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A path integral constructed over a particular Riemann space is developed and applied to two-
dimensional wedge problems. This path-integral-Riemann-space (PIRS) approach recovers the
exact solutions of the heat conduction and the corresponding electromagnetic wedge problems. A
high-frequency asymptotic evaluation of the PIRS electromagnetic wedge solution returns the
standard geometrical theory of diffraction (GTD) results. Ramifications of this approach and its
relationships with known path-integral methods are examined.

i. INTRODUCTION

Many quantum mechanical applications of path inte-
grals defined on multiconnected spaces have appeared in the
literature.'~ Similarly, using a double-sheeted Riemann sur-
face Buslaev® established the viability of the path-integral
approach to the scattering of electromagnetic waves from
smooth conductors. However, in spite of the known impor-
tance of the multiconnected space description of diffraction
phenomena (see Sommerfeld’ or Carslaw®), the application
of an analogous path-integral approach to electromagnetic
diffraction problems has been neglected. It is the object of
this paper to demonstrate the utility of a path-integral-Rie-
mann-space approach in wedge diffraction problems and to
point out several interesting aspects of the resultant repre-
sentations of the solutions.

In Secs. II-V, a path-integral-Riemann-space (PIRS)
approach is developed and applied to the electromagnetic
diffracting (perfectly conducting) wedge problem. As in
Buslaev® and Lee,’ the diffraction problem is first trans-
formed to its equivalent heat conduction problem. The latter
is treated with the PIRS approach. The transform of the
resultant expression returns the exact wedge diffraction so-
lution. A high-frequency asymptotic approximation of the
PIRS solution is given in Sec. VI. It recovers the results given
by Keller’s geometrical theory of diffraction (GTD).'® In
Sec. VII, several properties of the PIRS solution to the elec-
tromagnetic and heat conduction wedge problems are de-
scribed. Relations based upon the multivaluedness of the so-
lutions are derived that demonstrate that the modification of
free-space by the wedge leads to the diffraction effects.
Moreover, it is shown that the half-plane propagator satisfies
a transition condition that is characteristic of the underlying
Riemann space and is associated with a particular Riemann—
Hilbert problem."! The relationships of the PIRS approach
with analogous quantum mechanical methods are also dis-
cussed. For instance, the connection between the PIRS
method and the constrained path-integral approach!?'¢ is
established. It indicates that a PIRS wedge analysis may
prove useful for studies of fractional charge quantization.
Other salient features of the PIRS approach suggest its ap-
plicability to related problems of interest involving entan-
gled polymers in molecular biology, Ising models in statisti-
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cal mechanics, and soliton and instanton models in quantum
field theory.

il. WEDGE DIFFRACTION PROBLEM
A. Problem configuration

Consider in two dimensions the diffraction of the field
due to a unit point source by a perfectly conducting wedge
with exterior angle 87, 1 <8<2. The electric field vector is
assumed to be parallel to the edge of the wedge (E-polarized
field). This is equivalent to the three-dimensional diffraction
problem in which a line source is parallel to the edge of a
wedge of infinite extent. The scattered field is also E-polar-
ized and is assumed to satisfy the radiation condition at in-
finity.

A polar coordinate system is erected whose origin is lo-
cated at the edge of the wedge. Angles measured in a coun-
terclockwise direction from the upper edge of the wedge de-
fined to be @ = 0 are positive. The lower edge is defined by
0 = Bm. The physical space [0, « [ X [0, B7], exterior to
the wedge, is denoted by P. The observation point is located
at r=(r,0); the unit source &(r-r,) is located at
ro = (70,6,). This geometry is shown in Fig. 1.

B. The Riemann spaces P, and P_

The original diffraction problem in the physical space P
is simplified by considering diffraction in a space P, con-

ro-(r ,90)

F=(r.0)

KB <2

FIG. 1. Geometry of the two-dimensional diffraction by a wedge problem.
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structed as follows. Take two replicas of P, say P, and P_,
and join them along the boundary 3 of the wedge. Then
P,=P_uP_uZ Thespaces P, and P_ will be called, re-
spectively, the upper and lower sheets of P,; the space P is
identified with the physical space P. To suggest pictorally
the two sheets, the “edge” of P_ is drawn outside of that of
P asillustrated in Fig. 2(a). A function U(r) over P, will
be a wave function if it satisfies the Helmholtz equation

{A+k%U(r) =0 2.1

over P, and P_ (open sets) and if the limiting values U,
and U_ of U(r), when r approaches = from P, and P_, are
opposite and if the corresponding normal derivatives on X
toward P, and P_ are continuous:

boundary [U+ +U-=0
conditions

The space P, is a Riemann surface, and its use here is
very similar to the device introduced by Sommerfeld’ for the
half-plane problem and by Buslaev® for the convex body
case. Natural coordinates in P, are the distance 7 to the ori-
gin and the polar angle 8 counted from the upper edge of the
wedge. This angle varies from 0 to () = 275 and the angle

on X. (2.2)

9,U, =a,U_,

Points of P, =P UP_

refo=[ , 6 cl02mB) mod Q

8w

(b)

0 Bw 2wB

FIG. 2. Representations of the space P,: (a) as a two-sheeted Riemann sur-
face and (b) as its angular extent.
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0 = 278 is identified with @ = 0. This geometry is shown in
Fig. 2(b).

