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Several new classes of localized solutions to the homogeneous scalar wave and Maxwell's equations have been
reported recently. Theoretical and experimental results have now clearly demonstrated that remarkably good
approximations to these acoustic and electromagnetic localized-wave solutions can be achieved over extended
near-field regions with finite-sized, independently addressable, pulse-driven arrays. We demonstrate that only
the forward-propagating (causal) components of any homogeneous solution of the scalar-wave equation are actu-
ally recovered from either an infinite- or a finite-sized aperture in an open region. The backward-propagating
(acausal) components result in an evanescent-wave superposition that plays no significant role in the radiation
process. The exact, complete solution can be achieved only from specifying its values and its derivatives on the
boundary of any closed region. By using those localized-wave solutions whose forward-propagating components
have been optimized over the associated backward-propagating terms, one can recover the desirable properties
of the localized-wave solutions over the extended near-field regions of a finite-sized, independently addressable,
pulse-driven array. These results are illustrated with an extreme example-one dealing with the original solu-
tion, which is superluminal, and its finite aperture approximation, a slingshot pulse.

1. INTRODUCTION

Large classes of nonseparable space-time solutions of the
equations that govern many wave phenomena (e.g., scalar-
wave,' 7 Maxwell's,2' 8 and Klein-Gordon9 equations) have
been reported recently. When compared with traditional
monochromatic, continuous-wave (cw) solutions, these
localized-wave (LW) solutions are characterized by ex-
tended regions of localization; i.e., their shapes and/or
amplitudes are maintained over much larger distances
than are those of their cw analogs. This is also true
in complex environments such as naturally dispersive
media (waveguides 3'9 10 and plasmas") and lossy media.12"3

These discoveries have prompted several extensive inves-
tigations into the possibility of using these LW solutions
to drive finite-sized arrays, thereby launching fields that
have extended localization properties.' 4" 5 Pulses with
these desirable localized transmission characteristics
could have a number of potential applications in the areas
of directed energy transmission, secure communications,
and remote sensing.

For many idealistic situations, the scalar-wave equation
is an adequate model of the underlying physics that govern
wave propagation and scattering. To simplify the discus-
sion, it will be the only case considered here. It has been
shown3'4 that exact LW solutions of this equation can be
obtained from a representation that uses a decomposition

into bidirectional-traveling plane-wave solutions, i.e., so-
lutions formed as a product of forward- and backward-
traveling plane waves. This bidirectional representation
is readily connected to one dealing with only distinct sums
of forward- and backward-propagating plane waves. It is
complete and invertible. The bidirectional representation
does not replace the standard Fourier synthesis but rather
complements it, especially for the LW class of solutions.

If the LW solutions could be recovered from a finite ap-
erture or array, the above-mentioned applications might
be realized in practice. It is well known, however, that
many of the LW solutions are composed of both forward-
and backward-propagating wave components.2 1617 It has
been argued16"7 that this causes grave problems with cau-
sality and with the potential realization of systems that
take advantage of these LW solutions. One of our main
purposes in this paper is to explain how these solutions
have been reproduced with a strictly causal Green's func-
tion, at least in an approximate sense in the near field of
an aperture (array).

As is demonstrated in Section 2, only the forward-
propagating components of any solution of the homo-
geneous-wave equation are recovered in an open region
from an infinite aperture. In analogy with the results of
Sherman et al.,'" Devaney and Sherman,' 9 and Zharii,20 it
is shown that the remaining backward-propagating com-
ponents can be represented as a superposition of evanes-
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cent waves. Explicit comparisons of the contributions
from the forward- and the backward-propagating compo-
nents are made. The finite aperture results pertaining to
diffraction lengths, beam spread, etc. have been addressed
elsewhere.2 '2 2 It is also demonstrated that the LW solu-
tions can be designed to minimize the contributions from
the backward-propagating components and hence that the
causal field generated by driving a finite aperture with
one of these LW solutions is a demonstrably close approxi-
mation to the original solution everywhere within the dif-
fraction length of the initial aperture. This synthesis of
the wave-equation solutions in the near field of a finite
aperture is discussed in Section 3. The relationship of
the present results to those recently reported by Hillion2 3

is given in Section 4. A class of superluminal LW solu-
tions is considered in Section 5 to emphasize that approxi-
mations of these LW solutions can be realized in the near
field of a finite aperture. The resulting slingshot pulses
exhibit the superluminal and enhanced localization char-
acteristics of the infinite aperture solution in that region.
The results of the research presented in this paper are
summarized in Section 6.

2. RECONSTRUCTION OF HOMOGENEOUS,
SCALAR-WAVE-EQUATION SOLUTIONS FROM
THE HUYGENS REPRESENTATION

A variety of novel classes of solutions of the homogeneous
scalar-wave equation (HWE),

{A - act2 }f(r, t) = 0, (2.1)

have recently been under investigation.'1' 3 These solu-
tions are characterized by their enhanced localization
properties; they have been used to drive arrays that result
in beams that share these properties. 4" 5

Consider the Huygens representation of a field f(r, t)
that is forward propagating into the region z > 0 from ini-
tial data given on the plane = {(x, y, z) z = 0}. The re-
sultant field is given by24

g(r, t) = dS', T(x', y', z' O t - R/c) 4 R (2.2a)

where R = r - r is the distance between the source
point r' and the observation point r. The term in
Eq. (2.2a) is defined as

P(x', y', z', t - R/c)

= -[adZf] + [acf] R + f] R2 (2.2b)

All quantities in brackets in Eq. (2.2b) are evaluated at
the indicated retarded time. This representation can be
considered as an operation WI that takes the projection of
the field f and its derivatives on I to the function g =
We[f]. As we discuss in Appendix A, HWE solutions that
are foward propagating when they encounter the sphere at
infinity will be uniquely reconstructed by this representa-
tion, i.e., g 

Consider now the Fourier-Bessel representation of an
axisymmetric (azimuthally symmetric) LW pulse. It can
be readily addressed from the bidirectional representation

given in Ref. 3. In particular, it can be expressed in
terms of forward- and backward-propagating Bessel beams
by the expression2

f(r, t) = fXdXf dk, jf dAo(, k,, Q)Jo(yp)

x exp[-i(kz - 60t)]8(C02 - [X2 + k 2]c2). (2.3)

The bidirectional spectrum Co(,a,,3) is related to this
Fourier spectrum as3

Ao(X k, ) = 2Co [X, 2( + k) , ( - k)1
Acc untng or he elt fuc ti n co sran i er s o

(2.4)

Accounting for the delta function constraint in terms of
the variable w, we can rewrite Eq. (2.3) as

f(rt) = f dXxJo(xp)

x~ f dkz{Ao(X, kZ,W+) exp[-i(kzz - w+t)]

