of E, along the
propagation axis. The maximum E, should occur off axis
where the transverse variation in H, is a maximum.
Thus, at the negative-resistivity region boundary along
the propagation axis, this means that 3,xy~* ~ E.3,E, ~ 0
and hence that E, = ZyH, ~ 0 there. The resulting min-
ima in both transverse components should coincide only in
the instantaneous limit where the relaxation time 7 —
0. The possibility of reflections from the focusing region
is now revealed, since the longitudinal power flow
S, = E.H, can have a null in the focusing region and can
subsequently change sign, particularly when » — 0.
From Eq. (3) we see that the maximum of E, will occur off
axis in this region where H,, and hence 9, H,, experiences
its minimum along the z direction, i.e., where &, E, ~ 0.
The transverse power flow S, = —E, H,, necessary for fo-
cusing to occur, should reach its maximum value there as
well. The intensity is channeled into the region behind
the negative-resistivity boundary, causing an increase in
the index of refraction and a corresponding decrease in
the wave speed. An increasing separation between the
linear and the nonlinear portions of the pulse then occurs.
The focusing of the off-axis transverse components will
cause the lagging peak to increase until the maximum in-
tensity and the minimum waist occur. The transverse
power flow then changes direction as the transverse field
component H, changes sign as it passes through the focal
region, and the lagging pulse then begins to expand. The
focusing process will start again as the longitudinal field
component has a corresponding sign change and begins to
grow nonlinearly large, forcing the intensity to flow back
toward the propagation axis. However, since energy is
being carried away by the leading edges of these focal re-
gions at speeds slightly faster than the focal regions them-
selves, there is less energy present for each successive
focusing region. This causes the resulting peak intensi-
ties values to decrease. The frequency of occurrence of
these focal regions depends directly on the response time
of the medium and the peak intensity of the input pulse.

From the TM first-order set of equations, one can read-
ily derive the following second-order equation for the elec-
tric field:

3.°E — wo€eird’E + 3,°E — 20008, E — 0.2 x"ME
= —(1/eo)V(V - PYL).  (19)

Similarly, since V*E = —V - P !'/e; = 0 in the TE
case, the TE first-order set of equations simply yields the
relation

azz:E - ,U'OEeffatzE + asz - Zﬂoa'effatE - (actszL)E = 0.
(20)

From Egs. (19) and (20) one can identify several wave pro-
cesses. The first two terms represent the longitudinal
wave operator, with the speed of the wave packet v™2 =
n?/c® = uoeqr being controlled by the nonlinearity. This
field dependence of the speed produces the nonlinear
self-focusing effects. The third term provides for the
transverse linear diffraction of the field; the fourth repre-
sents a nonlinear loss term. The fifth term produces the
nonlinear dispersive effects of the medium. The source

term of the final expression shows that the transverse E.
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and longitudinal E, electric-field components are coupled
and driven by the nonlinear polarization effects of the
medium.

These second-order expressions suggest the relationship
of the full-wave approach to the scalar models. In par-
ticular, the scalar models ignore the source term in the
TM equation, Eq. (19), and hence the resultant coupling
between the transverse and the longitudinal field compo-
nents. Moreover, for temporal solitons the scalar models
reduce the second-order z derivative of the field to a first-
order term by means of the standard envelope assumption.
One may then interpret the second-order time derivative
as a dispersive correction term. On the other hand, an
envelope assumption would reduce the TE equation,
Eq. (20), to the standard form used to obtain spatial soli-
tons. The present analysis incorporates the commonly
ignored terms and makes no envelope assumption in ei-
ther case. Thus we anticipate that the full-wave, vector
Maxwell equation approach in both the TM and TE cases
will fully encompass the effects generally contained in the
scalar models as well as several others arising from the
higher-order derivative terms and the vector properties.

NUMERICAL SOLUTION OF THE
NONLINEAR MAXWELL'S EQUATIONS

To obtain a FDTD solution of, for instance, the TM system
of Eqgs. (1)-(8) and (13), we discretized space into square
cells wih dimensions Ax and Az. The electric-field com-
ponents are taken along the edges of each cell, which
are located at points ({Ax, jAz); the magnetic-field compo-
nents are located at the center of each cell, [(i +
1/2)Ax,(j + 1/2)Az). Time is also discretized with incre-
ments A¢z. The equation set is directly integrated forward
in time with a leap-frog technique.?? The electric-field
components are updated at integer increments of the time
step, nA¢, and magnetic-field components at half-integer
increments of the time step, (n + 1/2)A¢. The effective
susceptibility V', the effective permittivity e.g, and the
effective conductivity . are taken to be at the same loca-
tion and time as the magnetic-field components. The
nonlinear electric-field terms at the cell centers at the
half-integer time steps are obtained by forming the aver-
age of each electric field component from its two values at
the edges of the cell at the previous integer time step, e.g.,

Ex(rcenter’ tcenter) - (1/2){Ex[(l + 1/2)Ax, jAZ, nAt]
+ E[G + 1/2)Ax,(j + DAz, nAt]},
(21)

and squaring those averages values, e.g., to give |E,|? and
summing them to form the complete term |E|® = |E,|* +
|E.|?. The mixed medium-field terms are treated by tak-
ing the material properties at the edges of a cell to be the
same as those associated with the cell center and by aver-
aging over the electric fields at the two surrounding time
points, e.g.,