Note that the angles 8 = 0,87 have no special proper-
ties. In fact, the effect of introducing P, may be considered as
“‘erasing” the boundaries of the wedge. The boundary condi-
tions are satisfied by locating an image source on P, (specifi-
cally, on the lower sheet P_) atr = (ry, — ,). The desired
field can then be decomposed as

U(r) = K(r,ry) — K(r,r5), (2.3)

where, for example, K (r,r,) represents the field at r due to
the source point at r,. Since reciprocity must be satisfied,
K(r,r§) must be of the same form as K(r,r,); the former is
obtained from the latter by a simple substitution 8,— — 6,,.
Hence, it will only be necessary to consider the function
K(rr,).

The solution of the H-polarized problem (the magnetic
field vector parallel to the edge of the wedge) is simply (2.3)
with a plus sign instead of the minus sign:

U(r) =K(rxg) + K(r,x5) . (2.3")
It satisfies the P, boundary conditions
U, =U_,
boundary onS. 2.2')

conditions (5,v. +a,u_ =0,

Thus, it will not be necessary to consider that case explicitly.

The space P_, is constructed from an infinite number of
copies of P,. It is the covering space of P,. The polar angle 8
in P is any real number instead of being modulo 2. Thus,
for any point r = (r,0) in P,, there are an infinite number of
points (preimages) inP_ : (r,6 + mQ),m=0, + 1, +2,..,,
whose projections from P_ onto P, coincide with r.

The desired solution in P,, K(r,r,), is obtained from the
corresponding solution in P, K_ (r,6;r4,8,), by “folding”
it onto P,; i.e., by summing the fields at all of the preimages:

K= S K, (n0+mQinby) . (2.4)

m= — o

One can interpret the image contributions as multiply
reflected waves between the boundaries 0 and Q of P,. The
problem on P_ corresponds to one involving a perfectly ab-
sorbing wedge. This construction was used in a similar con-
text by Deschamps'? and by Felsen and Marcuvitz'® and for
quantum mechanical problems by Schulman.>-

lll. PATH-INTEGRAL SOLUTION OF A HEAT
CONDUCTION EQUATION

The path integral solution of the heat conduction equa-
tion

{8, — A}Gr(xxm) =0, (3.1

which reduces to § (x — x,) for 7 =0, is reviewed briefly to
establish notations. The points x, and x are assumed to be in
an n-dimensional space X =R",

Let ybea path;i.e., a parametrized arc of acurvein X. It
is a map of a segment [a,B] of the real axis R into X and is
assumed at least to be continuous. The end points are taken
to be x, = y(a) and x = y(f). Thus,

y: [a,B ] CR-X: 7—p(7): (a,B)—(x4,X) .
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Let I be the set of continuous paths ¥ joining x, to x in time
7.
The path integral solution of (3.1) is*®

G (Xi57) = fr F(nDy. (3.2)

The “value” F(y) assigned to a path yel is taken to be the
probability of going from x, to x in time 7 following the path
y: F(y) = exp[ — E(y)], where the energy of a particle of
mass } along y is E(y) = }f37*dr, y =dy/dr being the
velocity of that particle along y. The quantity &y is difficult
to establish; it represents the measure of the path space. The
standard method of giving a meaning to (3.2) is heuristic;
the scheme imitates the process that leads to a Riemann inte-
gral.

Let each ¥ be represented by a skeleton y, constructed
from the (N + 1) points (x4,X,,...,X,y = x) in the image of
such that

¥e: (To=Q,T1,T2see0s Ty =BI> (XX 1, X250 Xy = X) .
A broken path ¥, can be constructed from these points by
associating to each consecutive pair (7;_,, 7;) mapped into
(x;_ 1, x;) a path segment §,7, chosen in a prescribed man-
ner. A standard choice is to make the image of [, _ (, 7;] by
6,y into a straight segment described uniformly in 7; i.e.,

é;x
Sy: [, 1)K rox; ==—(1—7,_,) +%_, .
o7
The notation &;( - ) designates increments of (- ) corre-
sponding to the jth step (or jth segment); eg.,
6,7 =1, — 7;_ . Other choices are possible.
J

The heuristic definition of the path integral (3.2) is
based on approximating each y by some y; hence, ' by I',,
the set of broken (discrete) paths y,. The preceding con-
struction of the set of broken paths T, which will be re-
ferred to as discretization, depends on n(N + 1) real param-
eters, provided that the 7,’s are chosen in a systematic
manner. For instance, let 7, =a+jA7, where
A7 = (B — a)/N. One then has the correspondence

YN (XX ppeenXy JERMV+D

Thus, with the fixed end points x, and x, = x, the Euclidean
measure in R*¥ ~ 1 can be used to define Z'y. In the limit
as N— o and max §;7—0, The definition of the path integral
(3.2) becomes
[For @y=tim [ F) Dy (33)
r N—w Jry
The value F(y,) assigned to the discretized path ¥ is
the product F(yy) = II}’; 1F(6;7) of functions defined for
each of the steps ;7 used to construct y. Those functions
represent the probability that the particle at x; _; moves to
x; in the time interval from 7;_, to 7; and are defined as
F(6;y) = ¥y, (6,x), where

®, (&) = (2mo) " exp( — |£]%/20) .

