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We introduce a body-of-revolution finite-difference time-domain simulation capability that can be applied
to rotationally symmetric linear-optics problems. This simulator allows us to reduce a computationally in-
tractable, three-dimensional problem to a numerically solvable two-dimensional one. It is used to model
the propagation of a pulsed Gaussian beam through a thin dielectric lens and the focusing of the resulting
pulsed beam. Analytic results for such a lens-focused, pulsed Gaussian beam are also derived. It is shown
that, for the same input energy, one can design ultrawide-bandwidth driving signals to achieve a significantly
larger intensity enhancement than is possible with equivalent many-cycle, monochromatic signals. Several
specially engineered (designer) pulses are introduced that illustrate how one can achieve these intensity
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enhancements. The simulation results confirm that intensity enhancements can be realized with properly

designed ultrawide-bandwidth pulses.

1. INTRODUCTION

Pulses that are shorter than 10 fs in duration and that
contain only 4 cycles can now be generated. If one con-
siders a 1.0-mdJ, 10-fs pulse focused to a 1.0-um spot,
the resulting intensity at the focus is approximately 3 X
10® W/cm2. This is just below the threshold of the
domain (102 to 102! W/cm?) in which many researchers
believe new physical effects in laser—matter interaction
will occur. These effects include nonlinear (multiphoton)
Compton scattering and the generation of large amplitude
waves to accelerate particles. If there were a means to
achieve more-intense foci with current systems, this realm
could be reached more quickly.

With the development of these short-pulse, very in-
tense laser systems, issues pertaining to the focusing of
the resulting pulsed beams through a lens become im-
portant. In particular, one needs to know how the vari-
ous lens magnification and waist formulas, which are
derived for monochromatic signals, are modified when
ultrawide-bandwidth (UWB) pulses are used. Any en-
hancements or degradations in the performance of a
focused laser beam will significantly affect the use of
these systems for laser—matter-interaction studies or
device applications.

Since the size of the structures is of the order of
a wavelength and the time duration of the pulses is
extremely short, standard scalar, parabolic approximation
models may not be adequate to simulate the optical fo-
cusing physics. More-accurate calculations are feasible,
and possible approaches include the finite-difference time-
domain (FDTD) solution of Maxwell’s equations. As has
been shown recently with nonlinear-FDTD simulations of
self-focusing in nonlinear materials,! the full-wave vector
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approach leads to a more thorough understanding of
pulsed-beam propagation in complex environments.

The FDTD approach is used in this paper to simu-
late the focusing of ultrashort, pulsed beams with a thin
dielectric lens. The numerical results are compared with
approximate analytical models. Both approaches estab-
lish that the rise time of a pulse plays a crucial role
in the focusing process. Intensity enhancements over
the continuous-wave (cw) results in the UWB case are
demonstrated.

The organization of this paper is as follows. In
Section 2 the FDTD method is reviewed, and the problems
associated with applying a full three-dimensional (3D)
formulation to an optical device such as a lens are
discussed. We show that at present a full 3D formulation
is at the limit of the realistic capacities of modern
computers, even powerful massively parallel processors.
As a result a FDTD formulation that exploits the
rotational symmetry frequently present in both the
lenses and the beams is presented in Section 3. We
use this body-of-revolution (BOR) FDTD formulation in
our research to reduce the problem space effectively to
two dimensions, but we emphasize that the solution
is three dimensional (we factor out the rotational
variation analytically), and the code solves for all six field
components governed by the full-wave vector Maxwell’s
equations. In Section 4 an analytical approach is
presented that predicts the lens magnification and the
waist size for pulses with ultrabroadband frequency
content. The results that are generated with the
BOR-FDTD simulator and that model the interaction
of pulsed Gaussian beams with thin dielectric lenses
are presented in Section 5. Simulation results are
given for both UWB pulses and multicycle pulses,

©1994 Optical Society of America



1472 J. Opt. Soc. Am. A/Vol. 11, No. 4/April 1994

with the latter approximating monochromatic sources.
These numerical results are then compared with the
analytical predictions developed in Section 4. Finally
some conclusions are drawn in Section 6.

2. FINITE-DIFFERENCE
TIME-DOMAIN METHOD

The FDTD method is now widely used in computational
electromagnetics and was first introduced by Yee? almost
three decades ago. The method discretizes Maxwell’s
equations with a second-order central-differencing
scheme, with the electric and the magnetic fields being
interleaved in time and space on staggered grids.
The electric- and the magnetic-field components are
successively updated by repeated implementation of the
finite-difference equivalents of the curl equations; this
process is widely known as leapfrog time marching.
The scheme is an explicit scheme; no matrix inversion
is required. Yee’s initial research was directed at
electromagnetically small problems with closed bound-
aries, but great strides were made in the subsequent
decades. These developments included absorbing bound-
ary conditions (ABC’s) to simulate open boundaries,
incident waves of arbitrary time duration and spatial
variation, and the availability of very fast and capable
computers with very large memory capacities. By the
end of the 1980’s, the FDTD approach had been applied
to a number of large and complex problems. Two recent
references on the subject are Chew’s textbook,® which
presents a very readable introduction to the method,
and Taflove’s research monograph,* which provides an
overview of more complex applications.

The basic FDTD equations for the Cartesian coordinate
system may be found in a number of references, including
Refs. 3—5, and are not presented here. Suffice it to say
that the density of the numerical sampling determines
the accuracy of the method and that it has been widely
accepted that a minimum of 10 samples/wavelength are
required for adequate representation of the field am-
plitude and the phase. This heuristic, widely used in
the computational electromagnetic community, was estab-
lished when problems spanned only a few wavelengths.
Cangellaris and Lee have recently shown it to be valid
only for electromagnetically small structures®; as the elec-
tromagnetic size of the structure increases, so does the
required number of samples per wavelength. This rule
of thumb is required for containment of the grid disper-
sion errors.

To model a volume of size L8, a standard FDTD simula-
tor requires (L/AL)? sample points, and we note that AL
may be weakly problem-size dependent.! The number
of computations for each time step is ®(L/AL)?. The
time marching is generally repeated for a time that is
usually related to the dimensions of the box; thus the
run time of a 3D FDTD code is generally O (L/AL)*.
The constant associated with this estimate is approx-
imately 50. Hence the run time grows as the fourth
power of the problem dimension, and, since the sam-
pling density must increase for large problems, as was
discussed in the previous paragraph, the true rate of
growth is slightly faster than this. For rapid execution
it is essential that the complete discretized space be
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held in core memory; the memory requirement grows as
O(L/ALY.

These estimates can be specified for linear-optics prob-
lems. Typical optical devices that might be encountered
in fiber-optic systems have dimensions of several microm-
eters on a side, and typical sources in the near infrared
have wavelengths of the order of 1 um. This translates
into a requirement of approximately a 100-nm maximum
sample spacing. This means that the problem size will
involve many millions of sample points, and the numerical
complexity can easily approach a trillion (10'2) floating-
point operations.

We have developed a FDTD 3D code in FORTRAN 90
for the Connection Machine Model CM-2. The largest
problem that we have run used approximately one third
of a million sample points to discretize a volume of ap-
proximately 20,000A3 at A/10 sampling and two planes of
symmetry to reduce the problem to 500043, The prob-
lem was a Gaussian beam propagating in free space,
similar to the case presented in Ref. 7, Sec. 5. Solving
this problem took approximately one half-hour on a 8192
processor CM-2 (one eighth of a full CM-2). Typical
average sustained processor speed overall was approxi-
mately 50 megaFlops per second (Mflops/s) (after some
optimization), slightly less than 3% of the claimed peak’
throughput of the system; for the finite-differencing op-
erations approximately 5% of the peak was achieved.
It is interesting to compare this with previous research
by Davidson, who used transputer arrays for boundary-
element frequency-domain calculations, in which efficien-
cies of 70—-80% were obtained®®; however, efficiency as
used in Refs. 8 and 9 is not the same measurement as
percentage of claimed peak throughput given here for
the CM-2; the transputer arrays ran at approximately
25% of their claimed peak throughput. The performance
degradation in the case of the transputers was due to
the peak rate’s being based on the program and the
data’s being stored entirely on the fast on-chip 4-kbyte
random access memory. This scheme is not possible
with any finite-difference or finite-element scheme with
a nontrivial grid size.

Whereas moderately satisfactory results were obtained
in this 5000A3 case, increasing the sample density by
only 2 exceeds the capacity of the computer. Thus even
simple convergence tests cannot be performed. Nonlin-
ear materials frequently require much higher sampling
densities.! Hence we conclude that, given the current
state of available massively parallel processors, modeling
a realistic optical device in three dimensions is on the
borderline of practicality: this may well change once
new massively parallel processors such as the recently
released CM-5 become available for modeling research.

