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Abstract:  The optical properties of a concentric nanometer-sized spherical 
shell comprised of an (active) 3-level gain medium core and a surrounding 
plasmonic metal shell are investigated. Current research in optical 
metamaterials has demonstrated that including lossless plasmonic materials 
to achieve a negative permittivity in a nano-sized coated spherical particle 
can lead to novel optical properties such as resonant scattering as well as 
transparency or invisibility.   However, in practice, plasmonic materials 
have high losses at optical frequencies. It is observed that with the 
introduction of active materials, the intrinsic absorption in the plasmonic 
shell can be overcome and new optical properties can be observed in the 
scattering and absorption cross-sections of these coated nano-sized 
spherical shell particles. In addition, a “super” resonance is observed with a 
magnitude that is 310  greater than that for a tuned, resonant passive nano-
sized coated spherical shell.  This observation suggests the possibility of 
realizing a highly sub-wavelength laser with dimensions more than an order 
of magnitude  below the traditional half-wavelength cavity length criteria.  
The operating characteristics of this coated nano-particle (CNP) laser are 
obtained numerically for a variety of configurations.  

©2007 Optical Society of America  

OCIS codes: (290.4020) Mie Theory; (140.3380) Laser Materials; (999.999) Nanophotonics; 
(999.999) Metamaterials.  
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 1. Introduction 

Optical metamaterials show the potential for realizing new, interesting and useful optical 
phenomena that can be designed to meet specific applications [1]. To realize some of the 
interesting properties of optical metamaterials, it is necessary for the electric permittivity 
(ENG metamaterials) or the magnetic permeability (MNG metamaterials) or even both of 
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them (DNG metamaterials) to take on negative real values [2].  One of the conveniences of 
nature is that there are naturally occurring materials exhibiting negative permittivities at 
optical frequencies. On the other hand, one of the major obstacles in realizing metamaterials 
at optical frequencies is the lack of naturally occurring media exhibiting any magnetic 
response. It has been shown at microwave frequencies that a magnetic dipole moment can be 
induced and overall magnetic responses realized by imbedding in a non-magnetic host 
material, inclusions made from non-magnetic materials of appropriate designs (parallel nano-
wires, split ring resonators, etc).  It has also been demonstrated theoretically that by arranging 
nano-spheres in a ring configuration to create an “optical nano-circuit” [3], a magnetic dipole 
moment can be realized at optical frequencies via the displacement current induced in the ring 
by the incident optical field. Other interesting and desirable optical properties of nano-shells, 
which also require the use of negative permittivity and have been demonstrated, include 
resonant source and scattering configurations [4], as well as transparency and invisibility [5], 
[6-9]. Using the polarizability of the individual inclusions, one can realize effective electric 
permittivities and magnetic permeabilities that govern the electromagnetic response for waves 
interacting with the medium.  

Recent work on resonant electrically-small concentric spherical shells [10-12] has 
demonstrated that these structures have highly tunable polarizabilities. At optical frequencies 
the sizes of these spherical structures are on the order of tens of nano-meters making them 
attractive candidates for use as inclusions in potential realizations of optical metamaterials. 
Current nano-fabrication capabilities have been used to successfully synthesize nano-shells, 
and many of their optical properties have verified experimentally [10]. To achieve the 
resonant tunability of spherical nano-shells at optical frequencies, one must incorporate 
plasmonic materials, such as metals, in the shells. Unfortunately, the polarizability of these 
structures is dominated by high losses at optical frequencies due to the absorption in these 
plasmonic materials. In an attempt to counter these intrinsic losses we have investigated the 
use of active media in multi-layered spherical plasmonic nano-shells.   

There have been a number of recent studies, both theoretical and experimental, that have 
considered the influence of active media on nano-sized plasmonic particles, for instance, to 
overcome the large losses associated with metals at optical frequencies in scattering 
applications. The gain media considered have been generally dyes [13]-[16] and quantum 
dots [17]-[19]. The scattering configurations emphasized in these efforts have dealt with the 
partial or total immersion of the metallic nano-particles in the dyes or the placement of the 
metallic nano-particles in close proximity to the quantum dots.  Most have dealt with silver as 
the metal; while others have emphasized gold.  The use of rare-earth doped silica will be 
emphasized in this paper because this active medium will be surrounded by a metallic shell 
and, as a consequence, it may be the most compatible with existing coated nano-particle 
fabrication techniques. 

We have used passive media models based on lossy dispersive materials to match the 
demonstrated properties of successfully synthesized passive plasmonic nano-shells.  We have 
also developed active media models for several optical gain materials that have been 
successfully incorporated into these passive materials.  We have then used these optical gain 
media to investigate their ability to overcome the losses associated with the spherical 
plasmonic nano-shells.  We will demonstrate that a properly designed passive optical 
spherical core impregnated with a gain medium and coated with a concentric spherical 
plasmonic nano-shell will have a lasing state. The operating characteristics of this coated 
nano-particle (CNP) laser have been obtained numerically for a variety of configurations and 
will be reported here. 
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2. Electrically small resonant scattering structures  

2.1 Mie theory  

The theory of plane wave scattering from an isotropic sphere was originally presented by Mie 
and extended to the more general case of concentric spherical shells by Aden [20] and others. 
For a linearly polarized plane wave incident on a concentrically layered spherical particle, the 
electric and magnetic fields in each region can be expanded into vector spherical harmonics. 
Enforcing the electromagnetic boundary conditions, i.e., the continuity of the tangential 
electric and magnetic fields at each interface, the scattered field coefficients are obtained.   