Thus, with the coefficient 4y = IT\_ | (478,7) ~"/* and the
energy
N N (5,x)2
E =Y E(5y)= 2
(rw) =3 En=3 Py

j=1 =1
the discretization of the path integral (3.2) becomes

’

. . (Awr\~N2 [ = X,
Gr(xx,7) = Al,lm ANJ exp[ —E(yn)] .@}’NEI\IIIm (—N—) f fexp[ — ZE(BJ.}') dx dxy...dxy_, .
f—> 00 rN —* 0 -_—x

j=1 (3.4)

Now consider the polar coordinate form of the path-integral expression (3.4) when n = 2. In R?, the squared distance
between the two pointsr; = (7, 6;) andr,_, = (r;_,,6,_,) is

(Bx[2 = 72+ 72y = 21,1, cos(6, — 6 _,)
and the measure
N-—1

dxl"’de_l = H ':, d’:’ doj .

=1

Thus, with € = 7/N the expression (3.4) when 1 = 2 can be represented in R? as

. _ N P24 N frr. N-1
Gr(nrg7) = lim (4re) Nf o J exp[ —j;l f_Ef._'_]exp[jgl(—’—éT‘-)cos(ej —6,_)| I r dr, d6;.

As shown in Ref. 20, the exact (free-space) solution

Gr(r, r7) = (4mrr) "' exp[ — (P + r})/4r)expl (rro/27)c0s(8 — 8,) |=(4mr) ' exp[ — |r — 1,|%/47]

is generated from Eq. (3.5). This result will be duplicated from the PIRS point of view in Sect. VIIL.

IV. PATH-INTEGRAL SOLUTIONSON P

Returning now to the wedge problem, the propagator
K, (r,ry), which satisfies on P_ the equation

{A+ k%K, (rry) = —8(r—xp) , (4.1)

is desired. It can be generated by considering the corre-
sponding parabolic equation problem; i.e., the solution
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(3.5)
j=1
(3.6)
(
G, (1, ry;7) of the heat conduction equation
{9, — A}G,, (r,xy;7) =0, (4.2)
which satisfies the initial condition
lim G_ (r,ry;7) =6(r —1,) , 4.3)
—0
is related to the solution of (4.1) as
. Richard W. Ziolkowski 2273
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K, (rr) = f dre’G_ (r,1g7) (4.4)
C

where C is a contour in the complex plane from =0 to

infinity. The choice of the contour is independent of k (see

Ref. 6).

Following the scheme outlined in the previous section,
the path-integral representation of the P propagator G is
constructed. It is identical to the (free-space) expression
(3.5) except that the integrations must now be realized over
P_ -spaces rather than over R?-spaces. The differences lies in
the integration over the angle variables. In the present case,
each angle integration must be taken over the infinite inte-
val ] — w0, [ rather than over the finite interval [0, 27]
used in the free-space example. The resuitant P_ expression
suggests that for its evaluation it would be advantageous to
introduce a Fourier transform.

The rotational symmetry of the problem implies that
G, will depend only on the angle difference (8 — 6,):

G _(r,ry7)=G_ (ryre,d —0yT). 4.5)
Therefore, the Fourier transform of G is defined as

A
G, (r,ru7)

_1 f T (6= 0,)e~ =G (r, 1,0 — B;T)
27 J- o

- Lf d6e=HO=G_ (rryf—65r);  (46)
T
its inverse is

G_(r,r57) = f dA e”‘“""“’&l (r, r;7)

=F (6—0,0)[G,(r,r57)] . 4.7

Thus, by considering 61 instead of G directly, one can
concentrate on the radial dependence of the propagator.
Substituting the pertinent, modified version of Eq. (3.5) into
Eq. (4.6) and decomposing the difference (6 — 6,) into

9—86,
= Oy —Oy_1)+(Oy_1 —0Oy_,)

+ et (91—00)

= 2 6, —6,_,)

j=1

yields
8,1 (r, ro;7)

= 11m——J. f H r; dr;(4mre) ~"

N—ow 21T =1

r2+r2 ]J-_w l:[l o,

Xexp[——cos(& 1_1)—i/1(6j—6j_,)]].

(4.8)
Note that the additional angle integration with respect to 8,
= 6 results from the integral in Eq. (4.6). Taking into ac-
count the finiteness of the propagator as r—0, the expression
(4.8) gives

X exp[
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a,l (r, re;7)

= (4mr) ! — (P +73) /A7), (rre/27) .

4.9)
The steps leading from Eq. (4.8) to Eq. (4.9) are described
in detail in the Appendix.
Inserting the “radial” propagator (4.9) into Eq. (4.7),
one obtains the representation

G, (r,ry7) = (4orr) Lexp][ — (P +

exp|

r3)/4r]

xf d/le““’“’"’ll,”(g-r"—), (4.10)
- T

for the solution of the heat equation (4.2) on P_ . Conse-
quently, with Eq. (4.4) the desired solution of Eq. (4.1) on
P_ is

oo

® ; dr
K, (rr =f dieto—% | =
(¥, Fo) — ¢ c 4nr
(r2+r2)
Xexp[kzr ]IM, o
(4.11)

Since (see Ref. 21, 8.424.1)

+ fo0
i. 5 exp[_l_(t_ &Qﬁ)][y(i}ﬂ
mi Jo 2 t t/t
=J,(OXH (),
whereRev> — 1,7>0,and |§ | < |{ |, Eq. (4.11) becomes

