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Abstract. Various illumination schemes of dynamic apertures are investigated. The decay
patterns of the generated ultra-wide bandwidth pulses are studied and compared to postulated
diffraction lengths. It is shown that such definitions of the diffraction ranges characterize the
propagation of the pulses in a broad sense. We emphasize the fact that to understand how a
localized pulse decays we have to resort to the structure of its temporal and spatial spectral
content. An exhaustive analysis of the depletion of the spectral components of the radiated
localized pulses is presented.

1. Introduction

It has been demonstrated that finite-energy causal localized waves (LW) can be generated
from dynamic Gaussian apertures [1–3]. These sources are characterized by apertures that
vary with time. Such apertures can launch close approximations to the focus wave mode
(FWM) pulse [1]. In contradistinction to the source-free FWM field [4, 5], the corresponding
LW generated by a dynamic Gaussian aperture is completely causal [1, 2]. It should be
emphasized, however, that a condition which allows forward-going components to dominate
the source-free FWM pulse [2] has to be imposed in order to ensure that a localized pulse
is efficiently launched out of a dynamic Gaussian aperture.

The field illuminating the dynamic aperture has an ultra-wide frequency bandwidth and
exhibits a strong correlation between its spatial and temporal spectral components [1]. A
clever design of the connection between these components can affect the range through
which the pulse travels before it starts decaying. It can, also, significantly alter the rate
of decay of the pulse. In this work, we illustrate this point by studying the propagation
characteristics of three distinct localized fields. The first is the usual FWM pulse. The other
two LW solutions contain higher frequency components and have larger bandwidths. To
have a finite energy source, the illumination of the aperture is turned on att = −4T and
then turned off att = +4T by utilizing a Gaussian time-window of the form e−t2/4T 2

. Such
a window allows the radius of the aperture to shrink for all negative times from its largest
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size att = −4T , to acquire its minimum radius att = 0, and expand back for all positive
times to reach its original size att = +4T when the illuminating field is turned off.

In this work, we shall provide a detailed analysis of the spectral contents of the three
pulses under investigation. Such a study will help us to understand how exactly the spectral
components are depleted as a pulse travels away from the aperture. There have been several
serious attempts to set guidelines for the design of LW pulses [6, 7]. To complement these
attempts the approach adopted in this work focuses on how the spectral components of the
pulses are actually stripped away as they propagate away from the aperture. This gives us
a facility to pinpoint the components that need to be retained in order to slow down the
decay rate of the pulses generated.

The definition of the diffraction length is a topic that is frequently discussed in
connection with the LW generation and propagation [7, 8]. The core of this issue resides
in the ambiguity of determining the maximum temporal(ωmax) frequency of the spectrum.
Furthermore, the range of the pulse and its rate of decay depend on the transverse spectral
bandwidth. These quantities, together with the maximum radius of the aperture, can be
combined to give a good estimate of a diffraction length [8]. However, inclusive estimates
of this type can conceal some features that might be useful for specific applications.

The reader will probably notice that the parameters used to characterize the generated
LW pulses lead to aperture sizes and frequency bandwidths that are slightly exaggerated.
The apertures simulated in this work shrink from initial sizes of several metres to minimum
radii of few millimetres, while the highest frequencies contained in their spectra are of the
order of tens of teraHertz. Such bandwidths are about an order of magnitude larger than
those produced by recently developed optical sources [9]. We have chosen such blown up
quantities primarily to demonstrate the efficiency of dynamic apertures to launch extremely
narrow pulses from extended sources of larger dimensions. For various applications the
maximum and minimum radii and the bandwidths of the elements constituting the aperture
can be altered according to the design requirements.

In this work we start by deriving three source-free LW solutions. These pulses will be
used to illuminate the corresponding dynamic apertures. We continue with a study of the
fields generated by apertures that need to be illuminated for infinite periods of time. The
Fourier spatial and temporal spectra of these fields are derived and their main features are
expounded upon. Next, we concentrate on the physically realizable, finite-time dynamic
apertures and show how their spectral components are depleted with distance causing the
amplitude of the pulses to decrease. Finally, we provide a discussion of the diffraction
length.

2. The source-free solutions

In this section, we utilize the facility provided by the bi-directional representation [10] to
derive other source-free solutions that, in analogy to the Gaussian FWM aperture [1], can
be used to illuminate similar dynamic apertures. In particular, we suggest three different
solutions to the scalar wave equation, namely, the focus wave mode (FWM), the polynomial
focus wave mode (PFWM) and the modified focus wave mode (MFWM). At the beginning,
these fields will be used to excite infinite dynamic apertures located atz = 0. For such
ideal sources which will be considered in sections 3 and 4, the aperture shrinks from an
infinite radius att = −∞ to a minimum effective radius att = 0, then expands again to an
infinite radius att = ∞. In each case, the initial excitation field will be chosen to produce a
forward illumination of the aperture. This excitation field will be defined as a superposition
of Bessel beams [11] with a spectrum similar to that of the source-free solutions. The
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infinite dynamic apertures [2] are ideal devices that cannot be realized because they need
to be illuminated for infinitely long periods of time. However, such a construction will
be considered in some detail because it will clarify several subtle aspects related to the
performance of the finite-time dynamic apertures.