From the scattered field and incident field the scattering cross-section and absorption 
cross-section are defined via Poynting’s theorem. The scattering cross-section is defined as 
the total integrated power contained in the scattered field normalized by the irradiance of the 
incident field and the absorption cross-section is defined by the net flux through a surface 
surrounding the concentric shells normalized by the incident field irradiance, and is thus a 
measure of how much energy is absorbed by the concentric shell structure. The absorption 
and scattering cross-sections can be expressed via Poynting’s theorem through the scattered 
and absorbed powers, which are given, respectively, by the following expressions: 
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where S is a sphere that surrounds the particle and n̂  is the unit outward pointing normal to 
that surface. The incident, scattered, and total fields will be labeled by the subscripts inc, scat, 
and tot, respectively. The total scattering cross-section, absorption cross-section and 
extinction cross-section are thus defined from the ratio of the scattered or absorbed power to 
the incident irradiance Iinc, and can be expressed in terms of the scattered field coefficients as: 
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where 2 /oβ π λ=  when the particle is embedded in free space, λ  being the wavelength of 

the source. The scattering and absorption efficiencies are then defined as the ratio of the 
corresponding cross-section to the geometric cross-section of the particle.  
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where 1r  and 2r  are, respectively, the inner and outer radii of the shell respectively.  
The scattered field coefficients can be determined by solving a system of equations 

derived from matching the tangential components of the electric and magnetic fields at the 
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boundaries of the inner and outer surface of the spherical shell as in [20]. The resulting matrix 
equation takes the form: 

 

 [ ] [ ] [ ]0
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TE TETE

TM TM TM
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M B f
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where [ ]M  is the scattering matrix, which consists of combinations of the expansion 

functions and their derivatives evaluated at the boundaries; [ ]C  is a vector containing the 

coefficients of both the TE and TM field components in each region; and [ ]F  is the forcing 

vector defined by the incident plane wave at the outer boundary of the particle. As indicated, 
the scattering matrix can be expressed as a block diagonal matrix with sub-matrices which 
individually describe the TE and TM fields.  Consequently, the TE and TM scattered field 
coefficients can be obtained independently. Applying Cramer’s rule, the scattered field 
coefficients can be expressed as the ratio of determinants: 
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where ( )TE TEM f� and ( )TM TMM f�  are the TE and TM sub-matricies with the first column 

replaced by the sub-vectors TEf  and TMf , respectively.  The coefficients thus depend 
explicitly on the material functions ε  and μ  in each region; the inner and outer radii of the 

CNP shell: 1r  and 2r ; and the wavelength. It is apparent that when the determinant in the 
denominator approaches a minimum, a resonance in the scattering parameters of these CNPs 
and, as a result, for example, their total cross-section can occur.  It has been shown [10, 11, 
21] that the resonance condition depends on the ratio of the core radius to the total particle 
radius as well as on the properties of the core, shell and surrounding medium. Aside from 
their existence, a very attractive characteristic of these electrically-small resonances is their 
explicit dependence on the shell radii. This property allows for the tunability of their 
frequencies by changing the geometry. Consequently, these tunable electrically-small 
resonances are of interest when considering these CNPs for applications, as well as for 
inclusions in optical metamaterials. The design of the CNPs described below was thus 
accomplished for a desired value of the resonance wavelength by determining the radii ratio 
for given core and shell materials. To illustrate the design and tunability of a CNP, Log plots 
(base10) of the absolute value of TE

na , TM
nb , det[ ]TEM  and det[ ]TMM  are shown in Fig. 1 as 

functions of the ratio of 1r  and 2r  at 510nmλ =  when 2r  is fixed at 2 30r nm=  for a silver 

nano-shell surrounding a silica nano-core, which has 02.05ε ε= . In the design of the CNPs, 
the dependence of the resonance on losses was also investigated. The determinant of the 
denominator for the shell material being modeled with both a lossy and lossless bulk silver 
dielectric function are compared in the bottom right plot in Fig. 1(d).  From this result one 
notes that there is a negligible, if any affect on the resonant geometry when losses are 
introduced into a CNP design.  

At 510nmλ = , it is seen that the denominator in the TM coefficients attains a minimum 
at the radii ratio, Rr = 0.8, which corresponds, respectively, to a core radius and outer radius 
of 24nm and 30nm. This minimum coincides with the maximum in the TM scattering 
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coefficients TM
nb . We note that this minimum is caused by the fact that the imaginary part of 

the determinant goes to zero at this radii ratio while there is no dramatic change in the real 
part.  Notice that the TE scattering coefficients, TE

na , do not exhibit a resonance, but they do 

have a maximally reduced resonance near the radii ratio of 0.97.  Similarly, TM
nb  has a 

maximally reduced resonance near the radii ratio 0.95. Such non-scattering states have 
recently gained attention for use in metamaterials for achieving invisibility [5]. The 
wavelength tunability of the electrically small resonances associated with varying the radii 
ratio of the CNPs is demonstrated in Fig. 2, with the silver-silica CNP. Due to the losses 
inherent in silver, as will be discussed below, the designs favorable for active CNPs using 
silver shells fall near 510nmλ = .  Thus we have selected the radii ratio of Rr=0.8 for all of 
the silver-based CNP simulations reported here.  
 

 
 
 

Fig. 1. Dependence of the terms in the scattering coefficients as a function of the radii ratio for 
a Ag-SiO2 CNP, (a). TE coefficient, (b). TM coefficient, (c). TE coefficient denominator, and 
(d). TM coefficient denominator.  In d) both lossless (red, solid curve) and lossy (blue, dashed 
curve) bulk Ag results are given.   

 

a) b) 

c) d) 
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Fig. 2. Wavelength tunability of the TM resonance of the Ag-SiO2 CNP by varying the radii ratio. 

2.2 Resonant electrically small spheres  

In recent years there have been several investigations on the effects of multi-layered 
metamaterial spheres and their use for enhancing electromagnetic phenomena. At radio and 
microwave frequencies, it has been shown that large enhancements are attainable in the 
radiated power from a dipole antenna located arbitrarily near to or centrally within concentric 
spherical metamaterial shells [12], [22-24]. In addition to enhancing the radiated power it has 
also been found that there are situations where there is a drastic reduction in the radiated 
power from the dipole antenna, i.e., there exist not only enhanced radiating states but also 
non-radiating states [21, 25]. 

Analogous to the radiated power enhancements obtained with concentric spherical 
metamaterial shells, it has also been shown that there are reciprocal enhanced scattering states 
[23]. These resonant scattering states have been recognized previously [10, 21]. Analogous to 
the non-radiating states associated with the radiating dipole antenna in the presence of a 
metamaterial shell, extremely low scattering states also exist. In fact a great deal of recent 
attention has been given very recently to the so-called “transparency” or “invisibility” effect 
[5, 6-9, 11]. 