3. BODY-OF-REVOLUTION
FINITE-DIFFERENCE TIME-DOMAIN
METHOD

A. Basic Formulation

Rotational symmetry has been widely exploited in
frequency-domain boundary and volume element meth-
ods, which are normally called the method of moments
in computational electromagnetics. Although this con-
notation was used by Harrington!® for solving integral
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equations, the term is sufficiently general to cover almost
all the discrete methods. The BOR formulation assumes
that the structure has rotational symmetry and expands
the azimuthal dependence of the fields as a Fourier
series. Each azimuthal mode in the series is orthogonal.
For general excitations a large number of modes may
be required, which can decrease the computational
attractiveness of the approach. For the problems
considered in this paper, which represent a significant
class of actual optical-device—beam interactions, only
one mode is necessary. This makes the computational
and the memory requirements of the BOR-FDTD code
essentially two dimensional.

The following development is based on Merewether and
Fisher’s paper.” This is one of the earliest and most
thorough treatments of the BOR-FDTD approach. Very
few references that use this approach with applications
to scattering problems are available in the literature;
however, it has been used recently with much success
by the beam-physics community to study guided waves
in accelerator cells, e.g., the azimuthal mode simulator
(AMOS) code developed by DeFord at the Lawrence Liver-
more National Laboratory. Since many of these sources
may not be readily accessible to everyone, the BOR-FDTD
formulation is given explicitly below and in Appendix A.

We assume that the axis of rotational symmetry is
the z axis. We assume an incident plane wave with the
propagation vector k pointed toward the origin in the
x—z plane (this can always be arranged given rotational
symmetry) with the electric-field vector

o (e L) (1)
For this geometry
% = sin(8)% — cos()2, )

% = sin(9) cos(¢)p — sin(f) sin(¢)d — cos(8)2, (3)

—5 % k= cos() cos(¢)p — cos(8) sin(p)d + sin(9)2, (4)
R=pp + 22, 5)
E-R=p sin(g)cos(¢) — z cos(f). (6)

Hence E,™, E,™ are even functions of ¢ and can be
expressed in a Fourier cosine series. A similar expansion
of the incident magnetic fields shows that Hy™® is also
even. (A similar result may be derived for an impressed
current source of the form J = J,{t — [(¢ - R)/c]A}; in this
case J, and J, are even.) The total fields (the sum of
the incident and the scattered fields) will preserve this
angular dependence; hence these field components can be
expanded in terms of a Fourier cosine series. The E,
expansion is

E,(r,2, 6,0 = Eyolr,2,8) + 3. Epa(r,2,)cos(kg), (D)
k=1
1 27
Bpo(r,2,0) = 5 [ Eyr,2,0,040, ®)

27
Bz == [ B0z, 00800)8.  ©
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Similarly, E, (and J4), H,, and H, are odd and can be
expanded in a Fourier sine series. The E4 expansion is

Eo(r 2, ,8) = Bgolr,2,8) + 3. Egu(r, 2, D)sin(kg), (10)
k=1

27

Estr,zf) == [ By(r,2,6,0sin(kg)dd. (D)

The BOR-FDTD formulation proceeds with the writing
of Maxwell’s equations for each mode; the partial de-
rivative in ¢ is performed analytically, and the other
partial derivatives are approximated with the conven-
tional central-differencing approach of the Yee scheme.
The FDTD equations in rectangular coordinates are
widely available, and the formulas for the BOR case
are tabulated in Merewether and Fisher’s paper (Ref. 5,
Fig. 10, p. 33). Unfortunately this reference contains
some minor typographical errors. We thus rederive and
tabulate for completeness the discretized equations and
the boundary conditions in Appendix A.

For the problems considered in this paper, the incident
wave is propagating along the z axis with the form

Einc = f(x’y)E[t - (Z/C)];f.', (12)

where f(x,y) is some rotationally symmetric weighting
function. Written in the cylindrical coordinate system,
the incident field is

E = f(p)E[t — (z/c)][cos(#)p — sin(¢)d].  (13)

For this case only the fields associated with the £ =1
mode are nonzero. This reduces the problem to a two-
dimensional one. (Were higher-order modes present, a
separate BOR-FDTD problem would have to be solved for
each mode.)

The time-step size cannot be made arbitrarily large
since the time marching can then become unstable. The
upper limit on the temporal-step size is the well-known
Courant—Friedrichs—Levy stability criterion.? In addi-
tion to the reduction of the problem computationally to
two dimensions, the BOR-FDTD scheme has a further
advantage in that the appropriate stability criterion for
low azimuthal-mode numbers is near the two-dimensional
one (Ref. 5, p. 32), Atap < A/(Umaxv2), Where vmay is
the maximum wave speed in the simulation space. In
particular, if m is the azimuthal-mode number, the BOR-
FDTD stability criterion is

At =

1 [ 1 [(m+1)?*+28 1 }‘1’2.
{Ap2 4 * iz (14)

vmax

If the spatial discretizations Ap = Az = A and m = 1,
relation (14) becomes At = A/(Unaxv2.7) = 0.86At2p. In
contrast, in the 3D case, the result is Atzp < A/(Umaxv3),
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which would require more time steps to be executed for
any given time period.

B. Source

Several approaches were tried for the simulation of a
spatially Gaussian weighted pulse with various time his-
tories. Initially a (1 — £2)* time history was used, in
combination with a method that essentially imposes a
perfect magnetic conductor on the tangential magnetic-
field nodes (shorting the fields) and excites the tangential
electric-field nodes on the planes on either side of the
perfect-magnetic-conductor location; this launches both
+z and -z traveling waves. Gaussian spatial weighting
[of the form exp(—p?/wf), where wy is the 1/e amplitude
waist] was then simply enforced at the source points.
Testing this method in free space showed that it did in-
deed generate the expected propagating Gaussian waves
but that it also generated a static component in the
region of the source, static in both space and time, as
a more thorough investigation of the fields in the source
region in the late-time part of the problem showed. We
believe this to be caused by the nonphysical source model
used.

Subsequent research (and all the results given in this
paper) used a scattered field—total-field formulation, de-
scribed in Ref. 11, combined with the first derivative of
1 - 24, ie, ~8¢(1 — #2)2. This waveform was chosen
for its zero dc average, smooth turnon and turnoff (both
the waveform and its first derivative are zero), and rapid
zero crossing behavior. A plane of constant z was se-
lected; the fields on and beyond this plane were total
fields, and the fields before this plane were scattered
fields. [The specific choice made was the plane j contain-
ing only tangential H nodes, i.e., 2 = (jsarror — 1/2)Az,
with the indexing scheme being as defined in Appendix
Al The FDTD time-marching equations may be used
for either the total or the scattered fields; at an interface
such as that used here, a simple procedure can be used
to ensure consistency of the fields. To update the (total)
fields on the interface plane, we require the total fields
just before this plane, but only the scattered fields are
stored in the computer. We temporarily recover the total
field by adding the (known) incident field (with the time
history and the Gaussian spatial distribution discussed
above) for this update. Similarly, the update for the
scattered-field nodes just before this plane requires the
scattered fields on the plane; these are recovered by sub-
traction of the known incident field (suitably retarded in
time to be consistent with the discussion given above).

Such modifications to the algorithms are required
only for those nodes either on or just before the selected
source plane. However, in preparation for a parallel
version of the code, the slightly different implementation
given below was used. This algorithm uses a modifier
array set equal to the desired incident field at the plane
z = (j — 1)Az for the tangential E-field modifiers and
zero elsewhere; a similar treatment for the tangential
H-field modifiers is used, except with the time value
being retarded slightly. Note that the incident field
is agsumed to be entirely transversely polarized; hence
no modifiers need be applied to the longitudinal (in this
paper, z directed) field components. These equations
use the indexing scheme defined in Appendix A:
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.. .. At
Hy "0, j) = HaG, j) ~ "
Ei(i,j + 1) — [E"(, ) + E,,k"’(i,j)]}
20(j + 1) — zo())
L At [ Ey"(i+1,)) - Ezkna,j)],
n poli + 1) — po(d)

X

(15)

B-E""Ni,j)= A-E"(,j) + %sz"ﬂ(i,j + 1)
[Hgr™ 16, J + 1) = Hyp" V' (G, j + 1] = Hyp™1(3, J)
X . -
2(j+1)-=2())
— Jok, (16)

with the modifier arrays being defined as

_ .2 2 e s
Epkn/(i,j) - {)(:(t)eXP( pewe?) if j Jscat/tot s (17

otherwise

H¢kn+1,(i,j) — @ — ty)exp(—p?/wo®) if Jj= .{‘scat/tot .
0 otherwise
(18)