+ Ao(x,-k_,, w+)- exp[+i(kzz + +t)]
2wi +

+ J dXXJo(Xp)

x dk{Ao(xk., - (+) exp[-i(k.z + w+t)]

+ Ao(x,-k,-(o+)- exp[+i(k~z -
2co+

(2.5)

where + = + (x2 + kZ2) "2c. If we assume that f(r, t) is
real, the spectrum Ao(X, k, co) must satisfy the conjuga-
tion property (crossing relationship)

Ao(x, kz, w) = Ao*(X, -k,, -c) (2.6)

As a consequence, one can write Eq. (2.5) asJr Ao[X, kz, (X2 + k2
2) 2c]

f(r, t) = Re J dXXJo(Xp) dkz (X2 + kz2)12c

x exp{-i[kzz - (x2 + kZ2)1"2(ct)]}

+ Re dxJO~)J dk Ao[, kz(x + k2
2)"2c]

x jexxo+ xPk j + 2
+ + k 2)

* exp{+i[k,,z + (X2 + kz2)1"2(Ct)]}

a f+(r,t) + f_.(r,t), (2.7)

which clearly isolates the forward f+ and the backward f_
propagating Bessel beam components.

With respect to the possibility of physically generating
such solutions from a realistic source configuration, it is of
major importance to understand how the Huygens opera-
tor WI acts on the forward- and the backward-propagating
Bessel beam components of these HWE solutions. This be-
havior is derived explicitly in Appendix B. One finds that

g Wyf]= NM[f+] + WyC[f a, (2.8)

since

yez[Jo(xp)exp(i(kz - t))] J(xp)exp[-i(kzz - wt)],

(2.9a)

Wy[Jo(yp)exp(-i(kzz - ct))] 0.

Ziolkowski et al.
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This means that the Huygens operator filters out any
backward-propagating components, i.e., the backward-
propagating components are superfluous to launching
a wave into the region z > 0. Thus only the forward-
propagating component of the LW is reconstructed from
the initial data upon an open surface by the causal propa-
gator. If, on the other hand, the observation point were
in the region z < 0, then the results of Appendix B show
that only the backward-propagating components are re-
covered by the causal Huygens operator. Thus the exact
solution would be reconstructed in a closed region bounded
by two infinite planes. One surface would generate the
forward-propagating components; the other would gener-
ate the backward-propagating components.

The presence of backward-propagating components in
the exact LW solutions has led to various statements that
suggest "grave difficulties"' 6 7 with the potential physical

ing the meaning of the backward-propagating components
in terms of evanescent waves in order to make a clear iden-
tification of their contributions. We find that the forward-
propagating components are emphasized at the expense of
the backward-propagating ones when we increase the fre-
quency bandwidth of the signals.

In contrast to the process that led from Eq. (2.3) to
Eq. (2.7), let us consider the delta function constraint
as a function of k, instead of co. Since it requires that
kz =[(co/c)2

- x2]/2, we make the following choice for the
branch cut:

[[(c/c)2 - X91/2

k.= -i[x2
- (/c) 2]12

-[(o/c)
2

-X2]1/2

Equation (2.3) then yields

for > c

for JcoI < xc -
for co < -xc

(2.10)

f(r, t) = | dyxJo(xp){f do[ A( o [ /Kc)_ 2 J12 'W) exp(-i{[(co/c)2
- x

2
]/

2
z - ot})

Ao(X, -[(co/C)2
- X2]12, -o) ]

I (()/c) 2 -_X
21/2C2 xi[c/2 - x]"z- ct})J

+ rxJ d[A(x, -i[X 2
- (/C) 2

]11
2
, c)-Ia d O[ Jx2 _ (WCo/)21"I2c

+ Ao(X, i[X2
-(/c)

2] 2 ) exp(-i
1x2 - (CO/C) 2 1"2C2

exp(+icot)exp{-[X 2
- (/C) 2

]1"
2
Z}

cot)exp-[X2
- (/C)2]112Z}]}

c oX [(c/c)
2

_ x2
1/2,O)=Ref dJo)(Xp)f (co/ 2 2 11"2 2 exp(-i[(o/c)2 - x2]"12z _ Cot})

+ Ret dxxJo(xp)f dAo(X, i[ 2
- (/C)

2]1 2,w9)exp-(+icot)exp{-[x 2
- (co/c)2]1 2z}.

realization of these solutions. However, as is shown in
Refs. 2 and 3, the bidirectional spectra may be chosen to
make the amount of the backward-propagating compo-
nents in the resulting solutions negligible. This "tweak-
ing up" of the spectra to obtain a forward-propagating
beam was confirmed in Ref. 7. The result above [Eq. (2.8)]
shows that, if the HWE solution had large backward-
propagating components, it would not be reconstructed
well from the initial boundary data, since a large portion
of the field would be lost. On the other hand, this result
also shows that, if the HWE solution contained a negligible
amount of backward-propagating components, the recon-
structed function would not be corrupted, and a forward-
propagating beam would result that would exhibit the
localization properties of the original HWE solution.

To quantify this ability to design the spectra to one's
advantage, we isolate the forward- and the backward-
propagating components and then compare their intensi-
ties. We accomplish this isolation process by reinterpret-

Thus one obtains a representation in terms of a superposi-
tion of forward-propagating Bessel beams and a superpo-
sition over waves that are evanescent in the z direction.
Such a decomposition is expected from previous research
on representations of scalar-wave fields. 8

-
20

To give an illustrative example of the formalisms above,
we consider the azimuthally symmetric focus wave mode
(FWM) pulse'-3 :

fFWM(p, Z - ct, z + ct) + i( - exp[ik(z + ct)]Zo+ i _Ct)

X exp{-kp2 /[zo + i(z - ct)]}.
(2.12)

The real constants k and z are free parameters; their
meaning is revealed when we take the Fourier transform
of this FWM pulse. As is shown in Ref. 13 or equivalently
in Appendix C, one obtains

fFwM(p, z, co) = 7 dt exp(-icot)fFwM(p, z - ct, z + ct)

- exp[k(zo + 2iz)]exp[-c(zo + iz)/c]Jo(2p{k[(c/c) - k]}"12) for co > kc
= c

10 forwo< kc (.3

(2.11)
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The indicated transform kernel is chosen to match
bidirectional-plane-wave representation (2.3), which em-
phasizes the exp(+icot) inverse kernel. As 9t{fFWM*}