2.3 Optical excitation  

Recent work has investigated the use of optically tunable resonant passive nano-spheres for 
biomedical and optical applications. Projected uses for these nano-shells range from 
exploiting their tunability for contrast agents in early cancer detection [26, 27] and for drug 
delivery, to creating near infrared, highly absorbing particles for use in a photo thermal 
ablation therapy for cancer treatment [27]. Optically tunable plasmonic nano-shells have been 
successfully synthesized with spherical dielectric cores surrounded by thin metallic coatings 
for a number of years. Dielectric-core gold nano-shells have been successfully synthesized, 
and their optical tunability has been verified experimentally [10]. In these particles gold nano-
shells with thicknesses as thin as 2nm surround a gold sulfide AuS2 core. Tunability from 
550nm to 950nm was demonstrated using particle radii ranging from 4nm to 17nm, 
respectively.  Tunable gold nano-shells made with a silica core have also been successfully 
synthesized and their optical properties experimentally verified [27]. Tunability was 
demonstrated for larger spheres with a 60nm core size and shell thicknesses ranging from 
5nm to 20nm to cover the wavelength range from 750nm to 1000nm in which the resonance 
was observed to shift to longer wavelengths as the core to shell radius ratio increased.  In 
addition to gold-silica nano-shells, silver coated silica nano-shells with core radii of 40-
250nm and shell thicknesses of 10- 30nm have also been successfully synthesized and optical 
properties experimentally verified [28]. It was demonstrated that these silver-silica nano-
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shells exhibit tunable plasmon resonances at shorter wavelengths with a 10% larger 
enhancement than for gold-silica nano-shells and, therefore, can be used to cover a wider 
portion of the optical spectrum.  

2.4 Nano-scatterers  

In this section the optical characteristics of nano-shells will be discussed in more detail. 
Optical nano-shells possess tunable resonances where the enhancements in the extinction 
cross-section are attributed to the optical field coupling to plasmon modes of the metal shell.  
In the cases of lossless materials the extinction cross-section is dominated by light scattered 
by the particle and is equal to the scattering cross-section. Material absorption must be 
present for a finite absorption cross-section and only then will it contribute to the extinction 
cross-section of the particle.  When material absorption is present enhancements in the 
absorption cross-section of the particle can occur as well. The intrinsic properties dominate 
the extinction in the quasi-static regime, 0 1aβ � , where the scattering cross-section and 
absorption cross-section are dominated by the dipole terms. Differences in the contributions 
to the extinction cross-section from scattering and absorption result from extrinsic and 
intrinsic optical properties of the nano-shells. Intrinsic effects dominate in the quasi-static 
regime and extrinsic effects become non-negligible for nano-shells with dimensions larger 
than the quasi-static limit. Larger spheres that incorporate lossy materials tend to be 
dominated by scattering and less by absorption when compared to smaller nano-shells of 
similar structure. Nano-shells which fall into the quasi-static regime are mostly dominated by 
absorption due to predominant coupling to the lowest order dipole plasmon mode. For larger 
spheres, phase retardation effects are more significant and therefore optical fields can couple 
to higher order plasmon resonances, which correspond to higher order multipole fields. This 
increase in coupling between the optical field and plasmon modes of the nano-shell results in 
extinction cross-sections dominated by scattering rather than by absorption for larger particles 
[29, 30]. The extinction cross-section spectrum in these two size regimes is different as well. 
For smaller spheres only one plasmonic resonance is dominant.  On the other hand, for a 
larger particle not in the quasi-static regime, i.e., where 0 1aβ ≥ , higher order plasmon 
resonances corresponding to higher order multipoles can be excited in the scattered fields.  
Consequently, multiple resonances can occur. Due to the increases in the scattering and phase 
retardation effects, the widths of the resonances are wider in larger particles than they are for 
smaller spheres [29, 30]. Such differences in absorption and scattering are important when 
considering lossy plasmonic nano-shells for optical regime applications. 

In our investigations of active nano-shells we felt it was important to consider optical 
materials that not only have properties suitable for realizing resonant nano-shells, but that also 
have been shown to be realistically synthesized into nano-shells. As mentioned above nano-
shells have been successfully created using combinations of gold and silver as materials for 
the metal shells and of gold sulfide and silica as the dielectric core material. For this reason 
we have used silver, gold and silica in our models. In modeling these nano-shells both the 
extrinsic and intrinsic optical properties of these nano-sized particles must be considered. 

3. Optical Material Properties 

3. 1 Passive media 

Due to the nano-scale dimensions of the particles under investigation, accurate modeling of 
the optical properties of the nano-shells requires that one takes into account the size 
dependence of the materials used in making these structures. The size dependence of the 
optical properties of nano-scale particles can be classified as either extrinsic, i.e., if the size 
effects arise predominantly from electro-dynamic effects, or intrinsic, i.e., if there is an actual 
change in the optical response of the materials that comprise the particle. In our layered nano-
particles the gold and silver plasmonic shells exhibit significant intrinsic size dependencies. 
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We have used empirically determined bulk values for the permittivity of gold and silver at 
optical wavelengths between 200nm to 1800nm [31, 32]. Following the approach in [30], the 
permittivity is decomposed into a size dependent Drude response and an interband transition 
response as follows:  
 ( , ) ( , ) ( )Drude IntBandR Rε ω ε ω χ ω= +  (11) 
where the term R is the thickness of the metal shell and the Drude permittivity is given by the 
expression, 

 
2 2 2

2 2 2 2

( )
( , ) 1

( ) ( ( ) )
p p

Drude

R
R i

R R

ω ω
ε ω

ω ω ω
Γ

= − +
Γ + Γ +

 (12) 

where pω  amd Γ  are, respectively, the plasma and collision frequencies. 

