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 Simulation results for optical metamaterials (MTMs) derived from active 
coated nano-particle (CNP) inclusions for operation in the visible range of 
the spectrum between 400nm and 700nm are presented. Several examples 
of optical MTMs designed with these inclusions are characterized, 
including two-dimensional (2D) CNP metafilms; three-dimensional (3D) 
periodic CNP arrays; and 3D random CNP distributions. The properties of 
these optical MTMs are explored using effective medium theories that are 
applicable to these inclusion configurations. The effective permittivities and 
refractive indexes of these optical MTMs are compared and contrasted to 
the scattering properties of their active CNP inclusions. 
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1. Introduction  
 
The literal translation of “metamaterials” (MTMs) means beyond materials. This name has 
been given to a class of artificial materials that have electromagnetic responses which are 
beyond what nature provides, i.e., that have an effective electric permittivity and/or magnetic 
permeability which are specifically engineered. For decades researchers have acquired 
reasonable control over substances and materials and have engineered their intrinsic 
mechanical and thermal properties, such as with plastics. It is only recently that they have 
acquired the physical understanding to tailor the electromagnetic responses of materials, as 
well as the technological capabilities to fabricate them. In this paper we will present a class of 
MTMs specifically focusing on their operation between 400nm to 700nm in the visible 
portion of the electromagnetic spectrum, i.e., optical MTMs.  

Materials may be classified from an electromagnetic perspective by the values of their 
permittivity and permeability. The terms “double positive” (DPS), “epsilon negative” (ENG), 
“double negative” (DNG), and “mu negative” (MNG) are designations frequently used now 
in the optics, physics, and engineering communities for the classification of materials based 
on the signs of their electric permittivity and magnetic permeability [1], [2]. It is also now 
well understood what the appropriate signs of the corresponding derived quantities: the index 
of refraction and the wave impedance, are [1], [2]. 

At microwave frequencies, MTMS have proven successful in accessing all four quadrants 
of the permittivity permeability space, i.e., DPS, ENG, DNG, MNG responses have been 
demonstrated at microwave frequencies. On the other hand, optical MTMs have proven to be 
more challenging, primarily due to material losses and difficult fabrication issues. 
Nonetheless, optical MTMs show significant potential for realizing new, interesting and 
useful optical phenomena and devices that can be designed to meet specific applications [1], 
[2].  

To realize some of the more interesting properties of optical MTMs, it is necessary for the 
electric permittivity or the magnetic permeability or even both of them to take on negative 
real values with very small imaginary values [3].  One of the conveniences of nature is that 
there are naturally occurring materials exhibiting negative permittivities at optical 
frequencies, i.e., metals. Interesting and desirable optical properties from coated nano-
particles (CNPs), which require these negative permittivities, have been demonstrated, 
including resonant source and scattering configurations [4], as well as transparency and 
invisibility [5], [6-9].On the other hand, one of the major obstacles in realizing metamaterials 
at optical frequencies is the lack of naturally occurring media exhibiting any magnetic 

(C) 2008 OSA 28 April 2008 / Vol. 16,  No. 9 / OPTICS EXPRESS  6693
#93076 - $15.00 USD Received 26 Feb 2008; revised 22 Apr 2008; accepted 23 Apr 2008; published 25 Apr 2008



response, i.e., the relative permeability is always essentially unity. It has been shown at 
microwave frequencies that a magnetic dipole moment can be induced and an overall 
magnetic response can be realized by imbedding in a non-magnetic host material, inclusions 
made from non-magnetic materials of appropriate designs (parallel nano-wires, split ring 
resonators, etc). Many of these designs have been successfully scaled or generalized to optical 
frequencies [10-12].  It has also been demonstrated theoretically that by arranging nano-
spheres in a ring configuration to create an “optical nano-circuit” [13], a magnetic dipole 
moment can be realized at optical frequencies via the displacement current induced in the ring 
by the incident optical field. Obtaining the polarizabilities of the individual inclusions used to 
construct an artificial medium, one can then define the effective electric permittivities and 
magnetic permeabilities that govern the electromagnetic responses of waves interacting with 
it. 

Many of the most notable successes to date in realizing optical MTMs include achieving 
negative index materials (NIMs). Several of the largest effective negative index values in 
MTMs near and at optical wavelengths have been experimentally demonstrated using two 
dimensional planar arrays of coupled plasmonic particles and strips.  For example, effective 
NIM behavior has been demonstrated with gold nano-rod configurations [14], gold layered 
fishnet geometries [15] and metallic split ring resonator arrays [16]. Although effective 
material parameters of these configurations have been reported, it must be emphasized that 
strictly speaking a planar mono-layer array of these inclusions form a film and not a bulk 
material. Consequently, the claims that DNG or NIM optical MTMs have been achieved is a 
bit misleading. A better designation for these systems of inclusions would be a “metafilm”. In 
fact one of the major obstacles in achieving true optical MTMs is the alignment of multiple 
layers of these metafilms. Although there has been some very recent successes [17] i.e., it is 
technologically difficult to arrange nanometer sized inclusions in the well-defined three 
dimensional arrays as is needed to produce the desired large bulk MNG or DNG responses.  
Another issue that plagues MTMs at optical frequencies is the large losses inherent in the 
materials, typically metals, used to achieve the resonant electrically small inclusions. In this 
paper, both metafilms and bulk three dimensional optical MTMs comprised of spherically 
shaped, electrically small (highly sub-wavelength), resonant inclusions will be reported. The 
introduction of a gain medium into these spherical inclusions will be investigated as a means 
to combat the high losses that plague many current optical MTM realizations.  