(p, z, &o) = 9t{fFwM}(p, z, -), where t{fFwM} = fFWM, we
see that the Fourier transform St{Re[fFwM]} will contain
no temporal frequencies in the range (-kc, +kc). The
exp[ik(z + ct)] term in the FWM pulse equation (2.12)
thus acts as a high-pass filter that permits only those fre-
quencies co > kc. The spectrum fFwM(p, z, co) has an expo-
nential roll-off, the l/e point being reached at CWimax C/Zo.
Note that the waist of the FWM pulse in the plane z = 0 is
given by wo2 = zo/k. Therefore the parameter that repre-
sents the inverse of the asymptotic term kzo is(21wo COmax

Amin Cmin
(2.14)

The parameter A thus characterizes the frequency band-
width required for the FWM pulse or, equivalently, the
square of the number of minimum wavelengths (min =

27rc/Ctomx = 2zo) in the circumference of the circle sur-
rounding its initial waist. This Fourier spectrum
[Eq. (2.13)] shows that the asymptotic limit investigated
by Heyman et al.,6 where kzo >> 1, is a nonsensical
regime for the FWM pulse in that it requires that A < 1
and hence that &)max < 9min. The backward-propagating
dominance of the wave propagation in that limit is to be
expected, since one is turning the spectrum inside out.
On the other hand, as the bandwidth increases so that A
increases, the number of minimum wavelengths within
the waist increases. From the calculations presented
below, we know that this means that the amount of the
backward-propagating components decreases.

In particular, the FWM pulse can be written in the
forward- and the backward-propagating form [Eq. (2.7)]:

fFwM(p, z - ct, z + ct)
f FWM(p, z, t) + f FWM(p, z, t)

f dXxJo(xp)[f+m (X, z, t) + fm (X, z, t)], (2.15)

1` u-' - Lr1z4 - *T Kz J ULJf

-=2 exp[ik(z + ct)]
2k

X exp{-Q(X 2 /4k)[zo + i(z - ct)]}H(x - 2k), (2.16a)

f-Wm (X, z, t)

= f dk 7 2 )1 exp{-(zo/2)[(x2 + kz 2)12 + k ]}

X 8[(X2 + kZ2)"/2 + kz - 2k]

x exp{+i[kzz + (x2 + k 2)"12 Ct]}

= - exp[ik(z + ct)]
2 k

X exp{- (X2/4k)[zo + i(z - ct)]}H(2k - X) ,(2.16b)

where H(x) is the Heaviside function. On the other hand,
the representation that corresponds to Eq. (2.11) yields the
same result:

?+ w(XY, Z t)

XC C[(CW/C)
2

- 91/2

X exp(-(zo/2 ){(co/c) + [(&)/C)2 - 2]1121)

X 8 {C + [(co/C)
2

- x2
]1"

2
- 2k}

x exp(-i{[(co/c) 2 - X2]/2Z - Cot})

- exp[ik(z + ct)]
2k

X exp{-(x2 /4k)[zo + i(z - ct)]}H(x - 2k), (2.17a)

RFWM(X, Z, t)
fx dco IT

Jo c[,
2

(/C)
2
]1"

2

X exp(-(zo/2 ){(cq/c) - i[X2
- (&o/c)2]112})

x a{- + i[X2 - (/c) 2 ]1"2 - 2k}

X exp(+icut)exp{-[X2 _ (/c) 2]1/ 2z}

IT
= exp[ik(z + ct)]

X exp{-(, 2 /4k)[zo + i(z - ct)]}H(2k - X). (2.17b)

Thus we have confirmed that the superposition that
corresponds to the backward-propagating waves is equiva-
lent to the superposition that corresponds to the evanes-
cent waves.

The relative contributions of fFWM and f_FWM to the
FWM pulse can be readily assessed from their peak values
along the axis of propagation. Consider the integrals

I r.X I
ct)j = J dXf+M(X, Z, t) I

sk2 J dX exp[- 2 /(kzo)]

= - exp(-kzo),
zo

(2.18a)

|f FWM(0,z - Ct, Z + ct) = dxx?-M(X Z, t)

2ir rkzo
kz 2 JZdXX exp[- 2 /(kzo)]

=-[1- exp(-kzo)]. (2.18b)
zo

Note that a change of variables X (zo/2 )X was used.
Therefore the ratio between the peak intensities asso-
ciated with the forward- and the backward-propagating
components is

f FWMI2 exp(-kzo) 2

fFWM1 2 1 - exp(-kzo) (

where If FWM (Oz - ct, z +

f+WM(x, Z t)

7 dkz (2 +rk 2)i2 exp{-(z0/2)[(X2 + k 2)1/2 + k}

X 8[(X 2 + k 2)"2̀ - k - 2k]
- - _2 h 2\L/2-s1'I

Ziolkowski et al.
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This means that for A >> 1 we have
IfFWM1 2 1 - (1/A) 2

I f WM 12 1/ A. (2.20)

Consequently, as the bandwidth increases, the forward-
propagating components dominate the backward-
propagating ones. In fact, for a modest value of A = 10,
intensity ratio (2.19) is 90.41, which means that very little
(-1.1%) of the FWM pulse will be lost if the infinite plane
is driven with such a solution.

The phase velocities along the z axis of the forward- and
the backward-propagating component waves are readily
extracted from the representations [Eqs. (2.15) and
(2.16)]. In particular,

W (X2 + 4k 2)c/4k _(x2 + 4k 2

kz (X- 4k2 )/4k \x2 4k2J
(2.21)

For the forward- (backward-) propagating terms, the con-
straints require that > 2k ( < 2k) so that the phase
velocity is positive (negative), with magnitude greater
than c. At the boundary where X = 2k the phase velocity
is infinite, corresponding to a stationary oscillation. On
the other hand, the group velocity along the z axis in ei-
ther case is

aw ?ac = Y X c x 2k =

vg =az k y akZ 2k-, = +cX
(2.22)

These results further confirm the interpretation of the
forward-propagating components as being the modes that
radiate energy away from the source plane and the back-
ward propagating modes as being the evanescent modes,
i.e., the modes that store energy near the source plane.
Analogous results are known for simple pulsed sources
(see, for instance, Ref. 25, p. 493).

3. FINITE-APERTURE RECONSTRUCTION
OF HOMOGENEOUS SCALAR-WAVE-
EQUATION SOLUTIONS

The analysis given in Section 2 is restricted here to the
case of a finite aperture. If we use standard arguments2'
and assume that the observation point is sufficiently far
away from the aperture that for any forward-propagating
components [zf] - -[a2 f] a reasonably good approxima-
tion of the field generated by driving a circular aperture
&I of radius a in the plane z = 0 with the HWE solution
f(r,t) is

gdS' 2[a,' f(x', y', z' = 0, t')](t' = t - Rc)
g(r,t) dS 4'irR . (3.1)

Thus, if the driving function is a Bessel beam f(r, t) =
Jo(yp)exp[-i(kzz - wt)], then one has simply

g(rt) ( c +2 i 2 dYa dp'p' Jo4P)
\CJo d4) 4iTR

X exp[+ic(t - R/c)].