(€ctt/Teir) (Ceenter Leenter) Ex (Fcenter, Ecenter)
= (1/2) (et /oG + 1/2)Ax,(j + 1/2)Az, (n + 1/2)At]

X {E.[G + 1/2)Ax, jAz, nAt]
+ E.[G + 1/2)Ax, jAz,(n + DAZ]}. (22)
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Combining these constructs, one obtains from Eq. (2), for
instance,

E[G + 1/2)Ax, jAz,(n + DAf]
1 (_ {Hy[(i + 1/2)Ax, (j + 1/2)Az,(n + 1/2)At]
AG ) Az

_H[G + 1/2)Ax,(j — 1/2)Az,(n + 1/2)At]}
Az

+ B, j,n)E,[(G + 1/2)Ax, jAz, nAt]) ’ (23)
where the coefficients are
1 .. ..
> [AG, j,n) + BG,j,n)]

_ el + 1/2)Az,(j + 1/2)Az,(n + 1/2)Af]
At

(24a)

1
E [A(l’.]’ n) - B(l’.]’ n)]

_ oulli + Y2)Ax,(j + Y2)Az, (n + Y2)A]
2

(24b)

The remaining FDTD equations follow in a straightfor-
ward fashion.

The TM problem is initiated by driving the tangential
magnetic-field H, field components at z = +Az/2 in front
of a perfect electric conductor at the simulation region
boundary z = 0. These source (incident field) terms gen-
erate a wave that propagates into the numerical simula-
tion space z > 0. The total field is calculated within this
simulation region as a sum of this incident field and any
scattered fields. This approach minimizes the numerical
artifacts that arise from the finite-aperture (nonplane
wave) incident field. In the TE case the tangential elec-
tric field E, is driven in front of a perfect magnetic wall.

We have found this FDTD scheme to be numerically
stable. It is known to be second-order accurate in the lin-
ear domain; the accuracy order in the nonlinear case is
unknown at this time.

NUMERICAL RESULTS

The numerical problem deals with two space dimensions
and time. The direction of propagation is along z; the
transverse direction is alongx. The computational grid is
excited by driving the initial transverse boundary with a
Gaussian weighted (in space), raised cosine (in time)
pulse:

Hy(x,z = 0,8) = Hy exp[— (x/wo)*]G®), (25)
where
_ J1.0 — coslwed) forO0=¢t=T
G@) = { 0 fort>T ) (26)

where wo = 2a/T. If the medium were simply a nonlossy
dielectric, the numerical Maxwell’s equations solver would
then generate and numerically simulate the propagation
of a pulsed Gaussian beam whose initial waist is defined
by the Gaussian weighting function. The initial waist
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was taken to be wy = 10.0 um. The Fourier transform of
G(8) is

sin{(w/wo)] 1 )
1- (a)/wo)2

G(w) = expGwT/2) @

The pulse length was taken to be T' = 20.0 fs. Thus
the 6-dB amplitude rolloff point of this spectrum is lo-
cated at w = wy, or fp = 1/T = 5.0 X 10¥ Hz (Ao = ¢/fo =
6.0 um). The 1/e rolloff point is at f =~ 1.18 fo = 5.9 X
10" Hz. The first null in this spectrum occurs at o =
2wy, or f = 1.0 X 10 Hz. The initial pulse actually con-
tains wavelengths of relevance that range in free space
from more than 10.0 um to less than 1.0 um. We note
that the choice of the initial pulse is arbitrary; any con-
tinuous, finite-time pulse can be used with the FDTD ap-
proach as long as the spatial and temporal resolution is
high enough to capture the relevant physics. The raised
cosine pulse was chosen for its simplicity.

Because our input pulse is quite narrow and hence has a
broad frequency bandwidth, the estimate of the location of
the nonlinear focus and the associated focused beam waist
cannot be obtained with the standard formulas, since a
unique choice of wavelength or frequency cannot be made.
Moreover, the nonlinear medium will drastically change
the propagation speeds of these various frequency compo-
nents and hence the actual wavelengths in the medium.
In addition, recent results® for the propagation of ultra-
wide-bandwidth pulsed Gaussian beams have shown that
the intensity and the energy profiles of the beam are not
the same. Thus some care must be exercised in deter-
mining the critical focal distance and the initial electric-
field strength.

For the simulation runs we set the nonlinear me-
dium parameter to the value ny = €3/(2n,) = 1.0 X
10718 (m2/V?%), where ny = 1.0, and we set the input electric-
field amplitude to E; = 18.25 X 10® (V/m). We note that
the index of refraction choices do not correspond to a
particular material, but they are chosen simply as a repre-
sentative case. It would be a straightforward matter to
tailor the problem to specific materials. The calculation
is limited simply by the amount of available computer
memory. Suited to the resources available to us, these
values simplified the analysis of the results and ensured
that the focusing would occur near the center of the com-
putational grid.