Recent work on resonant electrically small CNPs, formed as a set of concentric spherical 
shells [10-12], has demonstrated that they have highly tunable polarizabilities. The sizes of 
these CNPs at optical frequencies are on the order of tens of nano-meters, making them 
attractive candidates for use as inclusions in potential realizations of optical MTMs. Current 
nano-fabrication capabilities encompass the successful synthesis of CNPs, and many of their 
optical properties have verified experimentally [10]. To achieve resonant tuning of these 
spherical CNPs at optical frequencies, one must incorporate plasmonic materials, such as 
metals, into the shells. Unfortunately, the polarizabilities of these plasmonic-based structures 
remain dominated by high absorption losses at optical frequencies. In an attempt to counter 
these intrinsic losses, active media in multi-layered spherical plasmonic nano-shelled particles 
has also been investigated [18]. In this paper we report the optical properties of a highly 
resonant, nanometer-sized, active dielectric sphere that is coated with a silver plasmonic shell 
and their use as inclusions to realize optical MTMs. The basic active CNP was studied 
extensively in [18]. Several examples of optical MTMs designed with these active CNP 
inclusions will be presented, and their behaviors will be characterized. In particular, the 
effective material properties of these optical MTMs will be explored using effective medium 
theories that are applicable to a variety of inclusion configurations. Two-dimensional (2D) 
mono-layers of these active CNPs, which form metafilms; three-dimensional (3D) periodic 
arrays of these active CNPs; and 3D random distributions of these active CNPs will be 
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described.  The effective permittivities and refractive indexes of these optical MTMs will be 
compared and contrasted to those of their active CNP inclusions.  

2. Optical properties of CNP inclusions 

The optical properties of the active CNP are determined by calculating the scattered fields 
that result from an incident linearly polarized monochromatic plane wave. The scattering 
geometry is depicted in Fig. 1; it consists of two concentric spherical regions embedded in 
free space. All of the materials making up the CNP are assumed to be homogeneous, isotropic 
and non-magnetic, i.e., 1iμ =  for 1, 2i = . The plane wave is incident on the CNP from the 
surrounding free space region. The active CNP is represented by the layered sphere bounded 
by R2.  Its core is defined by the outer radius R1 and by the permittivity 1ε  and 

permeability 1μ . The plasmonic shell surrounds the core and is defined by the permittivity 2ε  

and permeability 2μ  and by the radii R1 and R2 of its inner and outer boundaries, respectively. 
The core permittivity in the absence of gain takes on the value for silica, SiO2, which is 

1 02.05ε ε= . In our investigation the simulations were performed assuming that the 
dimensions of the active CNP were R1=8nm and R2=10nm with a resonance peak positioned 
at the free space wavelength: 491.2res nmλ = .  
 

 
Fig. 1. Plane wave scattering from a CNP. The core, which is defined by 1 1,ε μ , is assumed 

to be silica. The coating, i.e., the second layer, is a plasmonic material defined by 2 2,ε μ . 

The CNP is surrounded by free space. For an active CNP, the core region includes an active 
material. 

 
 

When a linearly polarized plane wave is incident on a concentrically layered spherical 
particle, the electric and magnetic fields in each region can be expanded into transverse 
electric (TE) and transverse magnetic (TM) vector spherical harmonics denoted, respectively, 
as ( , , )m ρ θ φ�

 and ( , , )n ρ θ φ�

 [19], [20].  The scattered electric and magnetic field in each 
region, for instance, can then be written in the well-known form  
 
 

 

2ε
2μ

1μ1ε

1R
2R

β
�

0ε 0μ
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    Enforcing the electromagnetic boundary conditions, i.e., the continuity of the tangential 
electric and magnetic fields at each interface between each material region, a matrix system 
of equations for the scattered TE and TM field coefficients, respectively, na  and  nb , is 
obtained and solved.   

The scattering cross-section and absorption cross-section are defined from the scattered 
and incident fields via Poynting’s vector. The scattering cross-section is defined as the total 
integrated power contained in the scattered field normalized by the irradiance of the incident 
field.  The absorption cross-section is defined by the net power flux through a surface 
surrounding the concentric shells normalized by the incident field irradiance, and is thus a 
measure of how much energy is absorbed by the concentric shell structure. Consequently, the 
total scattering cross-section, absorption cross-section and extinction cross-section are defined 
from the ratio of the scattered or absorbed power to the incident irradiance, Iinc, and can be 
expressed in terms of the scattered field coefficients as: 
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where 02β π λ= , with 0λ  is the free-space wavelength incident on the CNP. The 
corresponding scattering and absorption efficiencies are defined as the cross sections 
normalized by the geometric cross section of the particle. 
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As was shown in [18], the extinction cross section of the passive CNPs is dominated by 
absorption in the size regime of the particles studied here. It was also shown that for the 
nanometer dimensions of the plasmonic shell under consideration, any neglect of the size 
dependence of the permittivity by using either a bulk material model or a simple Drude model 
leads to erroneous results.  In particular, these simplistic models ignore significant effects 
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such as size dependent broadening and diminished resonance strength. Consequently, the size 
dependencies of the plasmonic shell material were included in the models used in the 
following simulations. To include this size dependence, the dielectric function of the 
plasmonic material was modified by imposing the mean free path effect in the Drude 
component of the dielectric function by introducing a size dependent damping frequency [21]. 
Therefore the total electric response of the plasmonic shell due to both interband transitions 
and Drude electrons can be described as, 
 
 ( , ) ( , ) ( )Drude IntBandR Rε ω ε ω χ ω= +  (9) 
 
 

 ( )
2 2

2 2 2 2

( )
( , ) 1

( ) ( )

p p
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R
R i

R R

ω ω
ε ω

ω ω ω
Γ

= − +
Γ + Γ +

 (10) 

 
where pω  and Γ  are, respectively, the plasma and collision frequencies. The half width of 

the resonance 
 

 
A V

( ) FR
R∞Γ = Γ +  (11) 

 
where A is a constant term assumed to be approximately unity, i.e., 1A ∼ .  The term FV  is 
the Fermi velocity.  