Since for z >> p, z >> p,

R = [p 2
+ pt

2
- 2pp' cos() - 4)') + z

2
]1/2

Z + P2 Pi2 PPICOO - 09)
Z+ 2z

one has, approximately, with the standard integral repre-
sentation of the zeroth-order Bessel function,

g(r, t) ( + 2i)exp[+iw(t - Zle)]exp[-i(WI/c)(p 2/2z)]
e 47rz

x f dp'p'Jo(Xp')exp[- i(CO/c)(p'2/2z)]

r2

x fs d0'exp[+i(,w/c)(pp/z)cos( - ')]

_____x[ic~t zl) exp[-i(&/e)(p2 /2z)]
= (+2c) )x[it- z/c)] 2 

e ~~~~~2z

x f dppJo(Xp')Jo(P p exp[-i( /c)(P2/2z)].

(3.4)

Letting p2
__ +iq

2 + e, where 0 < << 1, in Eq. (6.633.2)
of Ref. 26; taking the e - 0 limit of that result; and using
Eq. (8.406.3) of Ref. 26, one obtains

fexp(-iq2X2)Jo(ax)Jo(jBx)xdx

2q 2 p +i 4q 2 )J 2q 2

Expression (3.4) then becomes

g(r,t) exp[+ico(t - zc)]

X exp[+(i/2)(c/lo)zX2 ]Jo(Xp) - G(r,t),

(3.5)

(3.6)

where the remainder term

G(r, t) = (+2i)exp[+i&)(t - z/c)] exp[-i(w/C)(P 2 /2z)]
C ~ ~ ~ ic] 2z

X J d&'t'Jo(Xp')Jo(- p' exp[- (/2z)]

(3.7)

The second Bessel function controls the transverse varia-
tions in the integrand. If wo is the waist of the localized
beam, then we need to restrict its argument to values
within the range

o woa 22
c z

to minimize the contributions from the remainder term G.
Similarly, the exponential term in the integrand of Eq. (3.7)
will also be highly oscillatory, as long as

&, a2 ira2
z <--=-.

c 2 A

Therefore, since localization means at least wo 5 a, we
find, by combining these constraints, that in the region

(3.2)

(3.3)

)w woa irwoa
z 2 _

c 2 A
(3.8)

the remainder term G(r, t) 0. This means that

g(r,t) exp[+iwo(t - z/c)]exp[+(i/2)(C/W)ZX2 ]Jo(Xp),

(3.9)
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when the observation point is in the region defined by ex-
pression (3.8), i.e., the effective near field of the aperture.
In addition, we know that

_= (X2
+ k

2
)1/2

c

or

k = [(co/C)2
- X2]112, (3.10)

so that, in the spectral region where c/c >> X, the axial
propagation constant

-c [ 2 C)2
o 1C 2

c 2 co 
(3.11)

characteristic variable . One can then represent an
axisymmetric solution of Eq. (4.1) in terms of its values on
the hypersurface 6 = 0:

fk(p, Aq) = i exp(ik,)exp(ikp2 /{)

(o2k
x drr exp(ikr2 /J6)o -pr Fk(r,0)

-2 exp(ike)exp(ikp')/g

X Jdrr exp(ikr2 /6)Jo 2- prFk(r,0, 2ct).

(4.4)

Since k = o/c, this is consistent with the fact that

- k + 1 X
2 k,

near the axis of propagation for a localized field. Con-
sequently, everywhere in the near-field axial region de-
fined by expression (3.8), we obtain

g(r,t)- Jo(xp)exp[-i(kzz - cot)] f(r,t); (3.13)

i.e., the original HWE solution is recovered. This result
agrees with the results reported in Ref. 5 for the Bessel
beam. Similarly, a backward-propagating Bessel beam
produces a null contribution in this region. Thus, as with
the infinite-aperture case, the forward-propagating com-
ponents of a LW solution would be recovered in this near-
field region. As the observation point moves into the
far-field region, the remainder terms are no longer negli-
gible and the localization effect can no longer be main-
tained. Specific bounds on the parameters of the resulting
broad-bandwidth fields and their higher-order correlation
properties are discussed in Refs. 21 and 22. For in-
stance, the diffraction length of the field generated by an
aperture that is driven with a LW solution created as a
superposition of Bessel beams will be expression (3.8),
with A replaced by the effective wavelength that is associ-
ated with the set of signals driving the aperture [i.e.,
with the value Arad = 27Tc/crad, where rad is given by
Eq. (2.19b) of Ref. 21].

4. RELATIONSHIP TO HILLION'S GOURSAT
REPRESENTATION
Other representations of the initial-boundary-value-
problem solution are possible from the characteristic-
variable point of view. In particular, consider the
characteristic coordinate version of the HWE (2.1):

Af(r,t) + 4afaf(r,t) = 0, (4.1)

This recovers the form of the solution of the Goursat
initial-boundary-value problem reported recently by

(3.12) Hillion.23 The FWM solution' given by Eq. (2.12) with
z = kwo2 is recovered with the choice

Fk(r,O) = exp(-r2 /wo2). (4.5)

Representation (4.4) is advantageous for initial data on
the characteristic surfaces such as g = 0, but it has little
direct applicability to physical situations that involve data
on a spatial hyperplane z = 0. Nonetheless, it can be
used to derive such a representation. In particular, for
z = 0, Eq. (4.4) gives

(p, -Ct, +ct) = -y exp[ik(ct)]exp(-ikp2 /ct)

X drr exp(-ikr 2 /ct)Jo( K pr)Fk(r,O).

(4.6)

This expression is straightforwardly inverted to give

Fk(r,0)= -y- exp[-ik(ct)]exp(+ikr2 /ct)

X f dpp exp(+ikp/ct)Jo p -(p,-ct, +ct)
0 ~~~~~ct

(4.7)

Therefore, inserting this result into Eq. (4.4), one obtains
the following expression:

A (p 6) = ik exp(ikp2/z)exp(ikz) I drr exp(ikr 2/z)
z f

X Jo y pr)fk(r,-ct +ct).

For the FWM solution,

fk'WM(r, -Ct, +Ct)

(4.8)

where = z - ct and rq = z + ct. With the ansatz that

fk(r,t) = exp(ik-q)Fk(r,), (4.2)

the HWE (4.1) reduces to the Schrodinger equation'

4ikaeFk + AFk = 0. (4.3)

The Green's function for this equation is derived in Ap-
pendix D and allows for positive and negative values of the

zo ° exp(+ikct)exp[-kr2 /(zo - ict)].
ZO - ct

(4.9)

Equation (4.8) is a rather unusual representation of a
HWE solution in that it couples together the source and
the observation points through the Bessel function term
in the integrand. It does show that the final time history
is completely governed by the initial time histories of that
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solution on the plane z = 0. Moreover, the propagation
terms in this exact result are identical to those encoun-
tered in a paraxial or a Fresnel approximation. However,
in contrast to Hillion's conclusions,2 3 Eq. (4.8), which is
equivalent to Eq. (4.4), does not answer any issues con-
cerning the causality of the LW solutions of Eq. (2.1); i.e.,
it does not separate the causal and the anticausal contri-
butions as we have done in Section 2. It simply generates
the entire solution from its boundary values on the hyper-
surface z = 0.