The effective frequency of the excitation pulse, which
was shown? to be a good measure of the frequencies in-
volved in the diffraction process for a broad-bandwidth
pulse, is fra = fo/V3 = 2.89 x 10" Hz; the corresponding
free-space wavelength A,,q = 10.39 um. The associated
Rayleigh distance for an aperture-driven, raised cosine,
pulsed beam is then

2
Lp= T\w" = 30.24 um, (28)

rad

which has been confirmed by numerical simulation.?? If
a narrow-bandwidth signal with amplitude E,, initial
waist w,, and center frequency f;,4 propagates in a nonlin-
ear medium, its self-focusing distance is then ~(E./
Ey) Ly, where in the instantaneous-response regime

E.. = (ng/ne) ™2 ma/(mwe) = 3.307 X 10° (V/m)  (29)
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is the critical field amplitude. Thus, with the indicated
parameters, the self-focusing distance would be 5.48 um.
This result has been found to be a large underestimate of
the critical nonlinear self-focusing distance. We find that
the following reasoning provides a better estimate in the
pulse case.

Self-focusing occurs because of changes in the index of
refraction of the medium and hence in the speed of propa-
gation and wave numbers in that medium. The distance
over which the focusing process occurs changes as the
field strengths are varied, but the time for focusing to
occur does not. Thus the focusing should occur at the
time

2
Jp=—=—"=1008fs. (30)

Moreover, the intensity pattern of the raised cosine beam
expands not at the cw rate, 6™ = Aa/(wo), but rather
at the rate

i = 8.317° ~ 0.4392md (8D
TWo

the specific value having been obtained here numerically
as in Ref. 23. The critical focal distance is then more
appropriately defined by

Ze = ;"—" = 68.89 um, (32)
int

which takes into account the actual beam spread rate.
Therefore we would expect the critical focus in the instan-
taneous response cases to occur at

E cr
2z = (F"Jz =12.48 um. (33)

" Since a portion of the pulse would not experience the non-

linearity in a finite-response-time case, we would expect
the critical focus distance to be bound by the value z; and
the value ¢Jr = Lp.

Because of the complicated processes that occur in the
focal region when multiple frequencies are already present
in the pulse, the nominal 1.0A rule of thumb® for the fo-
cused waist is no longer applicable. Since the full-wave
vector treatment allows for reflections from the focal re-
gion and other conversion processes, the final frequency
spectrum available for determining an effective frequency
parameter is also not available ¢ priori. We simply antici-
pate that, when the medium is responding nearly instan-
taneously, the waist of the focused beam should be of the
order of 6;y X ¢Tp = 4.39 um or less.

Transverse Magnetic
Several TM cases were considered with the medium re-
sponse time 7 with respect to the input pulse width 7. In
particular, weran cases with T = 0.27, T = 2.07, T = 507,
and T = 2007, i.e., 7 =100.0 fs, r = 10.0 fs, r = 4.0 fs,
and 7 = 1.0 fs, respectively. These choices provided
access to the nonlinear phenomena associated with medi-
ums exhibiting either finite or instantaneous response
times.

Several grid sizes have been used to explore the numeri-
cal stability and accuracy of the approach. Direct com-
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parisons were made between simulations with a 600 X
800 grid, where Ax = Az = 0.05 um or 30.0 um X
40.0 um, and a 1500 X 2000 grid, where Ax = Az =
0.020 um or 30.0 um X 40.0 um. These discretizations
provided a spatial resolution of Az = 1,/120 and Az =
A0/300, respectively. The coarser resolution was ade-
quate to minimize the numerical dispersion effects in the
cases treated; the finer grid simply reduced them further.
A Courant stability condition (the time step must be cho-
sen for a two-dimensional problem with Ax = Az so that
At = Az/V2¢) or Az/cAt = 0.38 was maintained in both
cases, which means that we chose A¢ = 0.045 fs and
At = 0.018 fs, respectively. The enhanced spatial resolu-
tion provided a better resolution of the sharp field pat-
terns that are formed in the focal regions; that is, it
reduced the numerical noise. The algorithm did not
model the physics well when it was run at the linear equa-
tion Courant limit, but it did well for values Az/cAt < 0.50.
The nonlinear version of the Courant limit is not known
at this time. With four unknowns and additional over-
head, the corresponding total memory requirement was
approximately 3.0 Mwords and 10.0 Mwords, respectively.
The time requirement is proportional to the number of
unknowns and the number of time steps. The 10.0-
Mword problem took approximately 510 min of Convex
C240 CPU time to compute 7550 time steps, approxi-
mately 0.5 us per unknown. In terms of the problem pa-
rameters, this rate corresponds to the pulse’s propagating
40 pm ~ 7cT with a resolution of 240 cells over the spa-
tial pulse width ¢7 = 6.0 um. The run time would be
approximately a factor of 10 less for a single processor of a
Cray YMP/8-32 computer.

We found that the self-focusing distance Zy, i.e., the ax-
ial distance to the point at which the maximum intensity
occurred, was between z; and Lg, as expected. However,
in each case the time at which the focusing occurred for
the cases considered was ~Jz =~ 100.0 fs. The actual self-
focus distance was highly dependent on the ratio T/ For
T = 0.27, the distance Z; ~ 24.0 um; for T = 2.0% Z, ~
19.8 um; for T = 50% Zy¢ ~ 17.1 um; and for T = 20.07,
Zg ~ 142 pm. As noted above, the focus locations are
drastically different in each of the cases because the wave
speeds in their nonlinear regimes are extremely different.
Their distances are accurate only to within +0.45 um,
corresponding to the chosen output frame time spacing of
1.5 fs.