It was shown in [18] that when gain is introduced into the core of the passive CNP, the 
losses associated with the plasmonic shell and the core could be overcome.  It was also 
demonstrated that new and enhanced resonance characteristics could be realized which differ 
from those associated with the passive CNP. In particular it was shown that with the addition 
of gain in the core, the absorption efficiency may become negative while narrowing the 
response from hundreds of nanometers to a few nanometers.  This behavior was shown to be 
indicative of light amplification over an extremely narrow frequency range; it demonstrated 
the presence of a super resonance (SR) lasing state for the active CNP.  

To realize an active CNP in the following simulations, gain was introduced into the core 
material through the permittivity via a canonical complex refractive index model: 

 
                2 2 2core n k i knε = − +  (12) 

where n and k are, respectively, the real and imaginary parts of the refractive index. For 
optical gain the imaginary part of the refractive index k takes on negative values, i.e., optical 
gain occurs when 0k < . In Figs. 2(a) and 2(b) the scattering and absorption resonances for 
the 10nm active silver CNP are shown near the SR wavelength, 491.2res nmλ = , where the 

gain term approaches its SR value: k = -0.453. At resλ , this SR value of k corresponds to a 

gain coefficient of 4 12 / 10resk cmα π λ −= −∼ . Recently, gain values as high as 5 1| | 10 cmα −
∼  

have been demonstrated in quantum dots [22], [23]. Because of their nanometer size and 
achievable large gain values, quantum dots are an attractive candidate for the gain medium 
required for this application.  

The scattering, absorption, and total efficiencies associated with the CNP’s passive 
resonance are shown in Fig. 2(c). It is obvious that in the passive case the resonance is 
absorption dominated and broad with a width of approximately 100nm. In the active case the 
responses of the resonance are enhanced several orders of magnitude and they have widths of 
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only a few nanometers. The active SR state is accompanied by negative absorption efficiency 
values, which indicates emission of radiation and signifies a lasing state. The optical MTMs 
presented here will be investigated near the conditions needed to excite this CNP SR state. 
The resulting SR state effects will be compared to those associated with the passive lossy 
CNP.   
 
 

 
 
 

 
 

Fig. 2. Results for a CNP with R1=8nm and R2=10nm and with its resonance peak at 
49 1 .2res n mλ = . (a) Super resonant scattering cross-section when the CNP is active; (b) 

Super resonant emission cross-section when the CNP is active; and (c) Absorption dominated 
scattering when the CNP is passive. 

 
 

In determining the effective material properties of 2D metafilms and 3D MTMs, it is 
necessary to determine the polarization response of the inclusions to an applied field. Because 
of the electrically small size of the CNPs, their designs inherently suppress higher order 
multipole fields leaving only the dipole field response.  Therefore, the CNPs may be 
considered as dipole scatters and, with out loss of accuracy, the interaction of the incident 
excitation field with the CNPs may be described solely by the electric and magnetic dipole 
moments of the CNP. By equating the fields scattered from a CNP with those generated by an 
electric or magnetic dipole, the effective electric and magnetic dipole moments are 
determined. The corresponding electric and magnetic polarizabilities can then be expressed in 
terms of the TE and TM Mie coefficients of the scattered field, na  and  nb , respectively. 
Because of the spherical symmetry of the CNP, the scattering response is isotropic. 
Consequently, the electric and magnetic polarizabilities, Eα  and Mα , of the CNP can be 

expressed as scalar quantities. The effective electric and magnetic dipole moments, p
�

 and 

a) b) 

c) 
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m
�

, of the CNP are then defined in terms of the corresponding polarizabilities and the 

corresponding local electric and magnetic fields, locE
�

and locH
�

, which are acting on it, as: 
 

 E locp Eα=
�

�

    ,     M locm Hα= −
�

�

 (13) 
 
In determining the polarizabilities of an individual CNP, the local electric and magnetic field 
values are calculated at the origin of the CNP and are determined from those of the incident 
plane wave. After equating the fields scattered from the CNP with those radiated by the 
corresponding effective electric and magnetic dipoles, the electric and magnetic 
polarizabilities are then obtained as: 
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These definitions will be used exclusively in the subsequent calculations of the effective 
parameters for the optical MTMs discussed below.  

3. Two Dimensional CNP metafilms 

In this section a metafilm consisting of a single layer array of active CNP inclusions will be 
described. The optical properties of this metafilm will be derived following the generalized 
sheet transition conditions (GSTCs) proposed by [24]. In the GSTCs approach the boundary 
conditions at the metafilm are determined by replacing the discrete polarization distribution of 
scatterers by continuous effective electric and magnetic polarization surface densities. This is 
achieved by determining the boundary conditions for the macroscopic fields that are 
discontinuous across the metafilm. The macroscopic field is defined as the sum of the 
incident field and the spatially averaged field of the film; this choice removes the variations in 
the field due to the discrete nature of the scatterers. By spatially averaging the field across the 
metafilm, the average sheet electric and magnetic polarization densities in the plane of the 
film are defined in terms of the electric and magnetic dipole moments of the individual 
scatterers. To determine the electric and magnetic dipole moments of the scatterers in the 
metafilm, the local field that is acting on each scatter in the film must be calculated. To 
clarify, since each CNP inclusion is now located in the proximity of several other CNPs in the 
film, the local field is no longer equal to the incident plane wave value that was used for the 
local field in the polarizability calculation. The local field acting on each inclusion in the 
square array is instead calculated as the sum of the incident field and the field scattered by the 
film. However, the contribution from a circular disc of radius R centered at the position of the 
inclusion where the local field is being calculated must be excluded to avoid double counting. 
The radius of the disc is chosen so that the field resulting from the sheet electric and magnetic 
polarization densities is equal to the field distribution resulting from all of the inclusions, 
minus the contribution from the inclusion where the local field is begin calculated. In essence, 
the disc region represents the inclusion under consideration and is introduced in order to take 
into account the contribution of that individual discrete inclusion while properly taking into 
account the spatially averaged electric and magnetic polarization densities of the sheet. For 
the quasi-static limit of the inclusions: 2 0Rβ → , and for a square periodic array of period: d, 

it has been shown by [25] that 0.6956R d� . After determining the macroscopic field for an 
array of inclusions embedded in free space, the GSTCs take the form,  
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With the electric and magnetic polarization density dyadics defined as 
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 are unit vectors, and the effective electric sheet polarizabilities per unit 

area, ij
ESα , are expressed in terms of the averaged particle polarizabilities, ,E ijα , as 
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where N  is the number of inclusions per unit area in the film. Similarly the effective sheet 
magnetic polarizabilities, ij