K, (r, 1) =%J‘ di e*®=%J, (kr YH(}(kr, ),
(4.12)

where 7_ is the larger of  and r,, r < the smaller. Note that
expression (4.12) coincides with the Riemann surface fun-
damental solution defined by Stakgold (see Ref. 22, pp. 270~
271).
V. SOLUTION OF THE WEDGE PROBLEM

Asnoted in Sec. I1, the propagator on P, from the (real)
source point r,, to the observation point r, K(r, r,), associat-
ed with the wedge (diffraction) problem, is generated by
folding the P -space solution (4.12) onto the P,-space. The
resultant expression has the form

K(r, r0)=£- 3 f dA explii(6 — 6, + mQ)]

m= — oo

X4 Ckr )H,(;H(kr>). (5.1)

However, using the Poisson summation formula,

S 88A—m)

ei21rmﬂﬂ. —

1 o
=Em§1w5( —1”—), (5.2)
one obtains
K(r, 1) = E 2 mexp[l——(ﬁ 90)]
X \msg) ke VH (g (kP ) (5.3)
This expression can be immediately rewritten as
Richard W. Ziolkowski 2274
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K(r, r0)=—IiE i €,J s (kr )H ,B(kr )

m=0

Xcos[%w — 00)] , (5.4)

where the term
if m=0,

1,
" [ 2, if m#0.
Using the results of Ref. 23, it also has the integral represen-
tation

K(rr,) = —f H{P(kR(a)) yg(a,0 — G,)de ,
(5.5)

where the distance R(a) = [#* + 73 — 2rrycosa]/? and

the diffraction coefficient

a) = sin(a/B) ]
% B cos(a/B) — cos(¢/B)

The path of integration 4 is shown in Fig, 3.
Consequently, with Eq. (2.3) the total solution of the
wedge problem is represented as

U(l‘) = K(r,g'ro,eo) - K(r,a'ro, b 00)

L Z {cos[—(e 00)] —cos[—(9+00)”

X yg (kr VH ) (Kr )

= i mw oe sxn(";e)s1n( mBHO)

XIomsp (kr VH ,ﬁ(kr )
(5.6)
or as
U(r) --———f H{V(kR(a))
X [xg(,0 — 6,) — x5 (a6 + 6;) Jdax . (5.6')
Im(a)
I I 13 I I a Plane
I | | I
I I | |
| I | I
| | I |
| . !
I s |
| I | |
A
| l | | .
FFE[E
| | | I
0

FIG. 3. Path of integration 4 used for the wedge solution.
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These results agree with the known solutions given, for ex-
ample, in Refs. 18, 21, and 24.

VI. HIGH-FREQUENCY APPROXIMATIONS OF THE
WEDGE SOLUTION

The high-frequency (short-wavelength) approximation
to the wedge solution (5.6) in the shadow region of the
source and its image will be generated from the P_ solution
(4.12). The GTD results given by Keller'® are recovered.
The analysis is analogous to the one used by Wu?* to study
creeping waves around a circular cylinder.

The P_ solution (4.12) can be rewritten as

K_(rr)= %r di cos[A (6 — 6,)1
(V]

XJ, (kr _YH P (kr, ). (6.1
Asymptotically for kx— o the Bessel and Hankel functions
J, (kx) and H (¥ (kx) behave as

Jlim 7, (kx) ~ (2/mkx) ! cos [ kx — (A +7/2]

= (2/i)[g(kx)e ™ *™2 4 g*(kx)e*™?] ,
k}‘im H P (kx)~ (4/i)g(kx)e*2

where the function
g(kx) = (8mkx) "2 expli(kx + 7/4)]

and g* (kx) is its complex conjugate. Inserting these asymp-
totic forms into (6.1) and using the relation

Jw dA é** = 6(x) + £ ,

o X

one obtains the expression

K, (r,ry)~2g(kr, dgkr ) [1/¥, — 1/¢_]
— 2mig(kr )g(kr ) [6(,) +8(¢¥_)]
— 4mig(kr, )g*(kr )6[ (¥, +¢_)/2],

(6.2)

where the angles ¢, = (0 — 6,) Fr =0 — (6, + 7).

In P, the angles 8 = 6, 6, + 7 correspond, respectively,
to the directions of the source and the shadow boundaries of
the source and its image. For a point in the shadow region of
the fields incident on the wedge from the source and its im-
age; i.e., for Bel6, + 7,2 — (0, + )|, these singular direc-
tions are not encountered. The asymptotic form of the P_
solution then reduces to

K (rry)~2g(kr dglhkr N1/, —1/¥_1. (6.3)

With (2.4) and (6.3) the propagator K(r, r,) in the
shadow region has the asymptotic form

K(r,ry) ~2g(kr_ )g(kr_)

S o S |
,,,g:m v, +mQ  ¢_+mQ
(64)
Since
1 o0
coté=-L 12 [_.__]
5 3 5»21 £ — (mm)?
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and

oft0) nlt59)- -

sin ¢
cosy —cos @
the sum

2 3

me — [¢+-imﬂ - z/l_-imﬂ]

= Leo(s) —eo( %)

_2 sin (7/B)
B cos(m/B) — cos((8 — 6,)/B)

= yg(m, 6 —6y)
(6.5)
recovers the wedge diffraction coefficient and (6.4) becomes
K(r,xo) ~g(kr, Yxp(m 6 —6,)g(kr_) . (6.6)
Similarly, the image source contribution is
K(r,xg) ~g(kr, Yxg(m 0+ 6p)8(kr_) . (6.7)

Consequently, with (2.3) the asymptotic form of the (E-
polarized) wedge solution in the shadow region is

U(r) ~g(kr, ) [xs(m, 6 —6,) — xg(m, 6+ 6,) 1g(kr_) .
(6.8)

This expression coincides with Keller’s GTD result. It repre-
sents the effects of the source and image fields interacting
with the edge of the wedge. The presence of the additional
terms in (6.2) indicates the need in the lit regions to account
for the direct, geometrical optics fields in (6.8); i.e., the
asymptotic forms of the source and image fields when r can
be reached without interacting with the edge must be includ-
ed in (6.8).