5. SLINGSHOT SUPERLUMINAL PULSES
The bidirectional representation introduced in Ref. 3
makes use of a factorization of the wave operator in terms
of the characteristic light-cone variables = z - ct and
q = z + ct. Nonetheless, the HWE and this factorization
do not discriminate against pulses whose group speed
Vg < c or vg > c. These subluminal or superluminal
pulses represent interference patterns that have been con-
structed from basic building blocks each traveling at the
speed of light c. We discuss the superluminal case below;
the subluminal case follows in an analogous fashion.

Let us consider superluminal solutions of the wave and
Maxwell's equations. We first make an analogy with the
original description of FWM's as projections onto real
space of field solutions that have moving complex source
locations.' The field created by an electron moving at a
constant speed v along the z axis in a medium of index
of refraction n is readily obtained from well-known formu-
las in free space.27 28 The scalar and vector Li6nard-
Wiechert potentials (in cgs units),

(r, t)= q (5.1)
{[1 - (V/Cm)'1(X

2
+ y

2
) + (z - VT/2

A(r, t) = 0-(r, t), (5.2)
Cm

where the speed of light in the medium Cm = c/n and the
velocity along the z axis v = v, result in the electromag-
netic fields

Ef (rt) [1 - (V/Cm)2][X5Q + y9 + (z -vt)2] 53
{[- V/Cm)

2
](X + y

2
) + (Z Vt)2}3/2'

H(r, t) = X E(r, t). (5.4)
Cm

Now let the electron move along the complex z axis dis-
placed from real space by the distance izo so that the
source singularity, rather than being at (x, y, z) = (0, 0, vt),
is at (x, y, z) = (0,0, vt + izo). The resulting potentials
and fields are

{[1 - (V/Cm) 2
](X

2
+ y2

) + [(z - Vt) -o]21/2

(5.5)

A(r, t) = - (r, t),
Cm

(5.6)

E(r, t) [1 - (V/Cm) 2
]{Xx + y9 + [(z - Vt) - izo]

E,= - (V/Cm)
2
](X' + y

2
) + [(Z - Vt) -iz ]}

(5.7)

H(r, t) = X E(r, t). (5.8)
Cm

The projections of these solutions onto real space-
time are purely translational, maintaining their form
over all space-time about the group velocity center z = vt.
If these pulses are subluminal, i.e., if v/Cm < 1, these
potentials and fields have singularities in the plane
z = vt in real space along the ring p = (x2 + y2

)1/2 =

zo[1 - (V/Cm)2]' 1 2
. On the other hand, if the pulses are

superluminal, i.e., if V/Cm > 1, these potentials and
fields have no singularities in real space, the ring sin-
gularity being displaced to a complex location p =
iZI[(V/cm)

2
- 1]-1/2 and z = vt. Thus one obtains interest-

ing free-space, nonsingular HWE solutions (in real space-
time) but at a cost of their being superluminal. The
energy associated with this superluminal class of solutions
is infinite. Consider the HWE solution f (p, 0, z - vt):

[V
2

- (1/cm)
2at 2]f (p, 0, Z - Vt)

a + apf + 2 8a2f + a&2f ( )2at2f
p pm

= a 
2
f + 1lf + 1 ao2f + Y-%2f = 0,

p p
(5.9)

where

=z - Vt

Y12 = 1 - (V/Cm)
2
.

(5.10)

(5.11)

If one sets = y and V/cm < 1, then Eq. (5.9) becomes a
three-dimensional Laplace equation:

Af = 0, (5.12)

where the modified Laplacian is with respect to the
variables (p, 0,). The basis solutions to this equation
cannot have compact support, existing over all space,
and hence will not have finite energy. Similarly, taking
v/Cm > 1 and = -il'yl, we reduce Eq. (5.9) to the two-
dimensional wave equation

A&f - a
2
f = 0. (5.12')

The resulting two-dimensional basis waves also exhibit in-
finite energy. If v = c, then the time-derivative term dis-
appears, and one has A f = 0, which requires f to be
harmonic in the transverse coordinates so that it must
have noncompact support. Thus one can achieve finite
energy superluminal pulses only by taking superpositions
of any of these basis solutions over their free parameters.

One can write the wave equation in yet another form
that specifically isolates the z - vt dependence. Let qj =
p/y. Then Eq. (5.9) can be written explicitly in the form

a 2 D + 1 a + 1 ao2 + ;2 = 0.a17 77 1 - O2 C + 2'=0 (5.13)

Consider as a general form of the solutions to this equation,

()nm(7, 0 ) - hn2m(7q, ) cos nO(272 + 2)m/2 Lsin n' (5.14)

where 6 = ; + izo, m = 1,2, ... and n = 0,1, 2,.... Simple
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insertion of Eq. (5.14) into Eq. (5.13) and collection of like
terms lead to the equations that must be satisfied by hnm:

7)2 (a1
2hnm + O2hnm) = n2hnm -qa7lhnm, (5.15a)

77'ahnm + vOchnm =( 2 )hnm. (5.15b)

The simplest case is the azimuthally symmetric one,
where n = 0, m = 1, and hoo a complex constant:

~FoomO,~) - 5.16
(q2 + g2)1/2 (5.16)

Consider the superluminal case and set hoo = izo and
Y-1 = -inK, where the real constant K 2 1. One then has

(Doo(77,0,6 = I izo

{-(Kp) 2 + [(z - t) + iZo] 2}/2

zo
{(K~p) 2 + [zo-i(Z-Vt)]2}" 2 (5.17)

This is equivalent, modulo a constant, to the electron po-
tential solution [Eq. (5.5)]. Note that like Eq. (5.5) this
solution is strictly unidirectional. The energy of this so-
lution diverges logarithmically:

J dz f dOf dpploof2

oc I dpp
Jo {[-

2 p2
+ (Z - t)

2
- z0

2
]

2 + 4 2
(Z_ Vt)-1/2

2 ln{ + [f2 + 4 2 (z - Vt)2 2}(zVt)2z = . (5.18)

The intensity pattern of HWE solution (5.17) with speed
v c in a medium with index of refraction n > 1 has the
characteristic rabbit-head-shaped pattern of the LW solu-
tions (the center of the pulse being the head, the tail re-
gions the ears). Despite the localization of the intensity,
the result [relation (5.18)] indicates that the energy in the
ear-shaped regions of this solution diverges logarithmically.