Mathematically, this implementation is identical to that
described in the previous paragraph (since the modifier
arrays are only nonzero on or just below the scattered-
field—total-field interface), but this operation is much
easier to parallelize in a language such as FORTRAN 90:
the branching is now established implicitly by the data
instead of explicitly by the code. On a serial machine
this would not be an efficient way of coding the algorithm,
since a large number of additions and subtractions involv-
ing zero are required, but on a parallel system, especially
a single-instruction, multiple-data (SIMD) system such as
the CM-2, the processors not on the scattered-field—total-
field boundary would in any case have to wait for the spe-
cial treatment of the scattered-field—total-field nodes by
the processors assigned to these nodes; hence there is no
time penalty in the parallel code for these additional (su-
perfluous) operations. This is an example of the change
of mind-set that the new parallel languages are bringing
to computational science and engineering (Ref. 12, p. 15).
The time retardation ¢, in Eq. (18) must be carefully
considered because of the spatial and the temporal offsets
between the E and the H fields in the Yee scheme. The
modified E fields that are required must be evaluated at
time ¢x(n) = (n — 1/2)At, whereas the modified H fields
must be evaluated at time ¢5(n + 1) = nAt; it appears
that the time at which the modified H fields are computed
should thus be advanced by Az/2. However, for the wave
to be modeled in a consistent fashion, the Az/2 spatial
offset of the nodes imposes a Az/(2c) time retardation
on the H fields for a +2 propagating wave (c is the speed
of light). Noting the Courant criterion, relation (14),
and using the given m = 1 form for the uniform spa-
tial discretization of At < A/(Umax+/2.7) or, explicitly, At =
£0/(VmaxV/2), where £ < 0.86, we find that the desired
retardation is
= 5o - VD). (19)
Note that, in the limit as £ — 0 (i.e., the time step and
hence the time offset between the E and the H fields
becomes negligible), the retardation tends to Az/(2c),
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which is simply the time difference caused by the spatial
offset. (Of course, if Az is now also permitted to approach
zero, then the retardation tends to zero.)

C. Boundary Conditions
ABC’s that permit the simulation of unbounded free space
by a bounded computational space have been the topic of
active research for well over a decade®*; the challenge
is to derive an ABC that will absorb energy over a wide
range of incident angles. For the problems investigated
in this paper the problem domain must be large enough to
contain the Gaussian beam properly, so the difficult prob-
lem of developing ABC’s that are valid at near-grazing
incidence on the side (p = pmax) boundaries was circum-
vented. At the two constant z boundaries (z = 0 and
2 = Zmax) simple first-order ABC’s were used.? We show
the derivation of the one-dimensional ABC at the bottom
wall (z = 0); the discussion parallels that given in Ref. 3.
An ABC that simulates the incidence of a normally
incident plane wave on a perfectly absorbing surface is
required. The following (advective) equation has a wave
solution f(z + ct) traveling only in the —z direction:

i) 190
[5 - ?5]¢(Z,t)=0- (20)

Hence imposing this condition on a wave normally in-
cident on the plane surface results in the wave'’s being
absorbed. Thus a suitable ABC is

] 19
g(ﬁ(zy t)IZ=0 = ?Eq’(z, t)|z=0- (21)

Using forward differencing in space and time, we may
approximate this equation as

A
1" — bt = C—Azt'(fbon+1 = $o"), (22)

where ¢ ;" is the nth time sample of the field ¢ sampled at
the jth spatial sample. This equation may be rewritten
to give the desired expression:

cAt cAt
st = (1= )+ o =

In the context of this paper ¢ will be E, and E,; the ABC
must be applied to both tangential components. For the
2z = Zmax boundary we may derive a similar expression
by using the advective equation for a positively traveling
wave and backward differencing in space; the result is

cAt

cAt
Pruax+1™ = ¢kmx+1"(1 - A_z) t Az Phmax > (24)

where kmax is the number of samples in the z direction.

These ABC’s are accurate to first order since either
forward- or backward-differencing schemes are used.
(The Yee algorithm, which uses central differencing, is
a second-order scheme.) It is possible to derive second-
order schemes for the ABC’s; an example is given in
Ref. 3, Sec. 4.7.1. Only the first-order ABC’s given above
were used for the research reported here, since the fields
are almost normally incident upon the z = 0 and the
Z = Zmax boundaries, and the minimal reflection from
these boundaries did not give rise to any corruption of
the results. For all the numerical results shown below,
the boundary reflections were smaller than the maximum
values by at least 23.5 dB in amplitude.
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4, PULSED GAUSSIAN BEAM FIELDS

A. Overview of Pulsed Gaussian Beam Behavior
Consider a thin circular aperture lens of radius ¢ and
focal length f in the plane z = 0. We assume that this
aperture is driven everywhere with the Gaussian spatially
tapered, arbitrary-time-signal, pulsed beam:

G(p, $,2,t) = Ey exp(—p*/we®)F(t), (25)

where the Fourier transform F(w) is related to the time
signal F(¢) through the Fourier-transform expressions

F(w) = f F®exp(+iwt)dt, (26)
F@)= L f F(w)exp(—iot)de . 27
27T —
The Fourier transform of the aperture field is thus simply
G(p, ¢,2,0) = Eq exp(—p*/wo®)F(w). (28)

The field is then assumed to propagate from the initial
aperture into the half-space z > 0, which is taken to be a
dispersionless, lossless, linear medium.

As demonstrated by Ziolkowski,’® UWB pulsed beams
have propagation properties analogous to monochromatic
¢w beams. Quantitative bounds on the performance
characteristics of UWB pulsed beams associated with
multiple-derivative transmitter—receiver array systems
have been derived.”!®* These bounds require the intro-
duction of a set of effective frequencies that characterize
by a single frequency value all the broad-bandwidth
components contained in all the signals involved in the
radiation and measurement processes. For the analysis
below, only the basic radiated field behavior of a UWB
pulsed beam is required.

If A is the initial aperture whose area is A, the effective
frequency g of a UWB radiated field is given by the
expression

j as [ dtlaGr, 5ot
2def Ja -
f ds f atlG (e, O
A -

Wrad =
f a5 [ dww?lGr, o)
=14 == . (29)

f ds [ dolG(r, o)l
A —c0

This effective frequency w;.q accounts for the spectral
energies launched into the medium in our model, par-
ticularly those reaching the far field. For the separable
driving signals given in Eq. (25), the effective frequency
wreq Teduces simply to the expression

dt|aF (¢)/atl? dow?|F(w)?

f TWFOR f " dolF (o)

(30)

2
Wrad” =

Using the arguments introduced by Ziolkowski et al.'

and assuming that the observation point is sufficiently
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far from the aperture that for any forward-propagating
components (0G/dz) ~ —[0G/a(ct)], we find that a very
good approximation of the field generated by driving a
circular aperture A of radius a in the plane z = 0 with
the pulsed beam G(r,?) is
_ | o9G (', y',2' =0,t) i’
o= [os[ 20G5200] |
(31)
where R is the distance between a source point and the
observation point. The input energy F™ along the axis is

- ] " aHG(p = 0,6,2 = 0,8)F, (32)

and the energy radiated along the propagation axis is
measured as

Fraa() = [ dtlg(p = 0, $,2, 6. 33)

The energy efficiency of the aperture-lens system can then
be defined as the ratio of the energy radiated along the
propagation axis to the energy input along the axis. As
shown by Ziolkowski and Judkins’ for the case of a pulsed
Gaussian beam, if

Lg = 7Tw02/Arad (34)

is the Rayleigh distance of the Gaussian beam, the energy
efficiency can be obtained from Eq. (31) and satisfies the

bound R
Ema®2) _ ( L—G) : (35)

finG z
This result is a refinement on the more general UWB
pulsed-beam bound!® that incorporates the effective area
of the Gaussian amplitude taper: ww(2. Moreover, the
waist of the pulsed Gaussian beam can also be described.
Let the waist be defined as the transverse width of the
energy profile at which it has decreased to 1/e? of its
maximum value. As shown by Ziolkowski and Judkins,”
the energy waist of the pulsed Gaussian beam at z is given
approximately as

wenrg(z) ~ 0enrgGZ ~ (36)
TWo
where the beam divergence is explicitly
A
Oonrg® ~ 22 (37)

TWo

Thus the beam divergence is governed by the effective
wavelength and the waist of the initial Gaussian taper.

Also note that the intensity and the energy profiles
of a beam behave differently in the general UWB case.
They are controlled by different, but related, properties of
the spectra of the input field. In general the maximum-
intensity (in time) beam width 6,6 will be narrower than
the energy beam width 8., i.e.,

eintG = genrgG ’ (38)

because the maximum intensity in time represents an
instantaneous rather than an average property of the
beam. The equality occurs for any cw case. The result-
ing narrower-intensity profiles of an UWB system will
have significant implications for the focal region of a lens-
directed, pulse-driven beam, as is discussed below.

These basic properties of a pulsed beam propagating
in free space are used below to guide the analysis of the
lens-directed pulsed beam.
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B. Pulsed-Beam Behavior in the Focal Region of a Lens
If a thin lens is introduced in the initial aperture, one can
represent the effects of the lens by introducing into the
frequency-domain version of Eq. (31) the transfer function

2
Tlens(P: ¢7z) C()) = exp(_L —é—p?:) (39)

One then obtains

glr,t) = —f dwf dS’ Tiens(r, w)( 21(9)

exp[—iw(t — R/c)]
47R

Thus, if the driving function is the pulsed beam given

by Eg. (25), then one can represent the lens-directed

pulsed-beam field in the region z > 0 simply by using the

Fourier-transform domain expression, relation (40), and

the Fourier-transform derivative property to obtain

© 27
e~ 5= [ dof(o) [Tag

X G(r,o) (40)

x f " dp'p" expl—i(w/c)(p'/20)]
0

X L{E <_20iw)exp(—p’2/woz)

47R
X exp[—iw(t — R/c)]}

~ 25 | L0k @)

27
x [0 d¢’ [o dp'p’ expl-i(w/c)(p/2f)]
exp[—iw(t — R/c)]}.