MSα , can be expressed in terms of the average particle magnetic 

polarizabilities, ,M ijα , as 
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3. 1 Scattering from a CNP metafilm    

The scattering of a normally incident plane-wave from a metafilm consisting of an array of 
regularly spaced active CNP inclusions was first investigated. Applying the GSTCs at the 
plane of the metafilm, one can calculate the resulting transmission and reflection coefficients 
[26] using the individual CNP inclusion polarizabilities defined in Eq. (14). This scattering 
geometry is illustrated in Fig. 3. 
 

 
 

Fig. 3. Normally incident plane wave scattering from the CNP-based metafilm 
 
 

Upon applying the GSTCs at the plane of the film, the transmission, T , and reflection, Γ , 
coefficients take the form: 
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The irradiances of the transmitted and reflected beams are then proportional, respectively, to 
the square amplitude of (27) and (28), i.e., they can be expressed as: 

 

 
2 2

trans incE t E∼  (29) 

 
 

 
2 2

refl incE r E∼  (30) 

 

where the transmittance, 
2

t T= , and the reflectance, 
2

r = Γ . Thus the amount of energy 

absorbed by the metafilm can be quantified by defining the absorptance as, 
 
 1a t r= − −  (31) 
 
Results were obtained for the changes in the reflection, transmission and absorption 
coefficients as the gain in the core of the active CNPs, as well as the spacing, d, between the 
CNPs in the square periodic metafilm, were varied. The 2D density plots in Figs. 4, 5, and 6 
depict these gain variation results. The gain values were varied from the passive scenario: 

0k =  to 0.353k = − , the latter being a significant value yet still below the SR value, through 
the SR value at 0.453k = − , to just above the SR value at 0.463k = − . The spacing values 
were varied over a range of 100nm, from 30 nm to 130nm. 
 

 
 

Fig. 4. Transmittance of  metafilm for varying gain values in the core of the active CNP inclusions. 
 
 

 
 
Fig. 5. Reflectance of  metafilm for varying gain values in the core of the active CNP inclusions. 
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Fig. 6. Absorptance of  metafilm for varying gain values in the core of the active CNP inclusions. 
 

 For the passive case little change is observed in the reflectance as the spacing is varied. 
The main feature that is apparent in Figs. 4, 5, and 6 occurs when the spacing becomes 
smaller, i.e. when the density of the passive CNPs becomes larger. One observes that the 
transmittance is reduced by as much as 30% near 491.2res nmλ � , and the absorption 
increases. This increase in absorption can be attributed to the higher surface density of 
inclusions, each of which is inherently highly absorbing. As the CNPs are more densely 
packed in the passive metafilm, a larger fraction of the incident field is interacting with the 
inclusions. This increases the amount of energy that is removed from the incident field; and, 
consequently, the transmission is reduced and the absorption is increased.  

The corresponding transmittance and reflectance results for the active metafilm show 
significant changes as the gain and spacing are varied. As observed for the passive cases, 
there is little change in the relative transmittance and reflectance values as the separation 
distance is varied when the gain values are very small. However, as the gain is increased, a 
significant departure from the passive case behavior is observed. For particular values of the 
gain and the spacing between the inclusions, the transmittance decreases to zero near the 
CNP’s resonance wavelength resλ .  On the other hand, the corresponding reflectance may 
attain values larger than those for the passive case and can even become larger than unity in 
some instances.  

An example of an active metafilm that shows properties which are significantly different 
than the corresponding passive case occurs when the spacing 51d nm� , and the gain value 

0.463k = − . In this configuration the transmittance is reduced completely to zero at 
495nmλ = , while the reflectance becomes unity. This behavior occurs just slightly past the 

CNP’s resonance wavelength. In Fig. 7 this behavior is compared explicitly to the passive 
case whose cross sections have been taken from the data presented in Figs. 4 and 5 for the 
separation distance 51d nm� . In this configuration the metafilm is essentially acting like a 
narrowband mirror, reflecting all incident radiation just slightly above the CNP’s resonance 
wavelength 491.2res nmλ � . The active metafilm under these operating conditions can be 
thought of as acting like a plasmonic material with a plasma wavelength value that can be 
specifically designed via the geometry. In particular, the geometry of the CNP can be tuned to 
achieve localized plasmon resonances having different resonant wavelengths by selecting the 
appropriate inner and outer radii values of the CNP. 
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Fig. 7.  Comparison of active and passive metafilm for the operating parameters, 0.463k = − , 
51d nm= . Under these conditions the active metafilm takes on characteristics of a plasmonic 

material with a plasma wavelength of 491res nmλ �  

 
When gain is present at values at, or above the SR gain values, compensation for the 

losses due to the electron scattering and interband absorption in the thin silver outer layer 
occurs. Under these operating conditions the coupling efficiency of the incident field to the 
localized plasmon of the CNP particle is maximized at resλ . In this wavelength region the 
metafilm behaves like a lossless plasmonic material and therefore takes on characteristics 
reminiscent of a lossless Drude material. In such a material the reflectance quickly 
approaches unity for operation above the bulk plasmon wavelength.  From this point of view, 
the CNP resonance defines the “plasma wavelength” for the entire metafilm. When the 
plasmon oscillations of each CNP are excited coherently throughout the metafilm, the 
reflectance is maximized. Coupling between the particles moves the metafilm’s resonant 
wavelength to a value slightly larger than the individual CNP’s resonance wavelength resλ . 