The size dependence is treated as an effect which arises when the size of the material 
approaches the bulk mean free path length of the conduction electrons in the material. It is 
treated as an alteration in the mean free path which is then incorporated into the Drude model 
as a size dependent damping frequency.  In particular, the damping frequency is assumed to 
take the form, 

 
A V

( ) FR
R∞Γ = Γ +  (13) 

where A is a constant term assumed to be approximately unity, i.e., A ~1.  The term FV  is the 
Fermi velocity. The Drude parameters and the Fermi velocity values used in our simulations 
for silver and gold are given in Table 1, 
 
 

Table 1. Gold and Silver material model constants 
 

 * /m m  
Kg 

N  
28 310 m−  

pω  
16 110 s−  

∞Γ  
13 110 s−  

FV  
610 /m s  

A 

Gold 0.99 5.90 1.39863 3.30952 1.39 1 
Silver 0.96 5.85 1.39269 2.67308 1.39 1 
 

In addition to increasing the real part of the permittivity, the most significant size 
dependent effect of consequence for considering resonant nano-shells is the large increase in 
optical loss as the material size decreases to dimensions on the order of tens of nanometers. 
This is shown in Figs. 3 and 4, for both gold and silver. The blue line in each figure depicts 
the permittivity values for the bulk metal, and the black lines indicate increasing material 
dimensions ranging from 2-100nm.  The figures indicate that as the dimension decreases, the 
magnitude of the real and imaginary parts increase.  Due to the reduction of the mean free 
path of the Drude electrons in the thin nanometer thick shells, the collision frequency 
increases.  Therefore, more of the kinetic energy is dissipated as heat, which results in an 
increase in the optical loss. This increased optical loss must be taken into account when one 
chooses an appropriate medium with sufficient gain to compensate for the losses of the size 
dependent plasmonic shells. 

The size dependence of the plasmonic metal shells alters the resonance characteristics of a 
passive nano-shell.  The most notable effect is a broadening of the resonance and a 
corresponding reduction in its strength. When a bulk dielectric function is used for the shell 
model, the position of the resonance in not significantly affected by the size dependent 
properties. Comparing the bulk and size dependent models of the shells, one finds that the 
resonance position of the complete model is shifted significantly when the interband 
transition contributions are neglected and only the Drude component of permittivity is 
considered. This property is shown in Figs. 5 and 6, where the absorption and scattering 
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efficiencies for gold coated and silver coated silica passive nano-shells are shown.  The 
results for the Drude, bulk, and size dependent permittivity models are presented.  Because of 
the large amplitude differences in these cases, these efficiency values were also normalized to 
one.  These normalized values are also presented in these figures; they clearly show the 
locations of the resonances predicted with these models. The size dependent effects are seen 
in both the scattering and absorption cross-sections. For the Au-SiO2 case, the shell thickness 
is 2nm with 1 22.5 nmr =  and 2 24.5 nmr = , while the shell thickness is 6nm for the Ag-SiO2 

case with 1 24.0 nmr =  and 2 30.0 nmr = .  These results strongly emphasize that using only a 
size-independent Drude model to simulate the material properties of a CNP neglects 
important physical effects which significantly impact its scattering and absorption 
efficiencies. 

 

 
 
 

Fig. 3. Size dependence of the permittivity of gold. 
 

 

 
 
 

Fig. 4. Size dependence of the permittivity of silver. 
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Fig. 5. The effects that different Au models have on the efficiencies for the Au-SiO2 passive 
CNPs are compared. Drude, bulk, and size dependent models of the Au are shown. (a) 
Comparison of the normalized efficiencies to show the location of the resonances, (b) 
Comparison of the unnormalized efficiencies to show the dominance of the Drude results, and 
(c) Comparison of the unnormalized bulk and size dependent efficiencies to show that the size 
dependent, i.e., the most physical nano-scale model, results produce the lowest level, largest 
bandwidth resonance. 

(a) 

(b) 

(c) 
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Fig. 6. The effects that different Ag models have on the efficiencies for the Ag-SiO2 passive 
CNPs are compared. Drude, bulk, and size dependent models of the Ag are shown. (a) 
Comparison of the normalized efficiencies to show the location of the resonances, (b) 
Comparison of the unnormalized efficiencies to show the dominance of the Drude results, and 
(c) Comparison of the unnormalized bulk and size dependent efficiencies to show that the size 
dependent, i.e., the most physical nano-scale model, results produce the lowest level, largest 
bandwidth resonance. 

 
In modeling active nano-shells we have considered both canonical gain models and 

models that resemble those which have been successfully incorporated into materials used in 
the synthesis of passive optical nano-shells. For our investigations of the core permittivity 
parameter space for the theoretical gain medium, we have used a general permittivity model 
described in terms of the real part of the refractive index, n, and the imaginary part of the 
refractive index, k, which represents the optical loss/gain constant. The permittivity in this 
model is thus defined as: 
 2 2 2n k i knε = − +  (14) 
 
For the applications of this model below n is maintained at the silica, SiO2, index value of 
1.431. The values of k are varied over a range of values that represent the expected loss or 
gain in the core of the nano-shell. The results obtained by using such a model will be 
presented below where it will be shown that there exist resonance states of enormously 

(a) 

(b) 

(c) 
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enhanced radiated power for certain coordinates in the refractive index and optical gain 
parameter space. 

3.2 Active media 

Many rare-earth ions are known that can be used as dopants in a dielectric host material to 
achieve optical gain including, Pr3+, Ho3+, Er3+, Nd3+, Tm3+. These ions can provide gain over 
different wavelength regions spanning from the visible to the near infrared [33, 34]. In 
telecommunication technologies, for instance, doping silica with the rare-earth ion Erbium 
(Er3+) has been proven as an effective means of realizing gain in a silica host material for 
some time. Many rare-earth ions in the presence of a dielectric host can be modeled as a 
three-level Stark-split atomic system. Following [35] we have introduced gain by considering 
a susceptibility model suitable for representing such a three level system. Due to the complex 
permittivity values of gold, the passive CNPs constructed with gold shells are restricted to 
longer resonance wavelengths than those constructed with silver shells. At these longer 
wavelengths the optical losses for gold are larger than for silver. As will be demonstrated 
below with the canonical gain model, the required gain needed to overcome the losses in the 

structures consisting of silver shells is considerably less than for gold, i.e., 
Ag Au

k k< . As a 

result, we have focused our study on active silver CNPs to investigate the active doped glass 
parameters needed to realize the gain required in order to overcome the losses in active CNP 
structures. Moreover, to achieve electrically small active CNPs in the visible, the 
susceptibility of the rare-earth gain model considered below will be driven at 510nm, which 
falls within the region where the optical loss constant of silver is lowest and within the region 
where gain lines of several rare earth ions are available. 