We note that, as anticipated from the full-wave vector
analysis, we found that the self-focusing is restrained by
the generation of the longitudinal field component and the
associated transverse power flow and by reflections from
the waveguiding region. The augmented Helmholtz
scalar models also predict that the beam will not experi-
ence any catastrophic focusing, i.e., will not focus to a
point. However, in contrast to the FDTD approach, here
the scalar models depend on nonphysical loss mechanisms
that limit the self-focusing. In particular, they artifi-
cially remove the higher-wave-number components and do
not model the important energy-transfer mechanisms
between the transverse and the longitudinal field compo-
nents that occur during self-focusing. The FDTD ap-
proach incorporates all beam angles and models the
physical flow of power in all directions.

The T = 0.27 case is a representative noninstantaneous

Vol. 10, No. 2/February 1993/J. Opt. Soc. Am. B 191

problem. It illustrates the behavior that subfemtosecond
pulsed laser beams, when they become available, will ex-
hibit when they interact with the electronic properties of
a material. Because the pulse width is shorter than the
relaxation time of the medium, the medium does not have
adequate time to respond to the presence of the pulse.
Consequently, the front part of the pulse propagates in the
medium as a linear beam. Because of this one finds non-
linear decay, not growth, on the front edge of the pulse.
The buildup of the nonlinearity occurs in the rising por-
tion of the pulse, causing nonlinear tail effects on the back
side of the pulse. The pulse then experiences a mild
shock formation with a corresponding creation of a set of
upshifted (anti-Stokes) frequency components as it passes
into the negative-resistivity region. Focusing occurs to a
waist of 3.05 um for the intensity and 5.05 um for the
total field energy. The pulse breaks up into two pack-
ets: the front lobe is broader, hence consisting of the
lower frequencies; the back lobe is compressed, thus in-
cluding the higher, nonlinearly generated frequencies.
The front-lobe components travel at speeds different from
those of the rear-lobe components because they see a lin-
ear rather than a nonlinear medium. The distance be-
tween the intensity peaks of these lobes at the time of
maximum focus is ~4.0 um; the front-lobe intensity half-
width is ~6.0 um, and that of the back lobe is ~1.1 um.
The intensity peaks have approximately the same value,
the trailing peak being ~1.4 times as large as the leading
peak. There is a correspondingly large growth in the
longitudinal E, field component where the null between
the lobes in the transverse field components E, and H,
occurs. The longitudinal component has its peak value
off axis at x = 5.2 um. There is no noticeable reflection
out of the focusing region, since the medium responds so
slowly that the nonlinear channel formation occurs gradu-
ally. Rather, the back lobe forms and follows the front
lobe, which is diffracted linearly.

The remaining TM cases are (to different degrees)
instantaneous-response problems. Thus they are more
amenable to comparison with most of the scalar-model
results and are more accessible to experimental verifica-
tion. When T = 2.07, we found that the medium re-
sponded to the pulse in a fashion similar to the medium in
the T = 0.27 case but more quickly. Focusing occurs to a
waist of 1.25 pm for the intensity and 5.0 um for the en-
ergy. Again, the front edge of the pulse acts in linear
manner, i.e., it responds to the presence of a linear
medium; the buildup of the nonlinearity occurs on the
rising portion of the pulse. The pulse then exhibits a
strong shock formation as it passes through the negative-
resistivity region, with a corresponding creation of a set of
upshifted (anti-Stokes) frequency components. The dis-
tance between the intensity peaks of the front and the
back lobes is now ~1.1 um; the front-lobe intensity half-
width is ~6.2 um, and that of the back lobe is ~0.8 um.
The back lobe exhibits a slightly higher intensity than the
front lobe, approximately 5.9 times as large. The back
lobe develops within a shorter distance, since the medium
is responding more quickly to the large field enhance-
ments. The lower-frequency components remain with the
front lobe; the higher-frequency components are chan-
neled to the rear lobe. We see a strong growth of the
longitudinal component at the cost of the transverse
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Fig. 1. 1/e profiles of the electric-field intensity I = |E|® + |E,|®
and the total field energy density integrated along the z axis:
[ d21/2¢cc[|E|? + |E.|*] + 1/2u0|H,|? versus time are plotted for
the T = 27 case. The original intensity waist of the input pulse
was 7.07 um.
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Fig. 2. Intensity of the transverse electric-field component |E;|?

along the propagation axis, given for the T' = 27 case at the time
¢t = 103.0 fs when the maximum intensity focus occurs.
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Fig. 3. Power spectrum of the signal | E,|* (shown in Fig. 2) along
the propagation axis, given for the T' = 27 case at the time
t = 103.0 fs when the maximum intensity focus occurs. The
power spectrum of the input pulse is given for comparison.