Higher-order solutions have energies that diverge alge-
braically. It is realistic to expect finite energy super-
positions of these basis solutions. Transverse electric
fields can also be defined simply from the solution 00 by
introduction of the alternative vector potential A = 000
and the scalar potential = 0. The electric field is then
E =-actA. It is a purely transverse-to-z electric field
that now has its maximum in its imaginary component
rather than in its real component in the plane z = vt when
p = 0. Note that it is different from solution (5.7), which
has its longitudinal component nonzero in any plane other
than z = t.

In vacuum, the solutions given by Eq. (5.17) strictly have
speeds v > c. However, in a medium, the speed can be
adjusted to satisfy the standard restrictions c > v > cm.

Superluminal fields, e.g., Cherenkov radiation, are known
to exist in a medium. A major difference between the
LW solutions (5.17), for instance, and Cherenkov radiation
in this velocity regime is the fact that the central peak
dominates the field intensity and that there are forward
and backward tails rather than just a forward Mach cone.
The forward tails are actually in the direction of the Mach
cone. Approximate forms of these superluminal waves
could in principle be found in a medium. These solutions
might be of additional interest to tachyon research and
to other potential faster-than-light effects, such as the
observed superluminal emission jets from extragalactic
radio sources. 2 9

We have made several comparisons of these scalar and
electromagnetic superluminal solutions with the other
LW's, such as the FWM's. The scalar versions had simi-
lar characteristics in that they had intense central peaks
and long-lasting tail regions as well as frequency spectra
that had a high-pass character to them. The time histories
associated with Eq. (5.17) are in general less complex than
those associated with the FWM's, e.g., Red5oo(p = 0, 0, z =
0, t) = 1/[1 + (t/zo) 2]1"2 . With the results of Section 3,
the beam generated by driving a finite aperture with the
superluminal solutions [Eq. (5.17)] can be characterized.

Driving a circular array of radius a with one of these
superluminal HWE solutions that has a waist w when
z = t = 0 and a maximum frequency of interest frad, one
generates a beam that recovers this solution only in its
near field, i.e., for distances given by expression (3.8):
z < rawfrad/c - 7raw/Arad. The superluminal pulse beam
looks like a slingshot effect. The tails of the superluminal
solution first drive the array, establishing a background
field moving at speed c. A moving interference pattern
representing the central peak then moves out from the
center at speed v > c and catches up to the background
field waves. The superluminal interference center then
disappears as this pulse center outruns the background
waves, i.e., the interference pattern disappears as it out-
runs its component waves. (See the Note Added in Proof).

Many other properties of the superluminal pulse are in
fact analogous to other LW solutions. This is to be ex-
pected, since these HWE solutions are obtainable as su-
perpositions of Bessel beams from their corresponding
bidirectional representation, even though they are unidi-
rectional. The bidirectional representation of Eq. (5.17)
is straightforward. In particular, set ; z - cmt and

= + cmt. The bidirectional spectrum,

2i 2zo exp-[2z0 /(1 + V/cm)]a}
'X, acP) = r 1 + v/c X 2 - 41

(5.19)X ;[ + ) 1+V/Cm

and the bidirectional representation,

f (p, , z, t) = fdXX da dC(X, a, 3)Jo(XP)

X exp(-iaexp(il37 ) )8(aG - X2/4), (5.20)

yield Eq. (5.17), i.e.,
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f (p a Zt 2i 2zo fd f d exp(-iac)exp{-ia[(1 - /Cm)/(1 + v/cm)]-}exp{-[2z0 /(1 + V/Cm)]}J()

=r1 4 WCo I dX~o[2t~l +2v/c ) p]CoS{;x+ 4a[(1 V/Cm)/(1 + VCm)]

4i 2zo d f +1 - V/Cm 2z Jo UP)
= T 1+ V/Cm fo, [a cs + V/Cm 1+ V/CmJJj XXX 2 + -1 V/C)/(l + VCm)

=4i 2z0 FdaK 2 (i-VIC, 121fco [ (i V/Cm, 2z0
1 + V/Cm JO f '\ + V/Cm! +1 + V/C! 1 + V/C m

2z0 ' V/Cm 2E (1V/We \ 2z0 1 -l12

1+ V/Cm .j ~ + V/Cm} V + V/Cm - + j/ .

izo
{y 2

p
2

+ [(1 + V/Cm)/2 + -1(l - V/Cm)/2 -iZO]2}1I

izo (D 0,
[y-2 p2 + ( _ Vt - i) 2]1"2 (5.21)

where the last equivalence has been obtained as above with
the assumption that v > cm. Similarly, electron poten-
tial (5.1), an inhomogeneous wave-equation solution that is
strictly forward propagating, is obtained straightforwardly
from the bidirectional spectrum

4 1 q a['1 /Cm 
C(x, a,,) = - _ [ 1 + a VC7r 1+ V/CmX 4(Y43 \1 + /c J

(5.22)
Thus, even though it constructs solutions from products of
forward- and backward-traveling plane waves propagating
at speed cm, the bidirectional representation can produce
unidirectional subluminal and superluminal solutions of
the homogeneous and the inhomogeneous scalar-wave
equations.

The high-pass filter property of the spectra associated
with the HWE pulse solution (5.17) is also a common char-
acteristic. As the waist of the modified-power-spectrum
(MPS) pulse2 is directly related to its lowest and highest
frequencies, one finds that the waist of solution (5.17),
is related to its highest radian frequency of relevance
W
0max C/Zo. This relation appears to be due to the expo-

nential increase of the spectrum at the lower frequencies
in the MPS pulse and to an exponential rolloff in both the
MPS and slingshot pulses at higher frequencies. The com-
plete solution is obtained only with an infinite (extremely
large in the MPS pulse case, infinite for the FWM) aper-
ture, and it is recovered approximately by a finite aper-
ture in its near field, as discussed above in Section 3. For
a finite array, the resulting slingshot pulse beam actually
has the same form as the beam that was obtained in the
original MPS pulse-driven array experiments:' 4 a rabbit-
head shape in the near field; a central peak with only lag-
ging tails on the edge of the near-to-far-field boundary; and
a spherically expanding beam in the far field. The tails of
the beam that is generated by the pulse-driven array re-
place the sidelobes associated with conventional cw-driven
aperture patterns. The decrease in the size of the side-
lobes by an increase in the bandwidth is common to beams
that are generated by arrays driven with LW solutions.