The total complex optical susceptibility can expressed as a sum of the background 
susceptibility due to the host material and additional contributions due to the rare-earth ions 
via the total material polarization, TP , 

 

 

2
0 0

0

(1 )H H signal signal

ion ion signal

T H ion

P E n E

P E

P P P

ε χ ε
ε χ

= + ≡

=

= +

 (15) 

 
where signalE  is the field interacting with the gain medium and the rare-earth ion and total 

susceptibilities are 
 
 ( ) ( ) ( )ion ion ioniχ λ χ λ χ λ′ ′′= −  (16) 

 ( ) ( ) ( )T H ionχ λ χ λ χ λ= +  (17) 
 
When the time scale of the atomic excitation is long compared to the time of the thermally 
assisted transitions for each of the Stark-split levels, the rare-earth ion-based contribution to 
the susceptibility can be expressed as a superposition of the atomic susceptibilities associated 
with each level in the stark manifold [35, 36]. The result is an expression for the susceptibility 
in terms of the absorption and emission cross-sections for the rare-earth ions. The real and 
imaginary parts of the susceptibility are related to the absorption and emission cross-sections 
via the expressions: 
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 2 1( ) ( ) ( )
2ion e an N N
λχ λ σ λ σ λ
π

′ ′ ′⎡ ⎤= −⎣ ⎦  (18) 

 2 1( ) ( ) ( )
2ion e an N N
λχ λ σ λ σ λ
π

′′ ′′ ′′⎡ ⎤= − −⎣ ⎦  (19) 

 
where 
 

                                      1 2    ,     
1 1

N NP
N N

P P
= =

+ +
                                              (20) 

 
 
and ( )eσ λ′′  and ( )aσ λ′′  are, respectively, the emission and absorption cross-sections of the 
rare earth ion,  which can be obtained from absorption and fluorescence spectra; P is the ratio 
of the pump power to the threshold power of the rare-earth ion;  n is the real part of the host 
medium refractive index; and N  is the concentration of the rare-earth ions. The cross-
sections, ( )eσ λ′ and ( )aσ λ′  used in determining the real part of the susceptibility, are 
determined through a Hilbert transform via the Kramers-Krönig relationships as, 
 

 

( )1
( ) . .  

( )1
( ) . .

e
e

a
a

PV d

PV d

σ ωσ λ ω
π ω ω

σ λσ λ ω
π ω ω

∞

−∞

∞

−∞

′′
′ ′=

′ −

′′
′ ′=

′ −

∫

∫

 (21) 

 
In the following calculations, the normalized emission and absorption cross-section spectra 
obtained from [36], which are representative of rare-earth-doped silica, were used. As can be 
seen from Eqs. (16)-(20), the magnitude of the total susceptibility at a given pump power 
ratio, P, is highly dependent on the product of the doping ion concentration, N, and the 
absorption, ( )aσ λ′′ , and emission, ( )eσ λ′′ , cross-sections. For example the optical 
susceptibility used for the active silver CNP in the following simulations was obtained with 

4 15.8 10emN cmσ −= ×  and 4 15.3 10absN cmσ −= × . Susceptibility values for different pumping 
powers are shown in Fig. 7.  It is observed that as the pump power ratio varies, both the real 
and imaginary parts of the susceptibility are affected.  
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Fig. 7. The real and imaginary parts of the rare-earth ion doped silica susceptibility, with the 

parameters 4 15.8 10emN cmσ −= ×  and 4 15.3 10absN cmσ −= ×  as the pump power ratio, P, is varied. 

4. Coated Nano-Particles  

4.1 Passive CNPs 

We have investigated the optical properties of nano-shells comprised of gold and silver shells 
and active core materials modeled as rare-earth doped SiO2. In the following sections the 
optical properties of these active CNPs will be presented and compared to the passive case of 
a pure silica core. For passive CNPs with lossy plasmonic shells, the extinction cross-section 
is dominated by absorption. This is true even for very thin shells, when the shell thickness is 
much less than the total particle radius. Examples of this are shown in Fig. 8, for the cases of 
an Au-SiO2 CNP with a shell thickness of 2nm, and for an Ag-SiO2 CNP with a shell 
thickness of 6nm.  For these and all of the following results, the size dependence of the metal 
shells and its impact on the permittivity was taken into account. We will show that active 
materials can compensate for these losses and even overcome them so that the resulting 
extinction cross-section is dominated entirely by radiated power. In addition, we will show 
that in this regime where the extinction cross-section is dominated by the radiation, optical 
phenomena exist which we have interpreted as the onset of lasing in an active CNP.  
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Fig. 8. Comparisons of the contributions of the scattering and absorption efficiencies 
demonstrate that the total efficiency in passive Au-SiO2 and Ag-SiO2 CNPs is dominated by 
the absorption. 

4.2 Active CNPs 

To model the active CNPs with the canonical active permittivity given by Eq. (14), the index 
of silica was taken to be n=1.431 and the optical gain constant, k, was varied in the interval:-1 
≤ k ≤0.  These parameters provided coverage over the domain of the resonant passive CNPs 
and allowed us to explore the incremental changes in the scattering properties as the gain was 
varied. The scattering and absorption cross-sections were calculated for both Au-SiO2 and 
Ag-SiO2 CNPs. The Au CNP had a core radius 1 22.5 nmr = and a 2nm thick shell, and the 

Ag CNP had a core radius 1 24.0 nmr =  and a 6nm shell. For the canonical gain model, the 
resulting scattering and absorption cross-sections for the Au-SiO2 CNP are plotted in Figs. 9 
and 10.  Similar behavior was observed in the Ag-SiO2 CNP case.  