X leXp(—p’z/ wo?)

47R
(41)
Since for z >> p, z >> p’ the distance term
R=[p®+p'? = 2pp cos(¢p — ¢') + 2]
~z+¥—p—p’ cos(¢ — ¢'), (42)

one has approximately, with the standard integral repre-
sentation of the zeroth-order Bessel function,

Y at,/ doF(w)exp[—iw(t — z/c)]
X exp[+i(w/c)(p?/22)]
X fo dp’p'exp[—i(w/c)(p'?/2f)]

X exp[+i(w/c)(p'%/22)]exp(—p'?/wo?)

glr,t) =

27
X % do’ exp[+i(w/c)(pp'/z)cos(¢ — B")]
- 27TCZ at[ dwF(w)exp[—io(t ~ 2/c)]

X exp[+i(w/c)(p?/22)]
X / dp'p’ exp(—p'%/w?)
0

<ol A2 5 el 220)

(43)
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This expression represents the field behavior both on and
near the axis of the lens.

We calculate the on-axis behavior of the lens-directed
pulsed beam from Eq. (43) by setting p = 0. This gives

27TCZ ot [ da)F(w)

X expl—iw(t — z/c)]

x [ dp'p’ expl~(A/we®)p'?]
0

= EULZi d_w F(w)
%9¢cz ot

X exp[—iw(t - z/c)]

1 — exp[—(a/wo)*Al
X A

_gle 1 8 [Tdo
= Eo 2 Wrag 0t J—» 271'F(w)
X exp[—iw(t — z/c)]

1 - exp[—(a/w)?A]

glp=0,¢,2,t) =

X

(44)

where the term

A_l_lwwo (l___l.)=1_i_w_.LG(l_l)
2¢ z f Wrad
45)

has been introduced. The presence of the time derivative
indicates that pulses with larger rise times will generate
larger fields in the focal regions.

Although Eq. (44) cannot be evaluated analytically for
arbitrary spectra, one could obtain numerical results sim-
ply by using a fast-Fourier-transform (FFT) routine. In
particular, one could investigate in this manner the focal
shift (displacement of the focus from z = f toward the
lens) as a function of the bandwidth, the rise time, etc.
of the driving-time signal F(¢). On the other hand, it is
possible to obtain an approximate expression that reveals
some of the related behavior before the focal plane is
reached. Near the focal plane the imaginary term in A
should contribute mainly to the phase. We can approxi-
mate the integrand, evaluate the integrals, and use a
Taylor expansion to obtain

- Le 1 0 (“do
g(P—0,¢,Z,t) EO 2 Wrag 9 J o o F(w)

X exp[—iw(t — z/c)]
X {1 — exp[—(a/wo)?]A}

% i F(t - z/c)

+ Ey LGzLR(% - %)eXp[_(a/wO)Z]
1

X 2at2F(t—Z/c) “o

where Lp = A/Aq is the Rayleigh distance of the
aperture when it is driven with a uniform transverse
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amplitude distribution. In the UWB case the second-
derivative terms can be quite large. Thus there may be
significant modifications of the field in the region just
before the focal plane in the UWB case. Note that when
a >> wy this additional term is negligible.

On the other hand, one can obtain an explicit analytical
expression at the focal plane where z = f, so that A = 1.
One obtains

8o = 0,6,2 = 1) ~ Bat2 ——
x f’— _: g—F(w)exp[ iw(t — F/o)]
X {1 — exp[—(a/wo)*]}
= EOL}G 1
x %F(t —f/o). A7

Thus, in general agreement with Sherman!® and Bor and
Horvéath,'® the behavior of the lens-directed pulsed beam
at the focus depends on a retarded time derivative of the
initial signal. Similarly, in analogy with known time-
harmonic results,!”!8 the behavior of a pulsed beam at the
focus of a thin lens should reflect its far-field behavior.
The appearance of the time derivative in the far-field
behavior of a pulsed beam has been established.”!* In
comparing relation (47) with relation (46), one finds that
only the first term of relation (46) remains as expected.
More explicit statements can be obtained from rela-
tion (47). Note that for driving fields that are separable
in space and time, such as in Eq. (25), many of the
UWB expressions simplify. One can introduce the focal
amplification factor F Aenre as the energy received at the
focus to the input energy. From relation (47) one obtains

def Erad (f)

Tmput

2

F Acnrg = ={1 — exp[—(a/ wo)Z]}Z(Efq) - (48)
Similarly, one can introduce a focal amplification factor
F A for the ratio of the maximum field intensity on
axis in time to its maximum initial value. Let the symbol
max; u(t) represent the operation of finding the maxi-
mum in time of the function u(¢). From relation (47) one
obtains

. def Max; Ig(p = O’ ¢,Z =fyt)|2
F Asnt max;|G(p =0,¢,2 = 0,)[2

2
~- eXP[—(a/wo)zl}z( L—G)

f
[maxt [oF(t — f/C)/3t|2]
wrad
= Yint X .'Fﬂem‘g ’ (49)

where we have introduced the intensity-enhancement (IE)
factor

[max, [aF (¢ — f/c)/8t1] _

Wrad 2 Wrad

[max, |9F (£)/8t*]
2

Ying =
(50)

The IE factor clearly indicates that one can use UWB
driving signals to achieve a larger IE than is possible
with equivalent cw signals.
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In particular, if F () represents a monochromatic signal
with @ = w4, then one finds that at the focus the cw and
the UWB energy focal amplification factors are identical:

2
fﬂenrgcw = fﬂenrgUWB -~ (_L_/fg_) 4 (51)

where the last expression is most appropriate for cases
in which wy << a and agrees with known cw results.1718
In particular, if f < Lg, one achieves an enhancement of
the energy at the focus. Relation (51) indicates that, for
the same input energy, the energy delivered (over time)
at the focus of a thin lens is approximately the same in
the cw and the UWB cases. However, the cw IE factor
Yint®Y = 1. Therefore the cw and the UWB maximum
beam intensities at the focus satisfy

F AT _ [max,|Fuws(#)/9t%]
FAcv Wrag?

=Yin:"WB.  (52)

Thus, depending on the design of the driving-time signal,
one could obtain a significant intensity enhancement in
the UWB case.

We return now to the field expression, relation (43).
The radial behavior of the lens-directed pulsed beam

in the focal plane z = f follows immediately. Using
[Ref. 19, Eq. (6.631.4)]
w _p2
f dx exp(—ax?)do(Bx) = W (Re a > 0),
0
(53)

one can evaluate the integral in relation (43) in closed
form with a remainder term that can be bounded, since
A =1 when z = f. One obtains

foa dp'p’ eXp[—(p’/wO)z]J()(%? p,)

1 {_ 1 w\? 2
-z o=-5(2) )7
- [ s’ exsl=(p' w22 4'). (50
For the cases considered below, we assume that a >
wo, which causes the exponential term in the remain-
der integral in Eq. (54) to be small. Moreover, for off-
axis points the argument of the Bessel function is
large, i.e., it is at least (w/c)(pa/f) = 2(wa?/Af)(p/a) <
2(ma®/ Araaf N(p/a) = 2(Lg/f)a/wo)*(p/a) in size for the
wavelengths of interest; this is large since f is taken to be
in the near field of the pulsed beam. The Bessel function
will then be highly oscillatory, resulting in a small value
for the integral. With this behavior, relation (43) reduces
in the focal plane to the expression

Lg 1 9 * do

g(p) ¢9 f’ t) = EO f ©rad " Z—F((I))
b exp[—zw(t - f/c = p%/2¢f)]
X exp[— w*(wop/2cf)?]
_ Lg 1 9 _ _ 2
B2 L2 ps - e - e

*, (@ exp{ —(w,adt)z[(f,—a)<zu‘-’;)]_2]) » (55)
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where *; represents a time convolution and we have used
[Ref. 19, Eq. (3.462.3)]

[_w dx exp(—iax)exp(—B%x%) = @ exp(—a?/4p2).

(56)

Notice that very near the axis where (Lg/f)(p/wo) <<
1 the term given inside the boldface parentheses in rela-
tion (55) acts as a delta function, and one obtains

= .0~ By S8 L PG - f/e - p*/2f),
(57)

which is only slightly different from the on-axis value
of relation (47). On the other hand, further off axis the
term (Lg/f)(p/wo) is not small, which means the convo-
lution term will begin to broaden the field distribution.
This means that the waist w(f) of the pulsed beam in the
focal plane must satisfy

w() = (L )wn = 0o 58)

where Gemg is as defined in relation (37). The upper
bound indicated by this relation agrees essentially with
known cw expressions,l18

gp, b,z

C. Intensity-Enhancement-Pulse Design

It is clear from Eq. (52) that IE’s between the UWB and
the cw cases can be achieved. In essence, one must
increase the ratio of the maximum radiated intensity over
time to the average radiated intensity in time (radiated
energy). The process by which this can be achieved is
illustrated with two simple analytical examples.