components, and we begin to see some reflection of some
longer-frequency components out of the focus region.
The longitudinal component has a maximum at x =
0.72 um. The peak value of |E,|, 1.09 X 10° V/m, is 8.30
times the critical value and 3.52 times larger than the
peak value of |E,|. There is a corresponding growth in
the transverse power flow S, in the focus region.
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Typical results for the T = 2.07 case are shown in
Figs. 1-8. Plots of the 1/e profiles of the electric-field
intensity I = |E,|? + |E.|? and the total field energy
density integrated along the z axis, [dx[1/2€.(|E.|* +
|E.|%) + 1/240|H,|?] versus time, are given in Fig. 1. Note
that the initial 1/e-intensity waist is 7.07 uwm, correspond-
ing to the initial amplitude waist w = 10.0 um. As indi-
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Fig. 4. Contour plot of |E.|* + |E.|® for the T = 27 case at the
time ¢ = 103.0 fs when the maximum intensity focus occurs,
showing the breakup of the pulse into two lobes, the null appear-
ing in the transition to the negative-resistivity region.
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Fig. 5. Intensity of the longitudinal electric-field component
|E.|? along the axial slice x = 0.72 um, given for the T = 27 case
at the time ¢ ~ 103.0 fs when its maximum value occurs.
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Fig. 6. Contour plot of |E,|? for the T = 27 case at the time
t ~ 103.0 fs when its maximum value occurs, showing the appear-
ance of its peak off the propagation axis in the region where the
transverse field components exhibit a null.
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Fig. 7. Longitudinal power flow S, along the propagation axis,
given for the T = 27 case at the time ¢ = 103.0 fs, corresponding
to that when the maximum intensity of the transverse field com-
ponent E. occurs.
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Fig. 8. Total field density 1/2ec[|E;|* + |E.|*] + 1/2u0|H,|?
integrated over the spatial band (x,2) € [0.0,1.2 um] X
[0.0,40.0 um] and over the spatial band (x,2z) € [0.0,2.4 um] X
[0.0,40.0 um] and then normalized to the areas of those bands,
plotted versus time for the T = 27 case.

cated, the intensity profile is much narrower than the
energy profile. This difference results from the spread-
ing of the energy throughout space-time from the focus-
ing process. The intensity is merely a point quantity in
any transverse plane; the energy is an average value of the
intensity in time. The energy profile is smoother than
the intensity curve because it is an average in space of the
signal intensity. The initial growth in the profiles occurs
because the search for the values occurs over the numeri-
cal simulation volume, which does not include the initial
boundary values.

Consider Fig. 2, in which the intensity of the transverse
electric-field component |E,|? along the propagation axis is
given at the time ¢ = 103.0 fs, corresponding to the maxi-
mum intensity focus. Shimizu* studied the effect of dis-
persion on pulse distortion when optical filaments are
formed by self-focusing. When normal dispersion is pre-
sent, the first half of the pulse is compressed, while the
tail gradually spreads. An optical shock is eventually
formed at the pulse front because of this effect. On the
other hand, as anticipated by Shimizu,* in nondispersive
media the pulse center lags relative to its wings as a result
of the nonlinear index. Therefore, as is shown in Fig. 2,
the pulse gradually forms a shock at the tail. Similarly,
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Reintjes et al.® note that, if dispersion is absent, the lead-
ing edge of the pulse does not experience a significant
nonlinear index because of the finite response time of the
nonlinear medium. Consequently the early part of the
pulse diffracts as if the medium were linear. This behav-
ior is characterized by the gradually increasing front lobe
(in distance this is the largest z-value portion of the plot)
shown in Fig. 2; the intensity increases in the linear area
toward the back of the pulse and the nonlinear region.
However, because of the integral nature of the transient
response, the tendency for focusing increases further into
the pulse, causing the diameter to decrease toward the
back of the pulse. There is significant distortion of the
pulse, resulting in a pulse that is significantly shorter in
the high-intensity region than the input pulse duration.
The high-intensity region, which is in the rear of the
pulse, is formed primarily by the nonlinear index change
set up by the early portion of the pulse. Because there is
no dispersion, an associated spectral asymmetry occurs,
and only upshifted, anti-Stokes frequency components oc-
cur from the latter part of the focused pulse. This effect
is illustrated in Fig. 3, where the power spectrum of the
intensity |E.|? shown in Fig. 2 is compared with the power
spectrum of the input signal.

A contour plot of the total electric-field intensity
I=|E,|* + |E,|? in the focal region shown in Fig. 2 is
given in Fig. 4. One can see that the high-intensity re-
gions continuously radiate a significant amount of light
away at large angles as they propagate. The front (large
z) portion corresponds to the linear diffraction region; the
rear (smaller 2) portion incorporates the nonlinear effects.
This horn pattern was first noted by Shen®?* for moving-
focus effects. Figure 4, however, shows that the actual
field structure is more complicated than the simple scalar-
equation picture and that two field lobes are formed in the
focal region.