6. CONCLUSIONS

We have shown that if an aperture is driven with an arbi-
trary HWE solution, only the forward-propagating compo-

nents of that solution can be reconstructed from its values
on an open initial-boundary-value surface. An infinite
aperture affords one the ability to re-create those compo-
nents everywhere in the positive half-space; a finite aper-
ture allows one to re-create the components everywhere in
the near-field region. Since the initial driving signals in
an aperture correspond simply to a set of time histories,
the presence of both the positive and the negative values
of k. and frequencies c are permitted. The propagator in
the Huygens representation, being strictly causal, filters
out the acausal components in those regions. Thus, by
designing LW solutions with minimal backward propagat-
ing components, as was accomplished for the acoustic ex-
periments reported in Refs. 14 and 15, and using them to
drive an aperture, one can recreate fields that are re-
markably close approximations of those solutions. One
can then obtain for application purposes some of the
highly desirable localization properties of beams that are
generated by driving an array with an ultrawide band-
width set of pulses, as described in Refs. 21 and 22.
Bevensee3 0 has recently generalized the results we have
reported here to LW solutions of Maxwell's equations.

The HWE solution reconstruction results were applied
specifically to a class of superluminal beams. The sling-
shot field that was generated by driving an aperture with
one of these solutions is characterized as a moving inter-
ference pattern. The intensity of this field has a peak
that moves at speeds vg > c, even though its constituent
signals are traveling at the characteristic wave speed of
the medium. The effect is present in the near field of the
aperture; it is lost once the interference pattern reaches
the far field.

APPENDIX A: BEHAVIOR OF SOLUTIONS
RECONSTRUCTED BY THE HUYGENS
REPRESENTATION ON THE HEMISPHERE
AT INFINITY

Implicit in the Huygens representation is the behavior
of the HWE solution under reconstruction on the sphere
at infinity. In the frequency domain this behavior is
governed by Sommerfeld's radiation condition. The gen-
eralization of that condition to pulse solutions is consid-
ered here.
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Consider Green's theorem:

g(r, t) = f dS' II(x 4Yz=R - c)

I 4rR
+ LdsoP(xo'Y~ Ri/c) (Al)

where X represents the plane z = 0, R., represents the
hemisphere at infinity, P is given by Eq. (2.2b), and

T(x',y',z',t - R/c) = * {[V'f] - ]R -

(A2)

where the unit vector R = (r - r')/R and h. is the out-
wardly pointing unit normal to the surface Ro..

We obtain the Huygens representation [Eqs. (2.2a)] of a
HWE solution in the region z > 0 from Eq. (Al), assuming
that any contributions from the surface R. are negligible,
i.e., that the second integral is zero. In Eq. (Al) we also
assume that, everywhere in the region bounded by E and
R.,, f and f are zero at t = 0 and f and ajf are continuous.
Mathematically, the Green's representation does not im-
pose any causality condition on the behavior of the HWE
solution but allows solutions to come into the region from
either surface R. or E. Causality is imposed as an ad-
ditional constraint on the overall behavior of the solution
to make it physically realizable. In the time domain this
condition is expressed as a restriction only to outward-
propagating waves on R.. The mathematical representa-
tion of this condition is derived as follows:

If d is the solid angle subtended by R., then the
integral

I dS' T(x',y',Zt - R/c)
Rio 4 7rR

lim dQR2 2T(x',y'Xzt - R/c) (A3)

If we assume that the HWE solution f is regular at infin-
ity, i.e., that limR--(Rf) constant, the integral

(A4)

Furthermore, since Ir' > Irl on R, the unit vector has
a negative orientation with respect to i2., i.e., n. R < 0.
The integral (A3) is then zero only if the HWE solution f
represents an outward-propagating wave on the surface
R., i.e., only if it satisfies the relation

lim{R[(nh. V')f - (. * RA)a,f ]} 0.
R-~~~~~~~~~~~~~~~C

(A5)

Thus, if the HWE solution f is forward propagating, the
Huygens representation (2.2) will reconstruct it in the re-
gion z > 0, i.e., g f

APPENDIX B: BESSEL BEAMS AND THE
HUYGENS REPRESENTATION

The action of the Huygens representation (2.2) on the
Bessel beams

f (p, z, t) = J(xp)exp[ti(kzz + cot)],

where k2 = [(W/c)
2

- X
2
]11

2 and k = co/c, is considered. In
particular, let f+ be the forward-propagating beam

f+(p,z,t) = Jo(yp)exp[+i(k~z - ct)],

and let the Huygens operator XI be taken from X, the infi-
nite plane z = 0. One then has

1 r2'r r ,
x[ f+] f0 do' fO dPP R

x {-[azf+] + [ f+]Z- + [f+]

_exp(- i ()t)r 2 d&' r co z e t JI d+'g dpo'1 -ikz - i- -R

X exp[i(c)R Jo (xp,) (B2)

Since

rexp[i(wt/c)R]] Fi z z\
lz R =t - ii3 exp[i((o/c)R], (133)R c~ 

relation (2) can be expressed as

gelf+ = xp(-iwt) (-ikZ+ - a+), (B4)
4ir

where the integral term

SC 2d 0fdpp' exp[±i(w/c)R]Jo(XP,)
o t R

With

R2 = pt
2

+ p2 - 2 pp' cos ' + z2
, (B6)

one has the identity

exp(±ikR) = o I 2 AdA exp[ti(k2
- A2)1/21z1]

X Jo[p2 + p2 - 2 pp' cos 40)1/2], (B7)

which follows directly from the Sommerfeld identity
given in Ref. 31, p. 435. Inserting Eq. (B7) directly into
Eq. (B5) gives

2+ = +i [(c/c)2 A2J"2 exp{±i[(,w/c) - A2]121zI}

X f dp'p'Jo(Xp')
.0

J2p
X f dxtA'Jo[Ak(p,2 + p2 - 2pp'co COS¢)112]. (B8)

With the identity given by Eq. (8.530.2) of Ref. 26,

Jo[A(p' 2 + p2 - 2pp' cos J)/2] = , Ji(Ap)JL(Ap')exp(il0'),

(B9)

the 4' integration of Eq. (B8) yields
r2

dO'J[A(p'2 + p2 - 2pp' cos )1/2]

= E J(Ap)Jl(Ap') J do'exp(ilo')
1T-co 

= 2 rJ0 (Ap)Jo(Ap'), (BlO)
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and Eq. (B8) becomes

S = ±27if [(c/) 2 A2] 2 exp{±i[(o/c) 2
- A 2]"2lz1}

x Jo UP) f dpp'Jo(Xp')Jo(Ap'). (Bll)

Since

Jdpp'Jo(Ap')Jo(xp') A X) )
o A

Eq. (Bll) reduces immediately to the result that

, = ±27ri exp(±iklzl) Jo(XP).
k,

(B12)

(B13)

one then has

WY-If-]