The first example is the piecewise-linear time signal

t/T, forO0=t=1T

1-2(¢ - Tl)/(Tz - T) forTy=t=Ty-

(¢ — T3)/(Ts — To) forTo<t=Ts
(59)

This signal increases linearly from 0 to 1 in the time T,
decreases linearly from +1 to —1 in the time Ty — 7%, and
then increases from —1 to 0 in the time T3 — T%. It has
the discontinuous time derivative

1/T, forO0=t=T

Fpi(t) =

EFPL(t) =1-2/(Te—T) forTy=t=T,- (60)
1/(Ts — Ts) for To=t=T;
Ifweset Ty =méd, To — T =6, and Ty — Ty = md, so
that T35 = (2m + 1)8, we find that
1
2 _ _3 = el
f d¢|Fpl* = B) (m + D) )5 , (61)
2 1 4 1
f dt FPL “nhn-n T T -1,
~(4+2)3 62)
m/) 8
| LI (63)
max; ot PL 32
4 1 4 1 , 64)

Y Pl =m. (65)
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Thus we can design the size of the enhancement and
achieve a specified effective radiated frequency by choos-
ing the positive-to-negative switch time . For instance,
if we choose & = 0.15 fs and the enhancement factor
YintFL = 120, the frequency wraapr? = 1.481 X 10%, so
that the effective wavelength Apaqp, = 1.549 um and the
signal record length T' = T3 = 36.15 fs.
Another example is the trapezoidal signal

t/Ty for0=¢t=T
1.0 for Ty =t=T,
Frr®)=41—-20 —To)/(T3 —T3) forTo=t=Ts-
-1.0 for Ts=t=1T,
@t - T5)/(T5 —Ty) forTy<t=<Ts
(66)
It has the discontinuous time derivative
1/T, for0=¢t=T,
s 0.0 for Ty =t="T,
T Fr@)=1-2/Te—T1) forTo=t=Ts3- (67)
0.0 forTs<t=T,
1/Ts —Ty) forTy<t=<Ts

Again, if we set T1 = nS, T2 - T1 = m8, T3 i T2 = 8, T4 -
Ts =mé, and Ts — Ty = né, so that Ts = (2m + 2n + 1)6,
we find that

f dtlFgl? = %(211 + 1)6 + 2mé

_|-
- (2m+ 2"2 1)5, 68)
fw dtl -?-F 2= S + 4 1
- at = T]_ T2 - T1 T3 - T2
- (4+ 3)1, 69)
n/é
] 4
max; |5 F’I‘Rlz = "3—2 ’ (70)
4 1
2 - el
@Wrad, TR™ = YintTR 52 ’ (71)
2m + (2n + 1)/2
. TR giv T\ o4
Yint 40 2/n
_2m+ (@n + 1)/2.
 1+1/2n (72)

Again, we can design the size of the enhancement and
achieve a specified effective radiated frequency by choos-
ing the positive-to-negative switch time 6. For instance,
if we choose 6 = 0.15 fs, m = 50, and n = 22, the frequency
0raar? = 1.484 X 1030, so that the effective wavelength
Aragr = 1.547 pum, the signal record length T = T5 =
21.75 fs, and the enhancement factor Yi;™® = 119.78.
The differences in the piecewise-linear and the trape-
zoidal pulse results are minimal. However, they indicate
how we could construct a smoother pulse for use in the
FDTD code.

Based on these examples, a more continuous pulse that
mimics their properties was constructed. The additional
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smoothness is required for prevention of extraneous noise
in the FDTD results. This IE pulse is given by the
expressions

(—(1 — 224, x=-1.0+¢t/Ty
for0=t=T
-1+21 -, x=(t—To)/(To—T1)
forTi=t=T,
x=(t ~ T3)/(Ts — T)
forTo<t<T;

(73)

Fig(t) = 1
(1 - x2)4 )

-

It has the continuous time derivative

a
2 Fig(t)

([8/T1Jx(1 — x2)2, x=-10+¢/Ty
forO=st=T,

| —[16/(Tz — TOlx(1 ~ %%, x =@ = T2)/(Te — T1) |
forTi=t=T,
—[8/(Ts — To)lx(1 — 2%, x = (¢t = T2)/(Ts — Tb)
L forTo=t=T;

(74)

If we set Ty =més, Te — Ty =8, and Ts — Te = mé,
so that Ts = (2m + 1)8, we find numerically that for
5 = 0.25 fs and m = 88 the effective frequency wraq e =
1.752 X 10%°, so that A;.g1r = 1.412 pm, the time record
length T = T3 = 44.25 fs, and the IE factor Yin'® =
131.93. Below we refer to this as the UWB1 case. Thus
we can achieve a more than 100-fold increase in the IE
factor with a properly designed UWB pulse. Similarly,
if we set 6 = 3.0 fs and m = 15, the effective frequency
Wrad 152 = 6.564 X 10%, so that Araqie = 7.357 um; the
time record length T' = T3 = 93.0 fs, and the IE factor
Yit® = 24.5. Below we refer to this as the UWB2 case.
The reason we have modeled both cases numerically is
that the former was rather challenging for the BOR-FDTD
simulator in terms of our available computer resources.

D. Cases for Numerical Comparisons

Several standard test cases and another specially
designed pulse were utilized to compare the analytical
results derived above and the numerical results. In
particular, we investigated the causal time signals

Few(t) = [1 — x(¢)*]* X sin[m(2w¢/T)]
(windowed cw), (75)
Fsc(t) = —(16/T)x(t)[1 — x(£)*]® (single cycle), (76)
Fuwes(t) = —(16/T)x(t)[1 — x(@)?F X {1 + [Bx@)I"}*
x (1+ 0250871 - x(@)PK1L + [Bx(®F})
(UWB3), (7
defined over the interval [0, T'], where the term
x@t)=1-2@/T). (78)

As with the IE pulses UWB1 and UWB2, these signals
are all characterized by being continuous and having con-
tinuity in their first two derivatives at the end points of
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Fig. 1. The lens used in the numerical simulations was double
parabolic and thin. For all the cases the lens is located at
z = 3.0 um, it is 2.25 um thick at its base, and its index
of refraction is n = 2. For the Fy = 1.0 cases the focal
length f = 18.0 um and the diameter D = 18.0 um. For the
Fy = 0.707 case f = 9.0 um and D = 12,732 um.

the time interval over which they are defined. The signal
F.y(t) represents a windowed cw signal and allows one to
study the effect of increasing the number of oscillations.
If m is the number of cycles in the interval T' and Tyqe
is the period of each cycle, then T' = mTey.. In our
investigation each cycle was chosen to be 6.0 fs long, so
that, for instance, the 10-cycle pulse was 60.0 fs in dura-
tion. This gave Apgl?¥e = 1.7956 um and Yi,,10-ovde =
0.996. The signal Fgc(¢) represents a simple, single-cycle
pulse; the pulse duration was chosen to be 6.0 fs. This
gave Al = 1,539 um and Y9 = 1.308. The
signal Fywss(¢) represents another designed signal that
produces modest enhancements in the IE factor, but it
has more structure in its time history and hence presents
another challenging case for the BOR-FDTD simulator.
The parameters a = 0.08 and 8 = 100.0 with a pulse
duration of T = 100.0 fs were used. This gave A;aq"We3 =
2.714 um and Y, "WB3 = 9.87.
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5. RESULTS

The lens used in the numerical simulations was double
parabolic and thin. For all the cases the lens was located
at z = 3.0 um, its thickness at its base was d = 2.25 um,
and its index of refraction was n = 2. The source plane
was located at z = 1.0 um. Two Fy cases were run, with
each having the waist (transverse width, where the 1/e
value of the amplitude occurs) of the initial pulsed beam
set equal to 6.0 um. The first case, referred to as the
Fy4 = 0.707 case, has the lens radius a¢ = 6.366 uwm, which
is only slightly larger than the waist. The initial pulsed
beam thus extends beyond the edge of the lens and will
create a strong edge-diffracted pulsed beam. The focal
length f = 9.0 um in this case is obtained with the lens
equation

a?

f=sdn=1

The focal region is thus expected to be centered around
2 =12.0 pum. The second case, referred to as the Fy =
1.0 case, has the lens radius ¢ = 9.0 pm, which is consid-
erably larger than the initial waist. The initial pulsed
beam thus interacts very weakly with the edge of the lens
and will create a negligible edge-diffracted pulsed beam.
The focal length is f = 18.0 um, and the focal region is
thus expected to be centered around z = 21.0 um. The
basic lens configuration for the Fy = 0.707 case is shown
in Fig. 1.