VIl. DISCUSSION

In order to connect the present results with those in the
literature, several alternate representations of the PIRS solu-
tions will be considered. They reveal a variety of interesting
properties of the PIRS approach.

The point in P, that lies on P_ “beneath” the point
(r,8)onP_is (r, @ — 8). The value of the P, wedge propa-
gator (5.4) at that point recovers the image source contribu-
tion

K(r,Q — 61y, )= K(1,6;r5, — 6,) . (7.1)

Consequently, the wedge solutions (2.3) and (2.3") can be
represented as

U(r) =K(r,0;ry, 8)) —pK(r, Q — Giro, 6,), (7.2)

wherep = + 1 for the E-polarized caseandp = — 1 for the
H-polarized case. Their satisfaction of the P, boundary con-
ditions (2.2) and (2.2') are easily demonstrated with this
expression.  Moreover, since K(r,6;r,6,) and
K(r,Q — 6;r,0,) represent the values of different branches
of the P, solution at corresponding points, the E- and H-
polarized wedge solutions are, respectively, simply a differ-
ence and a sum of those values.

Next, consider the sum of the values of the P_ solution
(4.12) at the points (7,6 + m27),m =0, + 1, + 2,... . This
sum includes at least one contribution from each P, surface
in P_ and the term K (7,80 + m2m;r,,6,) can be viewed as
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the value of the mth branch of the P_ solution at (7,8). As is
readily shown, the free-space propagator K (r, r,); i.e., the
propagator in R? between r, and r with no wedge present, is
recovered. In particular, with 8.531.2 of Ref. 21 and (5.2)
the sum

S K, (r,0+m2mr,, 6,)

m= — o

- %f dA explid (6 — 6,)1J,,, (kr )

xXH (kr,)| 3 eﬂf"M]

m= — o

i e:n(e_eo>J|nl (kr YH 8 (kr)

4 o ||
= (i/4)H {P(kR(6 — 0,))=K 5 (1, 1,) . (7.32)

This relation illustrates the principle that a symmetric com-
bination of the branches of a multivalued solution to a parti-
cular equation such as (2.1) returns a single-valued solution
of that equation [See Ref. 7(b), pp. 266-271].

With this result in hand, let us return now to the free-
space electromagnetics problem. To account for the en-
larged path set, a Riemann space in which each sheet is a
replica of R i.e., P,=R?, is introduced. The space P_ then
resembles the spiral staircase surface associated with the log-
arithm function of complex analysis, and the preimages of
(7, 9) arethe points (r, 8 + m27),m =0,+ 1, - 2,... . The
P_ solution K (r, ry) remains (4.12). The folding of K
onto P2 = R?given by (7.3a) leads to the exact solution, the
free-space propagator K. (r, r,). Similarly, the folding of
G, ontoR? = P, recovers (3.6), the free-space heat conduc-
tion propagator:

Y G, (rn0+ m2mr,647)

m= —

= (47r) " exp[ — (P +1r§)/47]

X Y eme-ey (—’21;’-) =Gp(r,1,). (7.3b)
This PIRS description actually provides an alternate repre-
sentation of the free-space results discussed in Sec. II.
Notice that for the scatterimg problem where 8 = + 1,
P__and P_ are copies of the upper half-plane of R? so that P,
is a double covering of the upper half-plane, not R? itself.
Thus, even though the preimages of (7, 8) are (7,0 + m27),
m=0,41,4+2,.. and the folding (7.3a) gives
K(rr,) = Kp(r, 1y), an image source is present on P_ and
Eq. (5.6) returns the exact solution to the infinite ground
plane problem, not the free-space propagator itself.
Comparing the PIRS solutions of the free-space and the
wedge problems, the modification of the free-space path set
by the presence of the wedge has been modeled simply by
constructing the P_ space from replicas of the wedge P,.
This modification was responsible for reproducing the dif-
fraction effects. In particular, it led to the evaluation of the
P_ solution K_ at the resultant preimages (7,0 + mQQ),
m=0,+1, 4+ 2,.,of (#, 9), hence,to the propagator (5.4)
and the associated image term. This path set modification
concept has been used in a companion paper?® as the basis for
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a path-integral derivation without discretization of the solu-
tion to the diffracting half-plane problem.