The behavior of the longitudinal electric-field compo-
nent E, is addressed specifically in Figs. 5 and 6. The
maximum intensity of the longitudinal electric-field com-
ponent |E.|? occurs off axis along the axial slice x =
0.72 pm and at a time that is slightly larger than the time
t ~ 103.0 fs when the transverse electric-field component
|E.|?, shown in Fig. 2, achieves its maximum. A plot of
|E.|? along the axial slice x = 0.72 um when it achieves its
maximum is given in Fig. 5. A contour plot of the |E,|?
intensity field at the same time is shown in Fig. 6. With
the corresponding plots of the electric-field intensity given
in Figs. 2 and 4, one sees that E, has grown out of the noise
in the transition layer to the negative-resistivity region.
Moreover, one can see a second peak appearing in the
longitudinal field component. The energy that is trans-
ferred out of the focus to the longitudinal field component
provides the energy for the next focus. This behavior of
the longitudinal field component is unavailable from the
scalar models. Its presence is necessary to produce
waveguiding conditions in the nonlinear focal region that
satisfy Maxwell’s equations.

The corresponding axial power density S, = E, H, values
along the propagation axis are shown in Fig. 7. A slight
negative component occurs in the region of the back lobe.
Its shape indicates that it consists essentially of low-
frequency, longer-wavelength components that have been
reflected back from the waveguiding region. As the lead-
ing portion of the pulse transitions through the focal
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region there is an associated 7 phase change in the trans-
verse electric-field component, which provides this sign
change. These negative values of the z-directed power of
the power flow increase (see Fig. 14 below) as the response
becomes more instantaneous; the channel forms faster,
causing the reflection coefficients from the channel to
increase.

Similar to Feit and Fleck’s' nonparaxial algorithm for
the Helmholtz equation, the FDTD approach is valid for
wide-angled beams. In contrast, the FDTD approach ac-
counts for the large-wave-number components, which are
lost by the nonparaxial algorithm when self-focusing is
developing. No unnecessary evanescent waves are intro-
duced; hence there is no nonphysical loss of power associ-
ated with those nonpropagating waves. However, the
full-wave vector algorithm does show the anticipated re-
duced power transmission in the forward direction, which
is accompanied by radiation scattered from the nonlinear
focal region and the conversion of energy between the
transverse and the longitudinal field components. These
energy-transfer mechanisms produce the reduced power
results from the change in the field patterns as the pro-
cess of the pulse’s focusing, separating, and defocusing re-
peats itself. The self-focusing process produces the
splitting of the field pattern into the linear and nonlinear
lobes, causing less energy to be available in any of the
lobes in the next focus region. This effective splitting of
the pulse is illustrated in Fig. 2. The loss of energy dur-
ing the focusing process to the nonlinear conductivity
term is shown in Fig. 8. The total field energy density
1/2€.5[|E.|? + |E,|?] + 1/2uo|H,|?, integrated over the
spatial band (x,2) € [0.0,1.2 um] X [0.0,40.0 pm] and
over the larger spatial band (x,2) € [0.0,2.4 pm] X [0.0,
40.0 um] and then normalized by the area of those bands,
is given versus time. After the initial rise of the average
field energy in those bands as the pulse enters the simula-
tion volume, there is a gradual decrease in the field energy
as the pulse transitions into the negative-conductivity re-
gion. There is an increase of the average energy in the
band closer to the axis in the focal region with a corre-
sponding decrease in the larger band. In contrast to the
corresponding figures in Ref. 10, there is no abrupt loss of
energy after the pulse passes through the focus; rather,
there is a steady redistribution of energy back to the
larger transverse distances as the pulse unfocuses and a
loss of energy to the increased conductivity of the medium.

Figure 9 is a time sequence of plots that illustrates the
importance of the growth of the longitudinal field compo-
nent in the self-focusing process. Contour plots of |E,|?
and |E,|? and the on-axis distributions of the intensity
|E.|? and the power flux S, = E, H, are given at the times
t =833 fs,t =966 fs, and ¢ = 109.9 fs for the T = 507
case. The first time set occurs long before the first main
focus is reached; the second time set is just before the
focus time ¢ ~ 100.0 fs; and the third time set is an equal
interval after the focus. The longitudinal component E,
has already reached a maximum off-axis value in the first
time set and, as the pulse propagates, acts as a catalyst for
refocusing some of the scattered field energy. The off-
axis field energy is also focused as the nonlinear channel
grows. As the pulse approaches the true focal region,
where its waist reaches a minimum, the peak field pattern
exhibits the passage of the pulse through two transition
regions. The latter pattern reflects the presence of the
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intensity focus, the former the initial transition into the
negative conductivity region. Following the pulse evolu-
tion, the front portion of the pulse corresponds to the
original nonlinear transition, the back portion to the
focused field intensity. The benign region between both
sets simply corresponds to energy carried along with the
pulse. The appearance of a second E, peak is seen in the
first time set. The growth of this second peak and
the resulting changes in the transverse component are
seen from the second set, particularly in the intensity of
the transverse field component on axis. Note that the
power flux acquires negative values as the focal region is
reached. In the third set one can see that a third lobe in
the intensity has appeared because of the power that has
reflected back out of the focal region. The large off-axis
value of E, is now causing the power to flow away from the
focal region, which will eventually feed the next focusing
process when it experiences the next channel formation
from the front part of the pulse.