Farther away from resλ , the field no longer strongly couples to the CNP plasmon modes; and, 
therefore, the characteristics of the metafilm no longer appear similar to a lossless plasmonic 
material but rather take on characteristics that can be attributed to the intrinsic permittivity of 
the silver used in the outer layer of the CNP and of its dielectric core.  

As can been seen from Fig. 6, the metafilm exhibits a net gain, 0a < , for wavelengths 
below resλ  and a net loss, 0a > , for wavelengths above resλ  when the gain values are at, or 

above the SR gain value, i.e. when the metafilm acts like a lossless plasmonic material. resλ . 
This is shown explicitly in Fig. 8 at the SR gain value as , d,  is varied from 40nm to 70nm. 
At resλ  the net loss and gain is zero, 0a = , however  there is a net gain above and net loss 
below this wavelength . These features mimic the gain and loss behaviors of the individual 
active CNP inclusions at wavelengths above and below resλ [18]. . It is interesting to notice 

that the skin depth of silver 25.7nmAgδ �  near  resλ ,  is more than an order of magnitude 

larger than the 2nm  thickness of the layer of  silver used in the outer coating of the CNP. 
Consequently, it was unexpected that the metafilm would act as a highly efficient mirror 
given that such a small amount of silver is used in the metafilm compared to a silver slab of 
the equivalent thickness 60filmt nm= .  
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Fig. 8.  Absorptance, showing net gain, 0a < ,  for
resλ λ< and net loss 0a >  , for 

resλ λ>  in the CNP metafilm operating at the SR gain value 0.453k = −  as the spacing d is 

varied over the range of 40nm to 70nm. 
 

For the active cases having gain values at or above the value needed to excite the SR, the 
reflectance and transmittance properties of the metafilm are impacted by the couplings 
between the individual active CNPs. For small distances between the CNPs, the resonance of 
the metafilm is broader than for an isolated CNP due to the strong couplings between the 
inclusions. As the inclusions are moved further apart, the couplings decrease and the metafilm 
begins to demonstrate attributes that resemble those of a narrowband mirror due to the 
coherent plasma oscillations of the individual inclusions making up the metafilm. Beyond a 
critical spacing, which in the case when 0.463k = −  is near 80d nm≈ , the scattering 
characteristics begin to resemble those of the individual inclusions, where the reflectance and 
transmittance profiles narrow to a few nanometers about resλ  and attain values greater than 
unity. This strong enhancement can be explained by the fact that for large separation 
distances the evanescent coupling between the inclusions is extremely weak and the 
individual inclusions interact with the incident field as though they were isolated. The 
response to the incident field at resλ , therefore, approaches that of the individual CNP. 
Consequently, the metafilm radiates energy into the primary directions defined by the dipole 
radiation pattern lobes of the active CNP, thereby generating wave fronts (in accordance with  
Huygens principle) which are forward and counter propagating relative to the direction of 
propagation of the incident plane wave [18]. Moreover, as characterized by the negative net 
absorption of the metafilm shown in Fig. 6 for larger values of d, when the source is operating 
at the resonance wavelength, resλ , this configuration acts as a beam splitter which, in contrast 
to a traditional beam splitter that produces two beams whose individual amplitudes are less 
than that of the incident field, would create two beams whose amplitudes are larger than that 
of the incident field.    

4. Three dimensional arrays of CNPs - CNP crystals 

The effective medium properties of a three dimensional array of CNP inclusions were also 
studied. The same inclusions used in section 3 for the two dimensional CNP metafilm were 
used to achieve these three dimensional arrays of CNPs. As discussed above, bulk quantities, 
such as the effective permittivity and permeability, are not valid descriptions of the 
electromagnetic properties of the metafilm since its thickness is not uniquely defined. 
Therefore, the metafilm’s optical properties had to be established through the interface 
conditions in terms of the uniquely definable electric and magnetic polarization surface 
densities. These quantities were related directly to the electric and magnetic polarizabilities of 
the inclusions themselves, as given by the expressions (19)-(26). Following this GTSC 
approach led to accurately derived optical properties. In contrast, bulk effective material 
quantities can be meaningfully defined in the case of a three dimensional array of inclusions.  

The approach taken here to determine the effective permittivity of a three dimensional 
square lattice of active CNP particles followed that proposed in [27]. In applying this 
approach the lattice was assumed to be square periodic so that the period was the same in all 
three Cartesian directions, {x, y, z} and the embedding medium was assumed to be free 
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space. The lattice period, d , as well as the size of the inclusions , r ,  was restricted to be 
much smaller than the excitation wavelength so that 1dβ �   and 1rβ � . The incident plane 
wave was assumed to propagate along the positive z-axis. With these assumptions the 
complex effective permittivity of the lattice takes the form,  
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lattice lat latiε ε ε= +  (33) 
 

 
where n is the number density of the inclusions with units of 3[ ]m−  and Eα is the electric 
polarizability of the inclusion as defined above in (14). Expression (32) is similar to the 
familiar Clausius-Mossotti form of the effective permittivity of a random distribution of 
scatterers, but has been modified by the term, 3

0/(6 )iβ πε , added to the inclusion 
polarizability in the denominator. This extra term results from the periodicity of the inclusions 
in the lattice. It takes into account the coherent scattering interactions between inclusions, 
effectively canceling any losses arising from incoherent scattering effects that would 
otherwise arise in a random distribution of inclusions.  

4.1 Effective Permittivity of the CNP Crystal 

The effective permittivity of the CNP crystal was calculated for several lattice periods and 
gain values. As with the CNP metafilm studies, the gain values for the CNP crystal were 
varied from the passive scenario: 0k =  to 0.353k = − , through the SR value at 0.453k = − , 
to just above the SR value at 0.463k = − . The lattice spacing, d, was varied over a range from 
25 nm to 50nm, which maintained  spacing values within the limits consistent for the validity 
of expression (32), i.e., to maintain 1dβ < . The volume fraction of inclusions in the crystal is 

defined as 3/f V d= , where 34 / 3V rπ=  is the volume of the CNP inclusion used.  These 

values of d correspond to a volume fraction range: 0.03 0.26f< < . 
 