= exp(+iot) 2 J 
- 4,7T fJ dip' jo dp'p'

X {-ikk + i ) -Z + Z lexp[-(/c)R]J (,)

= exp(+icot) [-ikz2- - az2_] 

exp(+it) -ik - 2ri (-2)exp(ikz)Jo(p)

= -[-27r - (-2ir)]exp[i(kzz + ut)]Jo(yp) 0. (B22)

Alternately, as shown by Donnelly3 2 and suggested by
one of the reviewers, one can rewrite Eq. (B5) as a two-
dimensional convolution:

2 (p, Z) = Jo(xp) *
exp[±i(co/c)(p 2

+ Z
2
)1"2

]

(p
2

+ z
2

)1/2 (B14)

A two-dimensional Fourier transform of this result gives

9S.,,{±1%ky) = Si.,y{Jo(XP)l(K)

X 9;. exp[±i(co/c)(p 2 + 2)1/2] (K),
x (y (2 + 2)1/2 ()

(B15)

where K2 = k + ky2. Since

9.,y{J0(XP)}(K) = 2 ( X) (B16)
K

inverse Fourier transforming Eq. (B15) gives

+±(Pz) = Jo(xp) x fj;Xexp[±i(c/c)(p2 + 2)1/2]l(x)OC-4Z) =Jo~x) X . (p 2 + 2)1"2 J
(B17)

The remaining two-dimensional Fourier transform

exp[±i(co/c)(p 2 + Z2)1/2]
9;, Y (P 2 + z2)1/2 

+ exp{±ilzl [(co/c)2
-

2]1/2} exp(±ikzlzl)

[(cO/c) - X2] 2 k
(B18)

so that with Eq. (B17) the final relation [Eq. (B13)] is
again recovered. Equation (B13) also means that

a,2 = -27r sgn(z)exp(±ikzIz)1/2Jo(Xp). (B19)

For observation points in the region z > 0, Eq. (B4) then
yields

NXM= exp(-icut) - ik2iri 1.-,) x~kzJ(p
[f+] 4 [ Zk - (- 7)]expfkZ )o(XP)

= exp[i(k.z - ut)]Jo(yp) f+. (B20)

Similarly, if

Similarly, if

f± (p, z, t) = J(Xp)exp[- i(kzz +~ &it)],

one has

X -[f+] f+

yCE[f] 0.

(B23)

(B24)

(B25)

It is then readily shown (in the limit that - 0) that

Xxf{exp[±i(k~z - cot)]} exp[±i(k~z - cot)]

Xzfexp[±i(kzz + cot)]} 0.

(B26)

(B27)

Thus the Huygens operator WI passes only forward-
propagating beams or plane waves, and hence any linear
combination of them, into the region z > 0. On the other
hand, Eqs. (B13) and (B19) also show that analogous re-
sults hold in the region z < 0:

WyCJo(xp)exp[i(kzz + cot)]} -Jo(xp)exp[+i(kzz + ct)]

(B28)

Wy{Jo(p)exp[4i(kz - ct)]}- 0. (B29)

Combining Eqs. (B20)-(B22) or (B23)-(B25) with
Eqs. (B28) and (B29), one obtains the extinction theorem
(see, for instance, Ref. 31, pp. 500-501, or Ref. 33, pp. 101-
102) for these Bessel beams; i.e., the field scattered from
Z cancels the incident field in the source region z < 0 and
produces the incident field in the observation region z > 0.

APPENDIX C: FOURIER TRANSFORM OF
THE FOCUS-WAVE-MODE PULSE

The desired Fourier transform of the FWM pulse
[Eq. (2.12)] is defined by expression (2.13):

fFwM(p, Z, co) = J dt exp(-icot)fFwM(p, z - t, + Ct).

(Cl)

With the series definition of the exponential function, one
can rewrite Eq. (Cl) as

fFWM(p, z, co) = zo exp(ikz) E (-k2)n Jdt
n=O n! ,0

X expL-ico - kc)tj[(Zo + iz) - iCt)]+l

(C2)f (p,z,t) = Jo(Xp)exp[+i(kzz + cot)],
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However, with Eq. (3.382.7) of Ref. 26:

exp(-ipx) 2 p'exp(-6p)
| dX (6 (- iX)X+) = H(p) n! (C3)

where H(p) is Heaviside's function, and with the series
definition of the Bessel function [Eq. (8.402) of Ref. 26],

E(lnx2nJo(2x) =E (-
n-0 n! n!

Eq. (C2) becomes

fFwM(p z, to) = - exp(ikz)H(co - kc)
C

X exp{-[(zo + iz)/c](co - kc)}

X E (-kp2)n ( -kC)n

n-0 n! c'n!

_27rzo

= ° H(co - kc)exp[k(zo + 2iz)]
C

x exp[-w(zo + iz)/c]

X Jo{2P[k(' - k]1

In the same manner, one has

J dt exp(- iwt)fFwM*(p, z - ct, z + Ct)

-H[ -(CL + kc)]exp[k(zo + 2iz)]
C

>< exp[+w(zo + iz)/c]Jo{2p[-k-2 + k)]

-fFWM(p, Z, -w) -

APPENDIX D: GREEN'S FUNCTION FOR
SCHRODINGER EQUATION IN R 2+'

Consider the Schrodinger equation

4 ik8aeF + AFk = 0,

(C4)

and for < 0

(D3b)ik exp(-ikp1161)

ITp{) 161

so that for 0

Gk(p, ) = -ik exp(ikp/e)
7r 

(D3c)

Finally, for = 0 one has explicitly

Gk(p, = ) = (p)
21rp

(C5)

(C6)

(D1)

where the variable 4 is allowed to take positive and nega-
tive values. The following Green's function derivation is
attributable to Donnelly. 32

A three-dimensional Fourier transform representation
of an axisymmetric solution of Eq. (D1) is

Fk(P, = 7 dk6 exp(i2I7kf)

x f d exp(i2vm r)A(icK, kdY8(2k + 7iTKj2 /k)

= 2r f dKKJo(2IKp)A(K,/K 2/k)exp(-i7r 2 4K 2/k).

(D2)

We obtain the corresponding Green's function Gk(p, ) by
setting A(K, ke) = 1. Then, with Eq. (6.631.6) of Ref. 26,
one has for > 0

Gk(p, ) = ik exp(ikp2 /6) (D3a)
Ir T

(D4)
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Note Added in Proof Since submission of this manu-
script, the authors have found that J.-Y. Lu and J. F.
Greenleaf of the Mayo Clinic Foundation experimentally
verified this slingshot pulse behavior with ultrasound
waves in water: J.-Y. Lu and J. F Greenleaf, "Experimen-
tal verification of nondiffracting X waves," IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 39, 441-446 (1992).
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