When T = 20.07 the medium is completely into the in-
stantaneous response regime. The 1/e profiles of the
electric-field intensity and the total field energy along the
z axis are given in Fig. 10. Focusing occurs to a waist of
0.50 um for the intensity and 1.80 um for the energy.
The field values have become slightly more noisy than in
the T = 2.07 and T = 5.07 cases, since the spatial and
temporal resolution has remained the same even though
the rate at which changes occur has increased. The en-
ergy’s profile is smoother than the intensity’s, since it is
obtained by averaging the intensities over time. The ax-
ial slice of the intensity of the transverse electric field
|E,|? at the focal region time ¢ = 97.0 fs is shown in
Fig. 11; its power spectrum is compared with the input
power spectrum in Fig. 12. The front part of the pulse
still diffracts linearly; however, the nonlinearity turns on
extremely fast (instantaneous regime), as soon as the
pulse amplitude surpasses the critical value early in the
computational grid. A corresponding increase in the gen-
eration of higher frequencies is observed by comparing
Fig. 12 with Fig. 3. A steep shock forms at approximately
6.2 um, the first transition into the negative-conductivity
region. Some reflections of the lower-frequency compo-
nents are observed from this initial transition region.
The resulting pulse exhibits strong tail erosion as the non-
linear conductivity increases quickly in strength. The
peak value of |E,|, 1.22 X 10° V/m, is 8.70 times the criti-
cal value and 2.40 times larger than the peak value of |E,|.
The peak intensity value of the lagging peak is noticeably
higher than the forward peak, approximately 2.6 times
larger; it is approximately 5.4 times larger than the peak
intensity in the linear region. The shape of the back por-
tion of the central region is also quite steep, corresponding
to the instantaneous turn off of the nonlinearity. Turn-
off occurs when enough energy has left the focal region
because of the resulting transverse power flow and addi-
tional reflections from the nonlinear channel. There is a
corresponding peak of E, in the region near this rear tran-
sition. A plot of the intensity of the longitudinal electric-
field component |E;|* in the focal region along the axial
slice x = 0.24 um for the focal region time ¢t = 97.0 fs is
given in Fig. 13. The locations of the peaks of this com-
ponent occur precisely where the derivative behavior in
the transverse components is found. Again, the lack of
the beam’s focusing to a point can be readily connected to
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Fig. 9 Contour plots of the intensities |E.|* (top row) and |E,|* (second row) and plots of the on-axis intensity |E.|? (third row) and the
power flow density S, = E, H, (bottom row) are given for the T = 5rcase at times (a) # = 83.3 fs, (b) ¢ = 96.6 fs, and (c) ¢ = 1099 fs.

the appearances of these peaks; they correspond to energy
taken away from the focal region and the axis of propaga-
tion. The power flux S,, when the focal time ¢t = 97.0 fs
is reached, is shown in Fig. 14. The negative power flux
is readily apparent now. Asinthe T = 5.07case shown in
Fig. 9, the appearance of small lagging lobe in Fig. 11 is
caused by the negative power flow from the focal region.
The total field energy density 1/2e.«[|E.|* + |E.|?] +
1/2u0|H,|?, integrated over the spatial band (x,2) €
[0.0,1.2 pm] X [0.0,40.0 um] and over the larger spatial
band (x,2) € [0.0,2.4 um] X [0.0,40.0 um] and then nor-
malized by the areas of those bands, is plotted versus time
in Fig. 15. The significantly higher energy density near
the axis in the focal region is illustrated with this figure.
The loss of field energy to defocusing and to the lossy non-
linear medium occurs after the focal time ~J5 is reached.

In contrast to those associated with the results given in
Ref. 10, the losses in Fig. 15 do not occur in steps. They
are more gradual, particularly in the focal regions, be-
cause there are physical loss mechanisms present that
provide the energy transfer to the medium.

We note that in the T' = 207 case the multiple self-
focusing regions reported in Ref. 10 are observed. How-
ever, the physical picture now has a more complex
interpretation than simply that the beam alternately con-
tracts and expands between those focal regions. Each
transition region causes sign changes in the field compo-
nents and a power flow toward and away from the propa-
gation axis, which is facilitated by the presence of the
longitudinal field component. Each successive intensity
peak is lower because of this redistribution of the wave
energy from the transverse to the longitudinal field com-
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ponents. Moreover, each successive peak travels at a
slower speed because of the ever-increasing nonlinear dis-
persion, which causes the various components to travel at
slower speeds. We expect that the process must eventu-
ally limit itself as the peak intensity decreases below the
nonlinear threshold.

o
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Fig. 10. 1/e profiles of the electric-field intensity I = |E.|* +
|E;)? and the total field energy density integrated along the z
axis: [dz1/2eur[|E:|® + |E|*] + 1/2m0|H,|? versus time, plotted
for the T = 207 case. The original intensity waist of the input
pulse was 7.07 um.
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Fig. 11. Intensity of the transverse electric-field component |E,|2
along the propagation axis, given for the T' = 207 case at the time
t = 97.0 fs when the maximum intensity focus occurs.
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Fig. 12. Power spectrum of the signal |E|? (shown in Fig. 11)
along the propagation axis, given for the T' = 207 case at the time
t = 97.0 fs when the maximum intensity focus occurs. The
power spectrum of the input pulse is given for comparison.
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Fig. 13. Intensity of the longitudinal electric-field component

|E;|* along the axial slice x = 0.24 um, given for the T = 207
case at the time ¢ ~ 97.0 fs when its maximum value occurs.
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Fig. 14. Longitudinal power flow S, along the propagation axis,
given for the T = 20 case at the time ¢ = 97.0 fs, corresponding
to the maximum intensity of the transverse field component E,.
The negative power flow from energy reflected from the focal
region is apparent.