 

 
 

Fig.  9.  Real part of the effective permittivity of the CNP crystal.  
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Fig. 10. Imaginary part of the effective permittivity of the CNP crystal.  
 
The real and imaginary parts of the effective permittivity of the CNP crystal, which were 

obtained with the expressions (32), are shown, respectively, in Figs. 9 and 10. The effective 
permittivity exhibits a resonance that is near the resonance wavelength of the CNP inclusions, 

resλ . This resonance wavelength coincides with the peak value of "
latε  and will be denoted 

as latticeλ ; it signifies a resonance associated with the entire volume of the crystal lattice. As 

can be seen from Figs. 9 and 10, the lattice resonance wavelength, latticeλ , exhibits tunability 
with the lattice spacing. It shifts to longer wavelengths as the lattice period is decreased and 
approaches the CNP resonance value, resλ , as the lattice spacing is increased. For the cases 

where the gain is below the SR gain value, '
latε  takes on mostly positive values, but exhibits 

some negative values for lattice periods around 25nm as seen in Fig. 11. When the gain in the 
core of the CNP inclusions is increased above the SR gain value, '

latε  takes on negative values 

for source wavelengths below latticeλ , and remains positive for those above latticeλ . These 
observations are consistent with those discussed above for the metafilms. In particular,, the 
coupling efficiency of the incident field to the localized plasmon of the CNP particle is 
maximized when the gain reaches the SR value at which point the absorption efficiency (7) of 
this inclusion becomes negative. The collective response of the inclusions then produces 
behavior indicative of a plasmonic material, i.e., the effective permittivity becomes negative. 
These features are emphasized in the more detailed cross sectional plots extracted from Figs. 
8 and 9 at the lattice spacings of 25nm, 35nm, and 45nm given in Figs. 11, 12, and 13.  

 

 
 
Fig. 11. Real and imaginary part of the effective permittivity as the lattice spacing is varied. 
The gain in the CNP was set to 0.463k = − ,  above the SR gain value. 

 

 
Fig. 12. Real and imaginary part of the effective permittivity as the lattice spacing is varied. 
The gain in the CNP was set to 0.353k = − , below the SR gain value. 
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Fig. 13. Real and imaginary part of the effective permittivity as the lattice spacing is varied. 
There was no gain included, i.e., 0k =  so that the CNP inclusions were passive. 

When gain is present in the core of the inclusions, "
latε  may cross through zero and 

become negative in the region below latticeλ . The wavelength for which " 0latε =  depends on 
both the gain value in the CNP as well as the lattice period of the crystal. In the case with the 
gain value 0.353k = −  and lattice spacing 35d nm= , this wavelength is 455.5nmλ � . At this 
zero crossing the effective permittivity is purely real; i.e., '

lattice latε ε= . Although only one 

zero crossing is observed for "
latε , the real part of the permittivity becomes zero at two 

wavelengths. One zero occurs at latticeλ , where '
latε  transitions from positive values above 

latticeλ  to negative values just below latticeλ . The second occurs at a wavelength that is below 

latticeλ , where '
latε  changes sign again, transitioning from negative values to positive values as 

it re-passes through zero. At these two zero crossings the effective permittivity becomes 
purely imaginary; i.e., "

lattice latiε ε= . The wavelength below latticeλ  for which ' 0latε =  similarly 
depends on both the gain value in the CNP core as well as the lattice period of the crystal. For 
example, in the case with the gain value 0.353k = −  and the lattice spacing 35d nm= ,  this 
wavelength is 470.7nmλ � . As can be seen from these examples, the wavelengths where the 
complex permittivity becomes either purely real or purely imaginary in general do not 
coincide. These zero crossings have implications for wave propagation in the crystal lattice, 
as discussed next.  

4.2 Effective Index of the CNP Crystal 

In characterizing the properties of the CNP crystal, not only is the effective permittivity 
important, but so to is the index of refraction. The latter controls the propagation properties of 
electromagnetic waves in the CNP crystal. Therefore, the behavior of the effective complex 
refractive index of the CNP crystal lattice was also explored. Because of the electrically small 
size of the CNPs, the magnetic response is negligible, so that 0effμ μ= . The effective complex 

refractive index of the lattice can then be defined as 
 

 lattice lattice lat latN n ikε= = +  (34) 

 
where latn and latk  are, respectively, the real and imaginary parts of the effective complex 
index. The real part describes the effective phase velocity of a wave traveling through the 
CNP lattice; the imaginary part describes the decay or growth of a wave propagating through 
the CNP lattice. The real and imaginary parts of the effective complex index corresponding to 
the results shown in Figs. 11-13 are shown, respectively, in Figs. 14 and 15. 
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Fig. 14. Real part of the effective index of the CNP crystal.  
 

 
 

Fig. 15. Imaginary part of the effective index of the CNP crystal.  
 
 

From Fig. 15 it is obvious that when gain is present in the core of the inclusions, the 
lattice may exhibit both effective gain, 0latk <  and, loss 0latk > . The transition between gain 

or loss occurs at the wavelength, 0nλ = , where the real part of the refractive index is identically 

zero, i.e., where 0latn = , and, consequently, the imaginary part of the effective permittivity is 

also zero, " 0latε = .  It is important not to confuse the wavelength, 0nλ = , where the complex 

index is zero with the lattice resonance wavelength latticeλ . Therefore at 0nλ = , only evanescent 
waves having uniform phase throughout the crystal may exist.  