As defined by Eq. (2) and Eq. (4), the absorption cross-section absσ  is a measure of the 

net outward power flux scattered from the CNP, where a positive absσ  indicates power lost 
due to absorption within the CNP. Therefore, a negative absorption cross-section is 
interpreted as a net power leaving the CNP, i.e., the CNP has become a nano-radiator with a 
projected radiant existence equal to the incident irradiance scaled by the extinction efficiency 
of the CNP. At the point where absσ  becomes zero, the losses associated with the passive 

CNP have been compensated by the gain.  As absσ  becomes more negative, the total amount 
of light leaving the region of the CNP increases, which means that the scattered radiation is 
now accompanied by power being radiated by the active CNP. In the following, data will be 

#78305 - $15.00 USD Received 21 December 2006; revised 15 February 2007; accepted 18 February 2007

(C) 2007 OSA 5 March 2007 / Vol. 15,  No. 5 / OPTICS EXPRESS  2637



 

presented as the scattering and absorption efficiencies ( absQ  and scatQ ), as defined by Eqs. 
(6), (7), and (8). 

 

 
 

Fig. 9. Absorption efficiencies for the Au-SiO2 CNPs for several values of the loss/gain parameter k. 
 

As absQ decreases, scatQ  increases.  However, scatQ  does not increase monotonically with 

a decrease in absQ .  One finds that scatQ  begins to grow near the point where the value of absQ  

goes through zero. In addition to the strength of absQ  and scatQ  being affected by gain present 
in the core, the widths of the scattering and absorption resonances change as well. As the gain 
increases to the point where absQ  becomes negative, the width of scatQ  also narrows. As the 

gain continues to increase, scatQ  broadens out again. The narrowest scattering resonances 

coincide with the largest scatQ  values. This narrowing and then broadening of scatQ  follows 

the non-monotonic nature of the maximum values of scatQ  as the gain is increased past the 
point where the losses associated with the passive CNP are overcome. It is also found that by 
varying the gain in the core, the scattering and absorption efficiencies of the CNP can be 
adjusted.  Consequently, it can be envisioned that by adjusting the pump level applied to the 
gain medium (for any given pumping scheme), the absorption of an active CNP and, hence, a 
metamaterial comprised of such active CNPs, could also be adjusted dynamically.  

For our Au-Silica CNP calculations, it was found that as the gain is increased, the 
absorption decreases until the value of k is in the neighborhood of -0.67.  In that 
neighborhood absQ  becomes negative while scatQ  increases dramatically. 
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Fig. 10. Scattering efficiency for the Au-SiO2 CNPs for several values of the loss/gain parameter k. 
 

Further investigation of the k values near to where scatQ  is maximized shows that the 
resonance of the CNP can become extremely large, i.e., the peak value is several orders of 
magnitude larger than for any other k values.  In fact both absQ and scatQ  attain extrema at 

those critical values of k. Particularly intriguing is the fact that absQ in this region is negative, 
indicating that a large amount of power is radiated from the CNP. Along with the large 
resonances, the widths of both scatQ  and absQ become extremely narrow, going from several 
hundred nanometers down to only a few tens of nanometers. These features are illustrated in 
Fig. 11. 
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Fig. 11. The absorption and scattering efficiencies for an Au-SiO2 CNP with k slightly beyond 
critical. The narrowing of the width of these efficiencies is immediately apparent. 

 
At k = -0.68, both scatQ  and absQ attain magnitudes on the order of 103, with a full-width-

at-half-maximum (FWHM) of about 10nm. As indicated by the definitions (5) and (8), a 
measure of the peak net power leaving the vicinity of the CNP is calculated as the difference 
between scatQ and absQ , i.e., the total efficiency.  The Log (base 10) of the absolute value of 
this total efficiency is plotted as a function of the gain parameter, k, for -1 < k < 0, in Fig. 
12(a). It is clear from this result that the active CNP resonance passes through a large 
enhancement over the region -0.8 < k < -0.6, with a large positive net power being radiated 
away from the CNP. The sharp inflection near the coordinate (-0.7, 1) is due to the total 
efficiency crossing the zero point, i.e., the point for which the losses have just been overcome 
and absQ changes from positive to negative values, and our choice to plot the Log of the 
absolute value. The values to the right of this point for k > -0.7 represent a negative total 
efficiency and, therefore, a net absorption by the CNP. Similar results for the case of the 
active Ag-SiO2 CNP were found and are shown in Fig. 12(b). It is observed that the gain 
parameter k required to overcome the losses is less in the Ag case. In particular, the inflection 
point near (-0.15, 0) corresponds to the k value below which the losses are overcome and the 
absorption efficiency becomes negative.  The critical value of k needed to achieve a super 
resonance with negative absorption efficiency for the Au case is nearly three times that of the 
Ag case, i.e., for the Ag case the super resonance occurs with k=-0.25 and for the Au case it 
occurs with k = -0.68.  Thus, the optical gain coefficient 2 /kα π λ=  is 4 15.28 10 cm−− ×  for 
Au at 809 nm, and is 4 13.08 10 cm−− ×  for Ag at 510 nm.  
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                     (a) 

      
 
                     (b) 
 

Fig. 12. Comparison of the optical gain constant values of (a) Au, and (b) Ag, that are required 
to overcome the passive CNP losses and to achieve the super-resonant state. Shown is the Log 
(base 10) of the absolute value of the total efficiency as a function of the optical gain 
parameter k.  

 
In fact, exploring the n and k parameter space of the core permittivity model shows that 

there is a region where the losses are overcome and a unique region where the super 
resonance, which is accompanied by a negative absorption cross-section, is achieved. Figure 
13 shows contour and surface plots of the absorption cross-section, scattering cross-section 
and total cross-section over the n-k parameter space for the resonance wavelength of 809nm.  
The super resonance is achieved only for values of k corresponding to gain in the core, and 
for values of n corresponding to the permittivity value of SiO2: 2.05rε = , as well as the 
geometrical parameters needed for the resonances associated with the passive CNP.  
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Fig. 13. Contour and surface plots of the scattering efficiency and the absorption efficiency as 
functions of n and k. 

 
The extremely large increase in the radiated power and the drastic narrowing of the 

resonance peak at this super resonance suggests that the active CNP in this regime of the gain 
values has surpassed mere optical amplification of the incident beam and has become a CNP 
laser. However, from the exhibited behavior of the scattering and absorption efficiencies it is 
not clear whether the CNP is in fact acting like a laser resonator.  In particular, is there energy 
being stored in the structure in the presence of the optical amplification? Thus, further 
investigations of the resonant characteristics in this super-resonance regime, such as the total 
amount of energy stored in the CNP, were made.  