Next, the PIRS approach will be connected to several
standard quantum mechanical PI methods. This discussion
is facilitated by focusing attention on the related results for
the heat conduction version of the wedge problem. The P,-
space propagator for the heat conduction problem corre-
sponding to the original diffraction problem is

G(r,ryT) = i G (r, 6 4+ mQ,ry,6,7)

m= —

@

f Ao~ 6+ "'m& (r, re;7) dA .
o (1.4)

Clearly, it is connected to the propagator K (r, r,) through
the relation

m= — oo

K(r,ry7) =f &G(x, royr)dr .
C

Therefore, with 8.424.1 from Ref. 21, expressions equivalent
to (7.4),

G(r, ry;7)
1 ed . m a .
=E 2 exp I—B‘ (0_00) m/ﬁ(r’ rO’T)

=(4mPr) ' exp[ — (© +13)/47]

d rr m
I —2) [-—0—0 ] (7.5)
and
G(r, tyr) = (i/4m) (e~ " P /4rr)
XJ exp[—r—rgcos a] xpla,60—6,)da,
4 2T
(7.5")

can be extracted from the results presented in Sec. V. They
agree with those reported in Ref. 27. These representations
of G(r, ry;7) accommodate several PI interpretations dis-
cussed in the literature. Of course, the expressions for the
diffraction propagator will acquire similar explanations.
Notice, for instance, that (7.4) can be rewritten as

G(r,ry7) = f Y4 (r, ro;7)do , (7.6)
where
G4 (r,1557) 7
= z 5(¢ — [0 —6,+mQ])
X F (A [Ga(r7)] » 1.7
and as
G(r,17) = i G, (r,ry7), (7.8)
where
Grn (l', ro;T)
= [ dhexplin(d 6o+ m1G, (1)
T (7.9)
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The delta function that appears in Eq. (7.7) selects out the
probability function (7.9) associated with a particular set of
topologically equivalent configurations of the paths with
¢ = (0 — 6,) + mQ. The resultant sum (7.8) extends over
all the inequivalent sets contained in the original path set.
This explanation has been advocated, for example, by Ino-
mata and Singh."> Another interpretation follows Schul-
man’s point of view given, for example, in Ref. 3. The origi-
nal path set in P, can also be decomposed into classes of
homotopically equivalent paths labeled by the intersection
number, n(y,2), of their elements ¥ with X. This intersec-
tion number is defined as follows. Let 2 and 2 _ be, respec-
tively, the wedge faces =87 and 6=0 so that
2 =3_UZ_. Let an intersection of a path ¥ with 2 be
positive if y traverses X, in the direction from P, to P_,
negative if from P_ to P, and with 2 _ be positive if the
crossingis from P_ to P__, negative ifits from P to P_. Also
let n (7, C) and n_(y, C) be the number of positive and
negative crossings of C'by y. Then the intersection number of
a path ¥ connecting r, tor in P, is

n(7/9 2) = [n(7,2+) +’l(}’, 2_)]/2 (7.108.)
where
ny,C)=n,(y,C)—n_(7,C). (7.10b)

The function G,, then represents the contribution to the pro-
pagator from those paths whose intersection number is m.
These points of view are equivalent and coincide with the
previous preimage description. In particular, the projection’
onto P, of a path connecting r, to the preimage
r,, = (r, @ + mQ) of r coincides with a path ,, whose inter-
section number is m. Moreover, since P, is isomorphic to
R\ {0}, the punctured disk, ¥,, is isomorphic to a path in
R2\ {0} whose winding number with respect to the origin
{0} is m. Then mimicking Schulman,** the term G,, also
represents the contribution to the propagator from the paths
whose winding number is m.

In Refs. 13 and 14, the path integrals are evaluated di-
rectly using the homotopically equivalent path set decompo-
sition. This is accomplished by introducing a constraint into -
the path integral that distinguishes inequivalent homotopy
classes. This “constrained path integral” (CPI) approach
realizes a path integral of the form

W, (r rg7) =J exp[ — S, (r,17)] Dy, (7.11)
T
where the action

S, (v, xe;7) =f (%l'2 + M@)dt-:*E(/l) + il fA-i‘dt.
Q (V]
(7.12)

As noted in Refs. 12-16, the introduction of the linear term

—id f5A -t dt, where A = ( —y, x)/(x* + %), in the ex-
ponent of (7.11) facilitates the separation of the homotopy
classes. The path integral (7.11) is evaluated by discretiza-
tion; the desired propagator is finally generated through the
expression [= _d@ [ _dA e**W, (r, 1, 7). Since the lin-
ear term in (7.12) is equal to —id §,d60 = —id(6 — 6,)
and since the constraint and the folding schemes are analo-
gous (as noted above), it is recognized that the PIRS and the

Richard W. Ziotkowski 2277

Downloaded 21 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



CPI approaches are interrelated. Consequently, it may be
possible to extend those problems (quantum mechanical
and statistical problems, entangled polymer chains, poten-
tial interactions, etc.) to ones involving more general Rie-
mann surfaces like the ones considered here, thus accommo-
dating other physical phenomena. For instance, one obtains
an interesting conclusion from the solution of the Ahar-
onov-Bohm problem,?® which considers quantum mechani-
cal interference effects resulting from potentials in regions
where the field is null. Path integral solutions to that prob-
lem were considered*'*~'¢ from the point of view of electron
paths encircling a singular point in a multiply connected
space. In particular, the solution to the Aharanov-Bohm
problem satisfies on R?\ {0} the Schrodinger equation?®

{0, — (/) [32 + 773, +r 2 (9, — ia)?]}
XW(r, rym) =6(r —r)6(71), (7.13)

in the gauge 4, =0, 4, = ¢/27r, where ¢ is the “flux” of A
through any circuit containing the origin (or equivalently,
the flux of the corresponding magnetic field through a sur-
face whose boundary is a circuit) and @ = e¢/2#ic. It can be
represented as

W(r, ry;7)