A surprising feature is also apparent in Fig. 15. The effective gain of the CNP crystal can 
attain values greater than those present in the core of the individual CNP inclusions. Just 
below the zero-index wavelength, 0nλ = , the gain of the crystal approaches 1latk −�  while the 

gains in the core of the CNP inclusions in all cases presented in Fig. 14 all satisfy 0.5k > − . 
In addition, for small lattice spacings in the range 25nm-30nm, an effective gain in the lattice 
is observed even when the gain in the core of the CNP inclusions is well below the SR value, 
i.e., when the individual CNP inclusions exhibit net absorption and their absorption efficiency 
is positive. This can be attributed to an enhancement in the plasmon resonance that was 
similarly responsible for the ' 0latε <  values mentioned above when the gain in the core of the 
inclusions was below the SR value and the lattice spacing was near 25nm. To observe these 
features more closely, more detailed cross sectional plots taken from Figs. 14 and 15 at lattice 
spacings equal to 25nm, 35nm, and 45nm are presented in Figs. 16, 17, and 18 showing these 
features more closely.  
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Fig. 16. Real and imaginary part of the effective refractive index as the lattice spacing is 
varied. The gain in the CNP is set equal to 0.463k = − , above the SR value. 

 
 

 

 
 

Fig. 17. Real and imaginary part of the effective refractive index  as the lattice spacing is 
varied. The gain in the CNP is set equal to 0.353k = − , below the SR value. 

 
 

 
 
Fig. 18. Real and imaginary part of the effective refractive index as the lattice spacing is 
varied. The CNP inclusions are passive, i.e., 0k = . 

 
 

The real part of the effective index transitions from being less than unity for latticeλ λ<  , to 

greater than unity for latticeλ λ> . The losses present in the crystal near latticeλ  are the largest 
when the lattice spacing is small enough to ensure significant coupling between the 
inclusions. When the wavelength exceeds latticeλ , the losses drop off considerably. For large 
lattice spacings and, hence, the coupling between inclusions is weak, behaviors resembling 
the CNP inclusions themselves ensue. For example, the imaginary part of the index, latk , 
becomes very narrow and negative, and the crystal exhibits only gain. From these 
observations it is apparent that the strength and width of the absorption/gain resonance may 
be tuned by varying the lattice spacing, d, as is demonstrated in Figs. 15 and 16.  

5. Random distribution of CNP inclusions 

The effective permittivity and index of a random distribution of active CNP inclusions was 
also investigated. The same gain values considered in the core of the CNP inclusions for the 
metafilm and the 3D periodic array were again used for this study. Recall that these gain 
values were: {0,  0.353,  0.453,  0.463}k = − − − . The Clausius-Mossotti formula [28] was 
used to determine the effective permittivity of the volume of the random CNP inclusions. 
With this approach the effective permittivity takes the form, 
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rand rand randiε ε ε= +  (36) 

 
 
where n remains the number density of the inclusions with units of 3[ ]m−  and Eα  remains the 
electric polarizability of the inclusion as defined above in (14). This expression is a valid 
representation of the effective permittivity given that the size of the scatterers satisfies the 
quasi-static approximation, and the distance between the scatterers is large enough apart to 
make any close range coupling negligible. These conditions require that 1rβ �  and that the 

volume fraction of the particles, f, satisfy the constraint: 1f � . Therefore, the volume 

fractions used in the following simulations was limited to the range: 0.01f ≤ . Because the 
system of inclusions was randomly distributed, the volume fraction was used instead of the 
lattice period, d, to parameterize the volume density of scatterers. Therefore, the number 
density that appears in expression (35) was defined in terms of the volume fraction,  f, and the 
volume of the inclusions, V  as /n f V= . The random nature of this metamaterial essentially 
removes the coherent scattering effects that are present in the periodic case. Consequently, the 
term 3

0/(6 )iβ πε , which was present in the expression (32) for the periodic array of 
inclusions and was responsible for canceling the scattering losses from the individual 
inclusions, is absent in expression (35).   

5.1 Effective Permittivity of the Random CNP Medium  

The results obtained from applying (35) are shown in Figs. 19 and 20. Immediately apparent 
is the lack of tunability with the volume density of inclusions; this property can be seen from 
the near vertical profile of '

randε , and "
randε  as the volume fraction is varied. In the periodic 

lattice it was observed that changing the lattice period and, therefore, the volume density had 
a noticeable affect on the position of the resonance. For the random CNP medium, there 
appears to be no such dependence on the resonance wavelength as the volume fraction is 
varied within the simulation range depicted in the Figs. 19, and 20, i.e., in the range 
0.001 0.01f < . Also, as can be observed in Figs. 21 and 22, there is little effect on the width 

of the resonance for both '
randε  and "

randε  as f is varied. Note that in Figs. 21 and 22 the 

profiles of '
randε  and "

randε  have been normalized to the range [-1,+1] to allow better 
observation of the relative width of the resonances. On the other hand, an enhancement in the 
strength of the resonances is observed as the volume fraction is increased, as was shown in 
Figs. 19 and 20.  
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Fig. 19. Real part of the effective permittivity of the random CNP medium. 

 
 

 
Fig. 20. Imaginary part of the effective permittivity of the random CNP medium. 

 
 

The main influence on the width of the resonance appears to be from the amount of gain 
present in the core of the CNP inclusions. This is apparent in Figs. 21 and 22. For small gain 
values below the SR gain values, wider resonances are observed. On the other hand, when the 
gain in the core of the CNP inclusions is at or above the SR gain value, the resonances narrow 
to only a few nanometers. It is worth noting that the sign of "

randε  near the resonance may be 
affected by the volume fraction when the gain in the core of the inclusions is at the SR gain 
value, 0.453k = − . In particular, for very small volume fractions, 0.001f <  , the imaginary 

part of the permittivity is negative, i.e., " 0randε < , near the resonance, whereas for 0.001f >  

it becomes positive, i.e., " 0randε > . For gain values in the core of the inclusions above the SR 

gain value, 0.453k = − ,  the imaginary part of the permittivity becomes strictly positive, i.e., 
" 0randε > , for all of the simulated volume fractions.  