The total energy of the CNP was calculated as the sum total of the energy stored in shell 
and core regions.  The electric and magnetic energy stored in each region was calculated with 
the relations: 
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to account for the dispersive nature of the media involved in the CNP. In the optical regime, 
where there is a negligible magnetic material response, we have taken the permeability to be 
that of free space, 0μ μ=  in every region.  Assuming the general case in which both the shell 
and core regions are modeled with complex dispersive permittivities and permeabilities, one 
finds that Eq. (22) and Eq. (23) take the following forms in terms of the field coefficients in 
each region. 
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The functions u  and v  in these terms are set to one of the spherical Bessel functions of the 

first or second kind, ( )nj rβ , ( )ny rβ , as dictated by the subscripts on the  factors 

( )( )uv n rβΛ . The coefficients 1 1 1 1 2 2 3 3, , , , , , ,TECore TMCore TEShell TMShell TEShell TMShell TEShell TMShellA B A B A B A B  

are defined through the field expansion coefficients in each region, which can be determined 
by solving the matrix Eq. (9) for the CNP system; and iε  and iμ , with 1,2i = , are, 
respectively, the permittivity and permeability in the core and shell region and 

0 0i o i iβ β ε ε μ μ=  is the propagation constant in each region. 

The CNPs were designed to have their dipole scattering terms be resonant; thus keeping 
only the first four terms in the field expansions when evaluating expansion-based expressions 
such as Eq. (24)-Eq. (27) is sufficient for accurate results.  The following plot of the energy 
stored in the Au-SiO2 CNP was obtained at the resonance wavelength of 809 nm.  

 

 
 

Fig. 14. Energy stored in the active Au-SiO2 CNP as a function of the gain parameter k. 
 

From these calculations it is clear that in comparison to the gain parameter values outside 
of the super resonance region, the stored energy within the CNP increases several orders of 
magnitude as the super resonance region is achieved.  Moreover, one finds that large amounts 
of energy are contained within the active core of the CNP as compared to the plasmonic shell 
region.  This can also be visualized with electric and magnetic field plots showing the field in 
the core, shell, and surrounding regions of the CNP at and away from the super resonance 
region.  Electric and magnetic field plots for k values near to those that yield the super 
resonance are shown in Figs. 15 and 16 where the total field is plotted. Contour plots of the 
Eθ  and Hφ  components of the super resonance field are given in Fig. 16; they clearly 

demonstrate that the super resonance field is dominated by the dipole contributions, and that 
the fields within the plasmonic shell are considerably lower than in the core and near the outer 
surface of the CNP.  
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Fig. 15. The total electric and magnetic field distributions in the near-field region of the CNP 
with an active-SiO2 core and an Au nano-shell for several values of the optical gain parameter 
k. 
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Fig. 16. Plots of the near-field distribution of the field components Eθ and Hφ  for the CNP 

with an active-SiO2 core and an Au nano-shell show that the dipole contributions dominate 
their behavior. 

 
Similar to the scattering and absorption efficiency parameter space plots in Fig. 13, the 

total stored energy in the Au-SiO2 CNP is shown as a function of n and k in Fig. 17. We 
observe, as we did in the efficiency plots, that there is a unique region where the stored 
energy is a maximum and that this maximum is several orders greater than the stored energy 
values determined in other regions of the parameter space.  This maximum-stored-energy 
region coincides with those of the extrema in the scattering and absorption efficiencies.  
Consequently, the active CNP is lasing in this portion of the parameter space. 

 

 
 

Fig. 17. A plot of the total stored energy in the Au-SiO2 CNP as a function of n and k. 
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Next the results obtained using a rare-earth doped silica core, which emphasize the rare-

earth ions being active at 510nm and represented by the susceptibility gain model in Eq. (16)-
Eq. (20), are presented.  In exploring the use of such gain media, the products emNσ  and 

absNσ , which represent the concentration of the rare-earth ions and their emission and 
absorption cross-sections, were varied in order to achieve sufficient gain to overcome the 
losses of the passive CNP. It was determined for the Ag-SiO2 CNP that with an 

4 15.8 10emN cmσ −= × and 4 15.3 10absN cmσ −= × , the needed pump power ratio value, P, for 
the population inversion of the doped silica was within reasonable limits, i.e., a few times the 
threshold value. The pump power was varied to achieve different gain values, the pump 
power ratio being constrained to the interval, 0 5P< < . The absorption and scattering cross-
sections were then calculated as P was varied. The absorption and scattering efficiencies for 
gold and silver CNPs that have rare-earth-doped silica cores are shown, respectively, in Figs. 
18 and 19.  

 

 
 

Fig. 18. Scattering and absorption efficiencies for the CNP with the Au shell and the rare-
earth-SiO2 core for the pump power ratio P = 100. 
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Fig. 19. Scattering and absorption efficiencies for the CNP with the Ag shell and the rare-
earth-SiO2 core for various values of the pump power ratio P. 

 
From Fig. 18, one observes that the absorption efficiency remains positive and no 

significant loss compensation is achieved when the gold shell is used, even at P values of 100. 
However, if a silver shell is used, one finds that the losses can be overcome for the same gain 
medium parameters, i.e., the lasing condition can be met, so that the super resonance is 
observed when P = 4.6.  Figure 20 shows the net power leaving the active CNP at the peak of 
the resonance when the values of P are varied. As was observed using the canonical gain 
model, it is clear that the rare-earth model shows a similar on/off feature of the lasing and the 
super resonance state.  
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Fig. 20. The normalized total efficiency as a function of the pump power ratio P for the Ag-
SiO2 CNP having a rare-earth core. 
 

The stored energy plot for the rare-earth core CNP are shown in Fig. 21. As in the 
canonical gain core case, the extremum in the total stored energy as a function of the power 
parameter coincides with the maximally negative value of the absorption efficiency when the 
super resonance values is attained. Due to anomalous dispersion in the rare earth gain model 
used in the core region, the stored energy attains negative values passing through zero at the 
inflection point at P = 1.6.  The energies are positive for P > 1.6. 