>

m= — o

fw dA expli(A +a)(0 — 6y + 2mm) ]

X, (o rgifir/ ) = S W, xa1)

(7.14)

which is a variant of the CPI expressions derived in Refs. 13—
15. The corresponding P,-space problem has the solution

w(r, ry7)

-5

m= -— co

JW dA expli(A + a) (@ — 6, +mQ)]

X G, (r, roifir/2u) . (7.15)
Interference between the partial propagators W, and W,
(m#n) of (7.14) produces observable interference patterns
that depend upon the encircled flux and the topological
winding number.'>**2° On the other hand, quantization of
the flux ¢ encircled by the paths can be inferred from the
total propagator (7.14) by applying the (two-dimensional)
arguments given in Ref. 13. Letting the singular point repre-
sent a magnetic monopole with flux ¢ = 47g and setting
r =r', self-consistency requires 27a = integer X 27 = 27n
so that the quantization condition derived by Dirac,?!
g = n(fic/2e), is recovered. Similar arguments applied to
(7.15) yield @) = 27n or g = (n/B) (#ic/2e), which means
the wedgelike solution corresponds to fractional charge
quantization. This result is extended to more general frac-
tions simply by incorporating Riemann surfaces with more
sheets. For instance, a Riemann surface P, constructed from
three copies of P would make £} = 3(8) and then a choice
of B =2 would give g = (n/3) (57.5¢). Thus, the PIRS ap-
proach may have some applications in the analysis of quan-
tum field problems involving fractionally charged particles
such as quarks.

The special case of the half-plane problem (8=2)
leads to another very interesting characteristics of the P,-

2278 J. Math. Phys., Vol. 27, No. 9, September 1986

space heat conduction and wedge propagators. These half-
plane propagators, denoted explicitly by G, and X,, have the
forms

Gy(r, r;7) = (87r7) ~' exp[ — (P + r5)/47])

=)

X i emlm,z(rro/ZT)cos[m(
m=0

(7.16)
Kol 1) = 5 el hr, JH Y Chr, )
Xcos[m((6 — 6,)/2)] . (7.17)

For example, with (4.9), (3.6), and the relations 8.406.1,
8.476.4, and 8.511.4 of Ref. 21,

@

exp(xcos @) = > €,1,(x)cos(mg),

m=0

the expression (7.16) yields the relation

(7.18)

GZ(r’ 0 + 27;’0900;7.)

1 & ~ 6—6
5 mzo €,G,. 2 (1, 1y r)c.os[m( > + mw
} 3. raeneoln(®5%)

— % S G, (r, ro;r)cos[m(e _2 00)]

dd m

= i G (rrgr)cos[m(6 — 6,)] — G, (7,6,r0,65;7)
m=0

= Gg(r r;7) — Go(7,0,r0,00;7)

or
G,(r,0 + 2mrgir) = — Gy(n0xg;7) + Ge(rrT) .
(7.19)
This also means
G, (1,0 + 47,70,00;7) = G,(1,0,r0,04;,7) . (7.20)
Similarly, the half-plane propagator satisfies
K, (ri0 4+ 2mry) = - K, (r,0x,) + Ke(rry), (7.21)
K, (r,0 + 4mry) = K, (r,6;1,) . (7.22)

Treating G,(r,0,2m;x,) and G,(r,0;1,) as the values of differ-
ent branches of G, at corresponding points, Eq. (7.19) dem-
onstrates that the half-plane propagator itself exhibits the
multivalued solution property:

G, (r6ixy) + Go(r,0 + 2mxy) = Gr(r,xy) . (7.19")

In the half-plane problem £ is actually a branch line, 3 ,
being its “bottom side” and 3 _ its “top side.” Equation
(7.20) expresses the continuity of G, during the transition
through 2 _ from P_ to P, . On the other hand, evaluating
(7.19) at 8 = ¢, 0 <€<1, one obtains the transition condi-
tion

Gy (r2m + €15) = — Gy(r&ry) + Ge(rry) ,  (7.23)
for the values of G, on opposite sides of the branch line =, the
point (r,€) beingin P near 3 _ and (7,27 + €) beingin P_
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near X . Equation (7.23) is also recognized as the transition
condition for a Riemann—Hilbert problem'! for G,. The — 1
coeflicient of the transition condition indicates a square root
behavior of G, near the edge of the half-plane. The corre-
sponding diffraction propagator K, (r,r,) clearly also shares
these properties. They are discussed in detail in Ref. 26. No-
tice, in particular, that requiring X, to be bounded at r =0
and interpreting the K, version of (7.23) as a Riemann-
Hilbert problem leads one to Meixner’s edge condition®?

lim K, (r,r,) ~ & (r'?) .
s

This square root behavior also reinforces the choice of the
two-sheeted P,-space for our analysis,

Similarly, consider the value of G, as r traverses a closed
path in the original problem space, where (r,0)
= (r,60 mod 27), that encloses the edge. If the path has an
even winding number, Eq. (7.20) implies that the values of
G, at the coincident end points of the path are identical,
hence that G, returns to its original value along a double
loop. On the other hand, if its winding number is odd, Eq.
(7.19) returns different end-point values. The propagator
G, does not return to its original value along a single loop but
to its negative modified by G. Thus, the monodromy group
associated with the half-plane problem is {1, e™ = — 1},
which is also characteristic of the square root behavior and
again indicates the desirability of the two-sheeted P,-space.