 

 
 

Fig. 21. Normalized real part of the effective permittivity of the random CNP medium. 
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Fig. 22. Normalized imaginary part of the effective permittivity of the random CNP medium. 

 

5.2 Effective Index of the Random CNP Medium  

As was done for the CNP crystal, the effective complex refractive index for the random CNP 
medium was also explored in order to characterize its wave propagation properties. Again, 
assuming a negligible magnetic response, i.e., 0effμ μ= , the effective complex refractive 

index of the random CNP medium is defined as 
 

 rand rand rand randN n ikε= = +  (37) 

 
where randn is the real part of the effective complex index and randk  is its imaginary part. 
Figures 23 and 24 show, respectively, the real and imaginary parts of the complex effective 
index for the same random CNP media used in the permittivity studies. 
 

 
Fig. 23. Real part of the complex effective index of the random CNP medium. 

 

 
Fig. 24. Imaginary part of the complex effective index of the random CNP medium. 
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As with the effective permittivity results, there is no effect on the resonance wavelength 
as the volume fraction is varied. However, again the strength of the resonance is enhanced as 
the volume fraction is increased. An enhancement in the effective gain, similar to that 
observed for the CNP crystal, is also found in the random medium case. Figures 25-28 show 
cross sectional plots taken from the data in Fig. 24 at the volume fraction values: 

3 3 3 3{4 10  ,6 10  ,8 10  ,1 10 }f − − − −= × × × × . This allows the trend in the enhancement of the 
effective gain with the volume fraction, f, as well as with the gain value in the core of the 
CNP inclusions, k, to be more easily seen.  
 

 
 
Fig. 25. Imaginary part of the complex effective index of the random CNP medium, gain in 
CNP core above SR value, with a value of 0.463k = − . 

 
 

 
 
Fig. 26.  Imaginary part of the complex effective index of the random CNP medium when the 
gain in the CNP core is at the SR value, with 0.453k = − . 

 
 

 
 
Fig. 27.  Imaginary part of the complex effective index of the random CNP medium when the 
gain in the CNP core is below the SR value, with 0.353k = − . 

 
 

 
 
Fig. 28. Imaginary part of the complex effective index of the random CNP medium when the 
core is passive, i.e., when the gain in CNP core is zero ( 0k =  ). 
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It was found that as the gain in the core of the inclusions is increased, the imaginary part of 
the refractive index, randk ,  goes from positive values when k  is below the SR value, to 
negative values when  k  is at or above the SR value.  This behavior is shown in Figs. 25-28. 
It is interesting to note that the effective loss is enhanced compared to the passive case when 
there is gain present in the cores of the CNP inclusions and its value is below the SR value. 
This effect can be seen by comparing Fig. 27 to Fig. 28. Therefore, these results indicate that 
the random CNP medium exhibits either enhanced effective loss or gain in comparison to the 
passive case, depending on the amount of gain in the core of the inclusions.  

6. Conclusions 

In this paper optical metamaterials based on active CNP inclusions, consisting of an 8nm 
radius active dielectric core surrounded by a 2nm thick silver layer, were presented. In 
particular, the effective material properties of these optical MTMs were explored using 
effective medium theories applicable to a variety of inclusion configurations. Two-
dimensional (2D) mono-layer metafilms; three-dimensional (3D) square periodic array 
crystals; and 3D random distributions of these active CNPs were investigated.  

The influences of the gain value in the core of the active CNP inclusions and of the 
density of the inclusions were used as parameters to investigate the tunability of these MTMs. 
In particular the transmittance, reflectance, and absortance of the active CNP metafilm were 
investigated. It was found that under certain operating conditions the active metafilm can be 
thought of as acting like a plasmonic material with a plasma wavelength that can be 
specifically designed by selecting the appropriate inner and outer radii values of the CNP, i.e., 
by geometrically tuning the localized plasmon resonance. It was shown that for certain 
configurations the metafilm may take on characteristics of a mirror, beam splitter or amplifier 
depending on the value of the two dimensional array spacing and gain in the core of the active 
CNP inclusion.  

In the three dimensional square periodic array crystal the effective permittivity, as well as 
the effective complex index were investigated. The 3D periodic array was found to have a 
resonance near the localized plasmon resonance wavelength of the CNPs. This lattice 
resonance was shown to have tunability with the lattice spacing. It was found that the 
effective permittivity can be engineered to take on either ENG or DPS properties by selecting 
appropriately the lattice period and the gain value in the core of the CNP. Consequently, the 
effective complex index was shown to take on values where the real part may be less than 
unity and may even become zero. The imaginary part was shown to take on both positive and 
negative values representing effective loss or gain, respectively. In particular, effective losses 
were observed despite the inclusions having no intrinsic losses, and effective gain values of 
the crystal beyond the gain values used in the core of the active CNP inclusions were 
observed. These gain enhanced properties are attributed to an enhancement in the plasmon 
coupling to the incident field due to the periodic arrangement of resonant inclusions, as well 
as to strong couplings between the inclusions themselves.  

Similarly, it was shown for the 3D random distributions of active CNPs that a resonance 
exists in the effective permittivity. However, neither the gain in the core of the CNPs, nor the 
volume density of CNP inclusions for the random distribution affected the resonance 
wavelength. The only noticeable effect of the volume fraction or gain in the core values of the 
CNP inclusions was on the strength of the resonance for the effective permittivity and 
effective index. It was shown that generally a larger volume fraction of inclusions translated 
into larger resonance strengths.  The effective permittivity was also shown to take on both 
ENG and DPS characteristics similar to the 3D period arrangement. An enhancement in the 
effective gain, similar to that observed for the CNP crystal, was also found in the random 
CNP medium case, where the effective gain values of the crystal beyond the gain values used 
in the core of the active CNP inclusions were observed. As in the 3D periodic case effective 
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losses were also observed despite the inclusions having no intrinsic losses. In contrast to the 
3D periodic case, there were no zero index characteristics observed. 
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