~ B '
_‘(I_) - 4
= | R |
>3 N
>~ S T T T T
g 4 \~__—‘——— \\\ J
3 |
Z b
‘@
5 2r 7
© L 1.2 um band
>
5 2.4 um band
S

0 ) .

0 50 100

fs

Fig. 15. Total field energy density 1/2ec[|E:|® + |E.|%] +
1/2u0|H,|* integrated over the spatial band (x, z) € [0.0,1.2 um] X
[0.0,40.0 um] and over the spatial band (x,2) € [0.0,2.4 pm] X
[0.0,40.0 um] and then normalized by the areas of those bands,
plotted versus time for the T' = 207 case.

Transverse Electric

The TE equation set does not exhibit the nonlinear energy
transfer phenomena associated with the longitudinal elec-
tric field component found in the TM system. Thus we
expected and found a quantitatively different behavior for
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the TE cases. Consider, for instance, the TE case in
which the input pulse width T = 5.07, where 7 = 4.0 fs.
The on-axis values and a contour plot of the intensity |E,|?
of the transverse electric-field component in the TM case
are given in Figs. 16 and 17, respectively, for the focal
time ¢ = 100.0 fs. The corresponding |E,|* plots for the
TE case are shown in Figs. 18 and 19, respectively. Al-
though there is no major difference in the peak intensity
value, the pulse shapes and their locations and distribu-
tions are quite different between the two polarizations.
The intensity shown in Fig. 16 exhibits the loss of energy
to the longitudinal component on the rear portion of the
pulse (z values between ~16 and 17 um). In contrast,
the intensity shown in Fig. 18 is essentially uniform over
the length of the original pulse, which surpasses the criti-
cal field strength ~3.5 um. This also explains the differ-
ence in the widths of the intensities in the focal regions.
Notice that the focus in both the TE and the TM cases
occurs at the same time, # = 100.0 fs, but not at the same
axial distance. The TE case focuses at ~15 um, whereas
the TM case focuses at ~17 um. Moreover, comparing
the contour plots in Figs. 17 and 19, one finds that the
field pattern is more diffuse in the TE case than it is in
the TM case. This is simply because there are no compet-
ing nonlinear mechanisms for the field energy in the TE
case. Similar results were found for the other response
times.
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Fig. 16. Intensity of the transverse electric-field component

|E.|?, given for the T = 57, TM case at the time ¢ = 100.0 fs when
the maximum-intensity focus occurs.
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Fig. 17. Contour plot of |E,|* for the T = 57 TM case, given at
the time ¢ = 100.0 fs when its maximum value occurs.
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Fig. 18. Intensity of the transverse electric-field component
|Ey|?, given for the T = 57 TE case at the time ¢ = 100.0 fs when
the maximum intensity focus occurs.
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Fig. 19. Contour plot of |E,|* for the T = 57, TE case, given at

the time ¢ = 100.0 fs when its maximum value occurs.

CONCLUSIONS AND FUTURE PLANS

We have successfully implemented a nonlinear FDTD al-
gorithm to solve the combined full-wave vector Maxwell
and medium-y™ model equations. The algorithm is
stable and cost competitive with conventional scalar ap-
proaches. With the resulting numerical simulator we
have studied nonlinear self-focusing in a Kerr medium
with a finite response time. The full-wave vector treat-
ment recovers many effects predicted by the scalar
approaches; however, it has also revealed several unex-
pected as well as many anticipated results. Of particular
interest is the indication that growth of the longitudinal
electric-field components occurs and can remove a signifi-
cant portion of the beam energy from the self-focusing
process, thus self-limiting it. With access to more exten-
sive computer resources, we shall be able to examine self-
focusing in a fully three-dimensional setting.

In particular, the size of the problem that can be treated
with the FDTD approach is machine-memory limited; the
more in-core memory, the larger the problem space
that one can model. With the parameters used here, a
1000-pm-long problem would require approximately
250 Mwords of memory and 22 single-processor Cray YMP
hours to run. However, the FDTD approach maps readily
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to a massively parallel environment. Even using only an
8-processor Cray YMP computer, one could optimistically
run in less than 3 h such a long-length, nonlinear-optics-
waveguide or switch-design problem and include highly
detailed information about the local structures in the
waveguide or the switch. Simply, the more processors one
has, the less time such a problem would take. The fully
three-dimensional nonlinear-optics science and engineer-
ing design problems of interest will, more than likely, re-
quire such a massively parallel computing environment for
their successful completion.

Nonetheless, the nonlinear FDTD modeling approach
presented here appears to be cost effective for a variety of
problems of interest. We shall be able to couple the
nonlinear algorithm with existing preprocessing and post-
processing capabilities to produce essentially a two-
dimensional nonlinear-optics device design code. We
shall apply this simulator to modeling the all-optical
switching devices, nonlinear waveguides, and nonlinear
directional couplers. This research could lead, for
instance, to a definitive answer to severzl outstanding
problems, including the engineering potential of a linear—
nonlinear interface switch.
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