The lens-focused pulsed beams that we generated by
driving the aperture with the various time histories
discussed in Subsections 4.C and 4.D were studied
numerically with the BOR-FDTD simulator. The typical
problem involved 300 X 600 grid cells with Az = Ar =
0.05 um. We ran the code for 1200 time steps at 97%
of the Courant limit by setting Az = 0.0978 fs. The
total simulation considered a 15 um X 30 um region
in free space and a total time duration of =118 fs.
The average run took 30 min on a CONVEX C-240
computer in a typical multiuser environment. Some
runs required a slightly longer run time (such as
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Fig. 2. Contour plot of the E,-field distribution at the time step n = 150 for the 1-cycle, Fs = 0.707 case. The pulsed beam is mainly
interacting with the lens at this time. Some energy has already been reflected from the front face of the lens. The relative sizes

of the beam waist and the lens radius are apparent.
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Fig. 3. Contour plot of the E,-field distribution at the time step n = 300 for the 1-cycle, Fy = 0.707 case. The pulsed beam has
passed through the lens and is now focusing. The change in curvature of the wave fronts caused by the interaction of the pulsed

beam with the lens is apparent.
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Fig. 4. Contour plot of the E,-field distribution at the time step n = 450 for the 1-cycle, Fy = 0.707 case. The pulsed beam is at the

focus.

the 10-cycle case, for which 1500 time steps were
needed). Certain of the UWB pulses were run at higher
discretizations, noted in Tables 1 and 2 below: the
0.0125-um case used a 1200 X 2400 grid, with 5100
time steps, and required almost 2 1/2 days of clock
time to run. The actual CPU time was 958 min at
a rate of approximately 18 Mflops/s. Note that the
CM-2 runs discussed above ran at an average throughput
of approximately 50 Mflops/s.

The BOR-FDTD simulator results include all the field-
component time histories at all the points in the mesh.
This allows one to observe the time evolution of the pulsed
kbeam as it propagates through the lens and into the fo-
cal region. Using the Fy = 0.707 case as an example, we
illustrate in Figs. 2—5 the behavior of the lens-focused
pulsed beam with contour plots of the intensity corre-
sponding to the transverse field component E, at different

The decrease in the beam waist and the time derivative of the field are immediately apparent.

times in the simulation. The initial time history is the
single-cycle signal defined by Eq. (76). There are 15 con-
tour levels between the highest and the lowest value of
the intensity [E, |2 in each plot. The lens is situated near
the source plane, so that the pulsed beam propagates es-
sentially distortion free until it interacts with the lens.
Figure 2 shows the field distribution at the n = 150 time
step when the initial field is strongly interacting with the
lens. This figure also includes part of the wave that is re-
flected from the front face of the lens. It illustrates how
well the ABC works on the left boundary; the fields re-
flected back into the simulation space from that boundary
are at least 23.5 dB smaller than the peak values. The
presence of both fields is possible since the field in the lens
is propagating at half the speed at which it would propa-
gate in free space. The creation of an edge-diffracted
wave field is also apparent as the portion of the pulsed
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Fig. 5. Contour plot of the E,-field distribution at the time step n = 900 for the 1-cycle, F» = 0.707 case. The pulsed beam is well
beyond the focus. The increase in the beam waist, the change in the wave-front curvature, and the leading wave front caused by

the edge of the lens are readily identifiable.
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Fig. 6. Signal along the propagation axis at the focus should be nearly the time derivative of the original source signal. The FDTD
numerically generated signal at the focus is compared with the time derivative of the source signal. Solid curve, time derivative

of the source signal; dashed curve, FDTD-computed pulse.

beam in free space speeds past the lens. Figure 3 shows
the transverse electric-field intensity distribution as the
pulsed beam has propagated beyond the lens. This is
taken at the time step n = 300. Note the curvature of
the wave fronts induced by the lens toward the focal
region. The focus is reached at the time step n = 450.
The intensity distribution in this focus region is shown
in Fig. 4. The expected time-derivative behavior of the
field and the decrease in the waist size are apparent.
After it has reached the focus the pulsed beam begins
to expand once more. This is illustrated in Fig. 5, where
the intensity distribution is given for the time step n =
900. The beam is well beyond the focus. Note that the

curvature is appropriate for a field expanding away from
a focal region. Also note that there is a field distribution
that has appeared on the leading edge of the pulsed
beam. This is the edge-diffracted field reported by Bor
and Horvath.!® It is essentially a Bessel beam arising
from the field distribution in the immediate vicinity of
the edge of the lens. Since it is always traveling in free
space, this beam propagates slightly ahead of the main
beam, which interacted with the center of the dielec-
tric lens.

The analytical results given in Subsection 4.B indicate
that the pulsed beam should have a time-derivative be-
havior in the focal region. To illustrate that the BOR-
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FDTD simulator recovers this behavior, in Fig. 6 we com-
pare the time signal along the propagation axis at the
focus generated by the 1-cycle pulsed beam with the time
derivative of that source signal [Eq. (76)]. The FFT’s of
these signals are shown in Fig. 7. Only a slight distor-
tion of the signal from the time-derivative behavior is re-
alized. This distortion occurs because the numerical dis-
cretization results do not capture all the higher-frequency
components in the continuous pulse, as evidenced by the
FFT spectra. Higher-resolution grids can mitigate these
numerical dispersion effects.

Another plot type was developed to permit us to visu-
alize the focusing effects. An example of this fingerprint
plot is shown in Fig. 8. The intensity in the simulation

1
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space is contour plotted as a function of the distance along
the axis of propagation and of the time. This results in a
spectrogramlike plot of the intensity distribution during
the simulation. A horizontal slice yields the intensity
as a function of the distance from the aperture for a
fixed value of £. A vertical slice yields the intensity as
a function of the time ¢ for a fixed distance from the
aperture. The location of the focus and the evolution of
the derivative behavior of the field are clearly apparent
with this visualization approach.

Consider now the designed UWB1 IE pulse introduced
in Subsection 4.C. This time signal is compared in Fig. 9
with the 1- and the 10-cycle pulses defined in Sub-
section 4.D. The 1-cycle pulse has a time record length

S e o o
fe U - - B V- )

Normalized magnitude
(=)
W

0.4
0.3
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0.1
0
0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz) X IOM

Fig. 7. FFT of the FDTD numerically generated signal at the focus compared with the FFT of the time derivative of the source signal.
Solid curves, time derivative of the source signal; dashed curve, FDTD-computed pulse.
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Fig. 8. Intensity in the simulation space contour plotted as a function of the distance along the axis of propagation and of the time.

This is a spectrogramlike plot of the field distribution during the simulation.

The location of the focus and the evolution of the

derivative behavior of the field are clearly apparent with this visualization approach.
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Fig. 10. FFT’s of the 10-cycle, the 1-cycle, and the UWB1 IE pulses plotted as functions of the frequency. Solid curve, UWBL pulse;

dashed curve, 10-cycle pulse; dotted curve, 1-cycle pulse.

identical to one period of the 10-cycle pulse. The
positive-to-negative switch time of the UWB1 IE pulse
is slightly less than half of one period of the 10-cycle
case. The corresponding magnitudes of the spectra of
the 10-cycle, the 1l-cycle, and the UWBL1 IE pulses are
plotted in Fig. 10. One can see that the UWB1 IE
pulse has spectral components well above the 1- and
the 10-cycle pulses even though there is very little
energy initially present in those higher frequencies.
Correspondingly, the effective frequencies of these pulses
are nearly the same. The maximum intensities along

the propagation axis for the 1-cycle, the 10-cycle, and
the UWB1 IE pulses are plotted explicitly in Fig. 11.
The corresponding waists are plotted in Fig. 12. We
found that the IE is not so high as was predicted, a
result partially expected from numerical considerations.
The mesh associated with the FDTD approach acts as
a low-pass frequency filter; the amount of discretization
directly determines the shortest-wavelength components
that can be supported by the simulation. The derivative
of the UWBI1 IE pulse has spectral components that are
very high in frequency. It is those short-wavelength
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components that are filtered from the simulation that
prevented us from reaching the predicted IE factors. We
tested this by simulating the much shorter effective-
frequency version of the UWB2 IE pulse noted in Sub-
section 4.D. The simulator reached 70% of the theoretical
value for that case with a discretization of Az = 0.05 um.
The true UWB1 IE pulse reached an IE value of only 17.8,
13.5% of the theoretical value, with a discretization of
Az = 0.0125 um. However, the effective wavelength of
the UWBI pulse is 5.2 times smaller than for the longer-
wavelength UWB2 case. We found slightly less than a

Vol. 11, No. 4/April 1994/J. Opt. Soc. Am. A 1485

doubling of the IE value for each halving of the mesh
discretization. Thus we believe that a discretization of
Az = 0.0025 pm would produce at least a 100-fold IE
in the focal region. We do not have the computer re-
sources to test this expectation. Nonetheless the 18-fold
value indicates a significant increase in intensity focal
strength. Moreover, the filtering effect caused by the
numerical simulator in some ways mimics what one might
find when dealing with a real source or measurement

system that has a finite frequency response. In addition,
Fig. 12 shows that the waist of the intensity profile in the

20 T T

18

16

14

12

10

Intensity enhancement

Axial distance (pm)
Fig. 11. IE values of the 10-cycle, the 1-cycle, and the UWB1 IE pulsed beams focused by the thin dielectric lens plotted as functions

of the distance along the propagation axis.