Analogous solution characteristics were utilized by Ka-
donoff and Kohmoto in their treatment> of the two-compo-
nent spinor correlation function. There, the SMJ (Sato,
Miwa, and Jimbo) analysis of the two-dimensional Ising
model in terms of the solutions to a two-dimensional version
of the Dirac equation and extensions of their analysis were
discussed. Since the two-dimensional Dirac and Maxwell
equations havae similar forms, the PIRS approach should
have applications in statistical mechanics problems as well.

In addition, because potential and heat equation prob-
lems are interrelated (probabilistic potential theory**), po-
tential problems and the techniques that have been devel-
oped to solve them may also prove to be very useful for
analyzing the corresponding scattering problems. This con-
cept was first noted by MacDonald.>® In particular, a P_ -
type analysis of the wedge-potential problem given by Davis
and Reitz®S leads to a solution that is readily connected to
the corresponding wedge diffraction solution. Let

A, (o, ¥)=172m)(1/ (¥ + @),
so that

A(a’ ¢) =A+ (a, ¢) _A_ (a’ ¢) s

and let ¥ ;[R(8 — 6,)] be the free-space Green’s function
for a particular equation (Helmholtz, heat conduction, and
Laplace operators in two or three dimensions). The P, -
space propagator in any of the corresponding (straight)
wedge problems can then be represented in the form

K_(rr,) = f G .[R(6—6,))A(a,0 —6y)da ;
* (7.24)
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hence, the associated P,-space result is
K(r,r 0)

-5

m= —

A

=LJ G IR(6— 0,) 1ys (@6 — Op)dar.  (1.25)
47 Ja

On the other hand, numerical solutions to general potential
problems have been constructed based upon path-integral
concepts. Generalizations of these schemes to the PIRS
point of view would allow solution, for instance, of the
curved diffracting wedge problem (see Ref. 37, for exam-
ple). A coordinate net could be constructed in a P,-space
corresponding to the exterior of the wedge, and the paths
and their contributions to the path integral could then be
computed numerically in a manner similar to the general
potential problem approach. Such a numerical scheme
would greatly extend the applicability of the PIRS tech-
nique.

Finally, Schulman?®® has remarked that the use of the
Riemann surface in connection with path integrals is “an
embarrassment to purists.” On the contrary, as demonstrat-
ed in this paper, the PIRS approach is natural and essential
for problems in which boundary surfaces or constraints are
present. The RS removes the boundaries or constraints thus
allowing the PI to be calculated over a path set having no
special restrictions. The RS can then be viewed as containing
the PI’s original path set information, hence, as arising from
a purely path integral context.
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FIG. 4. Deformation of the modified Bessel’s function contour.
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APPENDIX: DERIVATION OF THE RADIAL PORTION OF
THE P, PROPAGATOR

To generate Eq. (4.9) from Eq. (4.8), first consider the
integrations over the angle variables. A typical one has the

form
N

G,_ (r,rg;7) = lim ——(26)
N—oo 17'

+77 e TN N-1
2 fon] = $ 22] g (). (22t)
I f p ,—1 I\ e R\ e ,~I=-[x 1 @7;

Si(x) =f dy exp(x cos y — idy) , (A1)
where x and A are real numbers. On the other hand, the
modified Bessel’s function is given by 6.22.3 in Ref. 39 as

o + imr
1 dw exp{x cosh w — Aw] .

L(x)= (A2)

o — i
As shown in Fig. 4, the contour of integration is taken to be
— I 4 00—> — Ir—>ir—iT + 0.

Assuming that A and x are non-negative, the contours
parallel to the real axis can be deformed to the ones shown in
Fig. 4. The contribution from the arcs at infinity are zero
leaving only an integral along the imaginary axis. A change
of variables then gives f; (x) = 277, (x). Thus, Eq. (4.8)
becomes

(A3)

The non-negativity of the order of the modified Bessel’s function has been assured by restricting 4 to its absolute value.
Since for Re(n) > — 1 and Re(£) > 0 (see Ref. 21, 6.633.4),

= 1 a*+b? ab
— ExHI, I (bx)xdx=— ( )I(—-—-), A4
L exp( — €x*)1, (ax)I, (bx)x dx 2% exp T "\ 2 (A4)
it is readily shown that the jth integration in (A3) yields
e[ el = () b (2 (%)
I dr;
F ia) j o) "\ & "\ 7; @r;
_ ! ( Jja ) ["rcz) s j+l] [ 7 Jja ]
= — - exp] - + Iyl—=——
i \j+1 J(2a) G+ DQa) 1+1/(2a) ja a (j+1)
- vl )b (el as
JHL (1+1)(2a) j+1 )/ G+ e (4%)
where a = 2¢. Therefore, because Na = 2Ne==27, Eq. (A3) becomes
1 —A\fa¥? (N-— l)F rat,
Gutrrgr) = lim —a~ e"p( 2 ){aN exP( 2Na) [ ]I'“( v 0)]
— (P41 —(P+n
=mww[”1wﬂ“WWF%%M$ 4o

A physical explanation of the restriction that A be non-nega-
tive is now apparent. It corresponds precisely to the physical
property that the propagator (A6) be finite as »—0;i.e., J _;
is proportional to K; , which becomes infinite as its argu-
ment nears zero. Note that a generalization of this procedure
was developed in Ref. 40 and was used in a similar fashion in
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