 

 
 

Fig. 21. The total stored energy in the Ag-SiO2 CNP with the rare-earth core as a function of 
the pump power ratio. 

Field plots for the rare-earth core CNP are shown in Figs. 22 and 23. Again the radiation 
is dominated by the dipole field and the highest fields are located at the surface of the CNP 
and within the core region with low field values occurring in the silver shell. 
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Fig. 22. The total electric and magnetic field distributions in the near-field region of the CNP 
with a rare-earth-SiO2 core and an Ag nano-shell for several values of the pump power ratio P. 
Super resonance occurs at P = 4.6. 
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Fig. 23. Plots of the near-field distribution of the field components Eθ and Hφ  for the CNP 

with a rare-earth-SiO2 core and an Ag nano-shell show that the dipole contributions dominate 
their behavior. 
 

5. Discussion  

The parameter space plots for the canonical gain model suggest that when gain is added to the 
core of a plasmonic CNP, its losses can be overcome. In addition to the enhancements of the 
scattering and absorption cross-sections associated with the plasmon modes of the passive 
CNP, there are values of the permittivity of the core for which light amplification is possible. 
With doping densities on the order of 20 -310  cm  and the 4 110N cmσ −

∼ product used in our 
rare-earth gain models, the cross-sections that would be needed in practice to realize the 
reported CNP laser conditions are on the order of 16 210  cm− . Recent studies with erbium-
doped silicon nano-crystals [37] have achieved cross-section values of this order. In 
considering other forms of gain media that might be used in place of rare-earth ions, such as 
organic dyes or quantum dots, the above results obtained with the canonical gain model 
suggest that their optical gain coefficients must on the order of 4 110 cmα −−∼ . Furthermore, 
there are core permittivity values where phenomena indicative of lasing ensue. Within the 
quasi-static regime the sub-wavelength dimension of these nano-shells, 

( )~ 25 / 500 / 20a λ λ= , is well below the classical limiting dimension of / 2λ  for a laser 

resonator.  This behavior occurs because of the sub-wavelength resonances associated with an 
ENG coated sphere.  Having the active ions in the core region appears to have several 
advantages over other configurations. We are currently investigating multi-layered nano-
particles to determine whether there are other advantages or not to having multiple regions of 
passive and active media interacting with one another in an electrically small resonant nano-
particle. 

In classical laser operation the smallest cavity dimension defining the longitudinal laser 
modes is ~ / 2λ� . As the pump power is increased past the threshold value needed for 
inverting the gain medium and overcoming the system losses in a classical laser below gain 
saturation, the laser output power increases monotonically. This behavior is due to the 
coherent oscillations of the resonant optical field in the laser cavity being amplified by the 
gain media. There is a one-to-one correspondence between the level of optical gain and the 
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output optical power, but the feedback mechanism has no dependence on the optical gain 
inside the laser cavity.  On the other hand, the coupled photon-plasmon polariton modes of 
the shell-core system in the CNP are in resonance. Therefore, if we consider the plasmon 
modes as providing a means for feedback for stimulated photons within the active core, the 
effects of the coherent oscillations of the electrons in the plasmonic shell on the core and shell 
permittivities must be considered. This implies that in an active CNP, an increase of the 
optical gain in the core does not necessarily lead to efficient coupling between the stimulated 
emission photons and the plasmon modes. Therefore as the gain is increased, the strength of 
the emission resonance may change.  In particular, it may turn off the lasing state.  To clarify 
this behavior, we considered a virtual mode analysis of the CNP. 

In the presence of anharmonic material functions, the plasmon modes of the CNP system 
can be regarded as virtual modes with frequencies that in general take on values over the right 
half of the complex plane. With the interpretation that the imaginary frequencies associated 
with these virtual modes represent temporally growing or decaying states of the CNP, there is 
a connection between the material functions in the shell and core and the allowed virtual 
modes of the passive or active CNP.  These virtual modes are excited in the absorption 
dominated passive CNP or the emission dominated active CNP. In isolating the mechanism 
responsible for the on/off nature of the super resonant lasing state in the CNP, we have begun 
investigating the influence of the material functions in the core and shell on the virtual modes 
of the CNP system in light of either growing or decaying modes of the active or passive CNP.  
The authors hope to explain the on/off nature of the super resonance lasing state of the active 
CNP from this perspective in a future publication.   

6. Conclusion 

In this paper we have presented the design and simulation of both passive and active 
plasmonic coated spherical nano-particles (CNP).  The sizes of these CNPs were selected on 
the order of 20-30 nm to make them applicable to realizing optical metamaterials, as well as 
to investigate the possibility of realizing highly subwavelength resonant optical scatterers. 
The role of loss in the passive CNPs due to the optical properties of the plasmonic materials 
was considered, and the use of active materials in the design of CNPs was investigated to 
compensate this loss to achieve lossless active CNPs. In our simulations we have taken into 
consideration the size dependence of the plasmonic shells and have used both canonical gain 
models, as well as gain models representative of rare earth doped glass. From our 
investigations of active CNPs we have uncovered new phenomena that, aside from the 
geometric tunability of the passive CNPs, show a super resonant lasing state.  In this super 
resonant state the CNP achieves a negative absorption efficiency of 310  greater than the value 
obtained for a passive CNP, and a total efficiency of more than 410 .  This increase in the total 
efficiency indicates the possible realization of a sub-wavelength laser whose size is on the 
order of ~ / 20a λ . It was observed in the parameter space of the core and shell permittivities 
that there exists a well-defined region where the super resonance exists. Furthermore, the 
super resonant lasing state of the active CNP is observed to be localized in the gain parameter 
space in the sense that it can be turned on or off by adding gain values outside of the region in 
which the super resonance exists.  This behavior must be contrasted with a classical laser 
where lasing is maintained as the gain is increased past its threshold value. It is believed that 
the lasing turns-off when the gain increases to such a point that it causes a severe detuning of 
the structural resonance. To explain the on/off nature of the super resonance, the authors are 
currently investing both lossy passive and active CNPs with a virtual mode analysis.  
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