Solid curve, UWB1,; dotted—dashed curve, 1-cycle pulse; dotted curve, 10-cycle pulse.
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Fig. 12. Waists of the 10-cycle, the 1-cycle, and the UWB1 IE pulsed beams focused by the thin dielectric lens plotted as functions of

the distance along the propagation axis.
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Solid curve, UWBL; dotted—dashed curve, 1-cycle pulse; dotted curve, 10-cycle pulse.
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Fig. 18. Contour plot of the E,-field distribution at the time
step n = 750 in the focal region for the 1-cycle, F3 = 1.0 case.
The pulsed beam is at the focus.
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UWBL1 IE pulse, 0.575 um, is approximately 3.3 times
smaller than the 10-cycle value 1.90 pm. This is a very
interesting result, since the waist is ~2.5 times smaller
than the effective wavelength of the driving signal. It
indicates that the intensity focus produced by a well
designed UWB pulsed beam can be made sub-effective-
wavelength. This means that, by design, we are able to
make significant use of the high-frequency components of
the pulsed beam even though they contain little energy.
In fact, if the predicted intensity value were reached,
we would expect the intensity waist to be ~0.21 um,
6.6 times smaller than the effective wavelength. The
spatial-intensity distributions obtained with the simula-
tor in the focal region for the 1l-cycle and the UWB1
IE pulse cases are given in Figs. 13 and 14, respec-
tively. Note the slightly different focal lengths that are
due to the different effective wavelengths. The time-
derivative behavior at the focus of the pulsed beam is
clearly present in Fig. 13. In contrast to the 1-cycle case,
the significant enhancement of the UWB1 IE pulsed-beam
intensity and its narrower intensity waist are apparent
in Fig. 14. However, numerical dispersion effects (the
pulse’s spreading behind the peak near the propagation
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axis) in the UWB1 IE case are also discernible. These
result from the inadequate resolution of the highest fre-
quencies present in this focused pulsed beam and hinder
its expected focal enhancements. It can be seen from
Fig. 11 that the focal shift is decreased as the bandwidth
of the driving pulses is increased. Thus another advan-
tage of the UWB designer pulse beams is the location of
the maximum intensity, which will be nearer the true
focus of the lens. This occurs as is expected, since we
derive the lens equation [Eq. (79)] by using geometri-
cal optics, a high-frequency approximation to Maxwell’s
equations.

We extracted the energy and IE results from all the
simulations we produced by using the driving-time signals
discussed in Subsections 4.C and 4.D. The results for
the energy waists and the energy-focusing enhancement
factors of the pulsed beams are provided in Table 1. We
obtained the numerical energy quantities by computing
the intensity everywhere as a function of time and
then integrating these intensity time histories. The
analytical values are generated with the formulas given
in Subsection 4.B. The agreement is quite satisfactory.
The corresponding intensity quantities are given in
Table 2. Again the agreement between the predicted
and the numerical results are generally very satisfactory.
However, one striking fact that can be observed from
Tables 1 and 2 is the disagreement between the theoreti-
cal and the numerical results for the intensity waists.
Note, however, that the analytical waists and the focal
lengths used in the intensity table are the energy values,
since the cw analyses predict that these values are
the same. These results clearly demonstrate that the
intensity waists are always narrower than the energy
waists. As noted above, the nontrivial discrepancies
between the simulation and the predicted values for
the UWBL1 IE pulse can be mitigated, given sufficient
computer resources. In summary, for an equivalent
input energy these results show that it is possible to
design UWB pulsed beams that deliver more intensity to
a particular region of space—time than can be delivered
by standard cw source signals.

6. CONCLUSIONS

In this paper we have introduced a BOR-FDTD simulation
capability that can be applied to rotationally symmetric
linear-optics problems. The use of the existing sym-
metry, for instance, in cylindrical structures leads to
an extremely practical approach to modeling three-
dimensional problems. In fact, the BOR-FDTD approach
allowed us to reduce a computationally intractable,
three-dimensional problem to a numerically solvable two-
dimensional one. The resulting BOR-FDTD simulator
was used to model the propagation of a pulsed Gaussian
beam through a thin dielectric lens and the focusing of
the resulting pulsed beam.

Analytic results for the lens-focused, pulsed Gaussian
beam were also derived. They show that the field in the
focal plane is dependent on the time derivative of the ini-
tial aperture field. Thus the focal amplification factors
are intimately related to the rise time of the driving sig-
nals. Moreover, the derived IE factor clearly indicates
that, for the same input energy, one can design UWB
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Table 1. Comparison of the Focal Lengths, Waist Radii, and Energy-Enhancement Factors Predicted
Analytically with the Corresponding Values Obtained from the Energies Computed Numerically by Use
of the BOR-FDTD Code®

' (,u.m) f’ (,u,m) .T-Aenrg

Fy Source Arad (wm) Analytical FDTD Energy Analytical FDTD Energy Analytical FDTD
1.0 cw 1.800 1.72 - 16.6 - 9.74 -
1.0 10 cycle 1.796 1.72 1.85 16.6 14.2 9.79 8.71
1.0 3 cycle 1.753 1.67 1.80 16.7 14.5 10.3 9.05
1.0 1 cycle 1.539 1.47 1.60 17.1 14.9 13.3 11.5
1.0 UWBL1 (0.05 pwm) 1.424 1.36 2.30 17.1 13.9 15.6 3.53
1.0 UWB1 (0.025 pm) 1.52 15.2 5.07
1.0 UWBL1 (0.0125 um) 1.038 16.1 7.01
1.0 UWB2 (0.05 pm) 7.357 7.0 7.0 7.59 7.5 0.577 0.567
1.0 UWBS3 (0.05 um) 1414 1.35 1.20 17.1 14.3 15.8 9.95
1.0 UWB3 (0.025 um) 1.075 15.8 11.1
0.707 1 cycle 1.539 0.735 1.05 8.87 7.25 30.4 21.4

%Except where noted, Az = Ap = 0.05 um.

Table 2. Comparison of the Focal Lengths, Waist Radii, and Intensity-Enhancement Factors Predicted
Analytically with the Corresponding Values Obtained from the Intensities Computed Numerically by Use
of the BOR-FDTD Code®

' (pm) 1’ (um) Yint

Fy Source Arad (um)  Analytical FDTD Intensity  Analytical = FDTD Intensity  Analytical FDTD
1.0 cw 1.800 1.72 - 16.6 - 1 -
1.0 10 cycle 1.796 1.72 1.80 16.6 14.4 0.996 0.996
1.0 3 cycle 1.753 1.67 1.75 16.7 14.5 0.949 0.950
1.0 1 cycle 1.539 1.47 1.45 17.1 14.5 1.31 1.52
1.0 UWBL1 (0.05 um) 1.424 1.36 1.35 17.1 15.0 132 6.72
1.0 UWBL1 (0.025 pm) 0.900 16.1 10.7
1.0 UWBL1 (0.0125 pxm) 0.575 16.6 17.8
1.0 UWB2 (0.05 um) 7.357 7.0 2.25 7.59 14.3 24.5 20.52
1.0 UWBS3 (0.05 um) 1414 1.35 0.825 17.1 15.0 9.87 2.00
1.0 UWBS3 (0.025 pm) 0.750 16.0 4.25
0.707 1 cycle 1.539 0.735 1.0 8.87 7.5 1.31 1.45

2Except where noted, Az = Ap = 0.05 um.

driving signals to achieve a significantly larger intensity
enhancement than is possible with equivalent cw signals.
In addition, the results indicate that the waist of the
maximum-intensity profile of a pulsed beam in the focal
region can be designed to be much smaller than the waist
of the associated energy profile. Several designer pulses
were introduced that illustrate how one can achieve these
intensity enhancements with UWB signals. These focal
region results are related to the far-field behavior of the
beams generated by pulse-driven apertures.

The BOR-FDTD simulation results compared very fa-
vorably with the analytical predictions. It was demon-
strated that the intensity enhancements can be real-
ized with properly designed UWB pulses. Moreover, the
numerical results confirmed that there is a substantial
difference between a pulsed beam’s maximum-intensity
behavior and its average energy behavior. These com-

parisons included several different cw and UWB pulses
as well as two different lens configurations.

Several issues remain for future investigations. We
used only separable space—time beams in a linear system.
Further enhancements may be achievable if nonseparable
solutions or a nonlinear dielectric lens were used. One
might then be able to achieve a true space—time focus
and model it accurately with the appropriate BOR-FDTD
simulator. Other designer pulses could be developed
that may lead to even more favorable results. In par-
ticular, we believe that optical experiments could be
designed and performed to validate the intensity en-
hancements reported in this paper. The IE results are
scalable to longer-wavelength regimes in which experi-
mental capabilities are already present. For instance,
the picosecond-pulse regime is quite accessible now, and
many researchers have discussed a variety of pulse-
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shaping mechanisms in this regime. Moreover, one can
deal with reasonably sized structures at longer wave-
lengths rather than the micrometer-sized environment
modeled here. On the other hand, the numerical BOR-
FDTD simulator results that we present demonstrate
that the IE effects are achievable in the ultrashort-pulse,
ultrasmall-structure regime. Practical applications for
these UWB IE systems may include particle acceleration,
fiber-optic communications sources and detectors, and
photolithography.

APPENDIX A: BODY-OF-REVOLUTION
FINITE-DIFFERENCE TIME-DOMAIN
EQUATIONS AND BOUNDARY CONDITIONS

The following development is based on Merewether and
Fisher,’ repeated and expanded here for the reasons noted
in Subsection 3.A.

Given the Fourier mode decomposition, the equations
for each mode are (with the 9/d¢ being evaluated
analytically)

aH,,k _ ( -k 8E¢k>
K= T\ T ez (AD
OHyp _ ( OE, aEzk) (A2)
ot a9z ap
0H, 17 o(pE
atk ;[ (pap¢k) + kEpk], (A3)
oE k 0H,
€ B:k + O'Epk = (;sz - a:k) - ka , (A4)
oFE 0H dH,
S s+ 0By = (_azp’“ ——ap’*> — T (A5)
oE, 11 o(pH,
2k 4 By = ;[ (pT;’L) - kH,,k] ~Ju. (A6)

Offset grids are set up as in Fig. 15, in the same fashion
as the classic Yee algorithm in Cartesian coordinates.
The field components are assigned the following locations:

H,," (i, ) = Hprl po(i), 2( ), ta(m)], (AT)
Hyy" (i, J) = Hyal p(@), 2(J), ta ()], (A8)
H" (i, ) = Hal p(0), 20( ), tu(n)], (A9)
Eyw"(, J) = Ep[p(@), 20()), te(n)], (A10)
Er"(i, ) = Egrl po(i), 20( ), te(m)], (A11)
E"(, J) = Ezl po(), 2(J), te(m)]. (A12)

Jy, J2, By, E,, and Hy are even, and the Fourier expan-
sion is of the form

k=hkmax
C=Co+ > Cp cos(ke). (A13)
E=1

Js, Ey, H,, and H, are odd, and the Fourier expansion
is of the form

k=kmax
D= 3 D, sin(ke). (Al4)
k=1

D. B. Davidson and R. W. Ziolkowski

The field components are evaluated in the interleaved
grid shown in Fig. 15 at the following positions:

po(@) = (@ — DAp + pc, (A15)

p(@)=( = Y2)Ap + pe, (A16)
zo(j) = (Jj — DAz, (A17)
2(j)=(j — Y2)Az, (A18)

with i € [1,ip.] and j € [1, jmax), Where inaxy and jmax
are the number of sample points in p and z, respectively,
and p. is the radius of the leftmost side of the mesh given
in Fig. 15. (The present code uses p. = 0; an example of
a problem in which a nonzero value would be useful is a
coaxial waveguide problem.) The fields are evaluated at
the following times:

ty(n) = (n — 1)At, (A19)
tg(n) = (n — Yo)At, (A20)

with n € [1,7nmax]), Wwhere npa; is the number of time
samples for which the code is run. Using central differ-
encing as in the Yee algorithm, but applying this method
now in the cylindrical coordinate system, we may derive
the following set of equations for the updates for the E
and the H fields:

kAt
n+tles =y — nes o o nes o o»
Hpk (l,.]) Hpk (I':.]) + #po(i) Ezk (l’.])

+g_[ Eup™(i,j + 1) — Eg"(i, j)

2l 2T D - 20) ] > (A2D)

Hy."" (i, j) = HgiG, J)
A Bt + 1 = B, )]
I 2o(J + 1) — 20()
+ ﬂ[ E i+ 1,)) — Ex"(G,J)
7 po(i + 1) — po(i)

] » (A22)

Hy 16, §) = HaG, )
At { poli + DEgs™i + 1,) — po(i)E¢kn(i,j)}

n @) - [poG + 1) — po(i)]
- ;k,%E,,k"(i,j), (A23)

B-Ey" (i, j+ 1) = A Ep"(i,j + 1)

k
+ L HmGL G+ 1
20 e (i,j+1)

_ [ Hos™ i, + 1) — H¢kn+1(i,j>] _a
pk >

2(Jj + 1) —z())
(A24)
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Fig. 15. Mesh showing interleaved field components.

B Eu™Wi+1,j+1)=A-Eg "G +1,j+1)
N H™ 6+ 1,7+ 1) — Hyp" (6 + 1, )
2(j +1) —=2())

Hyp™'i+1,j+1) - Hyp™'(G,j + 1)
B-Ey"'(i+1,))= A Ex"G +1,))

)
]~ s

pG +1) = p(d)

+ p( + DHy"" G + 1, j) — p())Hya"*1(, j)
poi + 1) - [pGE + 1) — p(@)]
— _k— n+lcs N
PNCEEY) H,," i+ 1L,)) = da, (A26)
with the A, the B, and the J arrays being defined as
€ o
~(x-%) (427
€ o
B_<At+?)’ (A28)
Tor = (g™, (A29)
Jor = Jor(ta™"), (A30)
I = (g™, (A31)

all evaluated at the desired E-component location.

For all the above equations except Eq. (A21) (discussed
immediately below), i € [1,imax] and j € [1, jmax], where
imax and Jjmax are as previously defined. For the even
fields (J,, J,, E,, E,, and Hy), k € [0, kmax), Where Epax

is the number of Fourier modes; for the odd fields (J, E4,
H,, and H,), k €[1,kmax). Equation (A21) has a singu-
larity on the axis (i = 1) because of the presence of the
term 1/py(i); however, an inspection of Eqs. (A24)—(A26)
shows that H, on the axis is never required; hence it
may be left out of the computational domain and the
index set of i for Eq. (A21) may be relaxed to i € [2, imax]-
On the edge of the computational domain the boundary
conditions take care of the field behavior, and these values
can be computed with Eqs. (A21)-(A26) and can then
be overwritten by the field values modified to account
for the boundary conditions; this precludes the need for
special treatment of the boundary nodes, which is very
undesirable, especially in a parallel code.

Note two minor differences between Egs. (A21)—(A26)
and the equations tabulated in Ref. 5, Fig. 10, p. 33:
first, there is an error in the signs for E,;, in this reference;
second, in Eq. (A26), po({) has been replaced with
po(i + 1). Unless this change is made, the computation
for all the points with { + 1 = 2 is singular (note that
the E fields are evaluated at i + 1), even though these
points are off the axis; in Eq. (A26), po is now sampled
at the same point as the E, field. Furthermore, some
indices that were omitted in Ref. 5, Fig. 10, p. 33 have
been added.

We outline the derivation for one of these components,
i.e., Eq. (A26). Consider Eq. (A6), repeated here:

€ 9 + oE = l[ HoHy)

at p

e kH,,k] —Ju. (A32)

We sample the field in time and space as in
Eqgs. (A15)—-(A20); note that the E field is sampled
in time at a point midway between two H-field samples
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and similarly for the spatial samples. Applying central
differencing to both the time and the spatial derivatives
yields

aEzk a~ Ezkn+1(i)j) — Ezkn(i,j) ,

9t AL (A33)
pHys) _ pl + DHyp™ (@ + 1, 5) = p()Hp" G, J) |
ap poi + 1) - [p(E + 1) — p@)]
(A34)

These can now be applied to yield Eq. (A26).

Most of the boundary conditions are obvious: on the
top, the bottom, and the right-hand sides of the mesh
shown in Fig. 15, the tangential E fields must be specified
(the ABC described was used for the top and the bottom
faces and a perfectly conducting wall for the right-hand
face: the grid was large enough for the geometries stud-
ied that reflections off this face did not cause problems).
However, on axis, the boundary conditions require some
explanation.

We derive the boundary condition for E,, by applying
the integral form of the Maxwell curl equation in H (i.e.,
Ampere’s law),

[VXH=%H~dl=[(eE+J+UE)~dS,
S c S ot

(A35)

to a small loop of radius r centered at p = 0 and per-
pendicular to the z axis. For the case with 2 = 0 one
obtains

27 2w P
f H¢0 : P5¢ = f f (6 ) + 0 + UEZO)
0 0o Jo at

"pdddp, (A36)

which after we approximate E,, as a constant over the
surface of the loop yields the following condition for the
E,; component on axis:

2H40"1(1, j) .
— — J,0(1,
o) o(1, J)

Vj €L, jmax]. (A37)

B-E"*'(1,j) = A Ex"(1,j) +

For the higher-order modes

E(1,j)=0 VkEE[l,knx] and jE [1, jmax], (A38)
E¢k(1’ J) =0 Vke [1’ kmax] and JE [1, jmax]- (A39)
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