It has been established that the scalar wave equation

(c−2∂2
t − ∇2)9(r, t) = 0 (2.1)

has the following bi-directional solution [10]:

9(ρ, φ, ξ, η) = 1

(2π)2

∑
l=1,−1

∞∑
n=0

∫ ∞

0
dχ

∫ ∞

0
d(lα)

∫ ∞

0
d(lβ)Cn(lα, lβ, χ)χJn(χρ)e±inφ

×e−ilαξ ei`βηδ(αβ − χ2/4)

where

αβ = χ2

4
η = z + ct ξ = z − ct and

ω

c
= β + α . (2.2)

The bi-directional superposition [10] given by (2.2) provides the most natural approach for
synthesizing Brittingham-like solutions. In the following we shall restrict the discussion to
the zeroth order mode(n = 0) and(l = 1). This is a matter of convenience and it does not
affect the generality of the procedure.

We are going to consider three different choices forC0(α, β, χ). First, we define

C0(α, β, χ) = π

2
δ(β − β ′)e−αa1 . (2.3)

The corresponding source-free solution is the FWM field [4]. Such a field is characterized
by a concentration of all the significant temporal and spatial frequency components at the
lower end of its spectrum. In later sections, it will be shown within the framework of a
finite time excitation of this field that its spectral content is rapidly depleted with distance
due to the high oscillations introduced at the low frequency end. The source-free solution
is obtained by substituting (2.3) into (2.2) and integrating overα, β andχ to obtain

9(ρ, ξ, η) = 1

4π(a1 + iξ)
e−β ′ρ2/(a1+iξ)eiβ ′η . (2.4)

For the sake of convenience we shall replace, in what follows,β ′ by β. Another possible
choice forC0(α, β, χ) is

C0(α, β, χ) = π

2
δ(β − β ′)χ6e−αa1 . (2.5)

This differs from the spectrum in (2.3) by theχ6 term, hence, the corresponding source-free
solution is the PFWM pulse. It will be shown later on that this solution is characterized
by having most of its significant components located at the higher frequency end of its
spectrum. Thus, we expect the PFWM pulse, generated by a finite aperture, to decay at a
slower rate than the FWM. The source-free solution can be obtained by substituting (2.5)
into (2.2) and integrating overα, β andχ . The resulting PFWM pulse is given as

9(ρ, ξ, η) = 3(4β)4eiβη

2π(a1 + iξ)4

(
1

6

(
5 − ρ2β

(a1 + iξ)

) (
ρ4β2

(a1 + iξ)2
− 4ρ2β

(a1 + iξ)
+ 2

)
−2

3

(
1 − ρ2β

(a1 + iξ)

))
e−βρ2/(a1+iξ) . (2.6)
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Finally, we chooseC0(α, β, χ) to take the form

C0(α, β, χ) = π

2
δ(β − β ′)I0(a2χ)e−αa1 (2.7)

wherea2 is a constant andI0 is the modified Bessel function of the first kind [12]. The
corresponding source-free solution is the MFWM field. This solution has low-frequency
components that are relatively greater than those of the PFWM but slightly smaller than
those of the FWM. The source-free solution is obtained by substituting (2.7) into (2.2) and
integrating overα, β andχ ; specifically we get

9(ρ, ξ, η) = βeiβη

4π(a1 + iξ)
eβ(a2

2−ρ2)/(a1+iξ)J0

(
2a2ρβ

a1 + iξ

)
. (2.8)

It has been shown in a previous work [2] that the source-free FWM solution can be
represented as a superposition of forward and backward propagating components. In order
to efficiently produce a causal FWM pulse dominated by outgoing propagating components,
we must chooseβa1 � 1. For the other two cases, namely the PFWM and the MFWM, the
same condition ensures that the radiated fields are dominated by the forward propagating
components. A reasonable selection is to takeβ = 1.25 m−1 and a1 = 0.000 01 m
throughout this work.

3. The Fourier spectra of the illuminations of three infinite dynamic apertures

In this section we consider three different cases for initially exciting an infinite dynamic
aperture located atz = 0. In each case, the initial field will be chosen to have the
same Fourier spectrum as that of the source-free solution derived in the preceding section.
Consequently, we need to calculate the Fourier spectra for the three source-free solutions,
given by (2.4), (2.6) and (2.8), atz = 0. For an azimuthally symmetric wavefield, the
Fourier spectrum of the initial excitation is defined as

8(χ, ω) =
∫ +∞

−∞
dt

∫ ∞

0
dρ ρJ0(χρ)e−iωt9(ρ, 0, t) (3.1)

whereχ =
√

k2
x + k2

y is the transverse component of the wavevector. By substituting (2.4)
into (3.1), settingz = 0 and integrating overρ and t , we get the Fourier spectrum of the
FWM which is given explicitly as

8(χ, ω) = 1

4cβ
e−χ2a1/4βδ((χ2/4β) + β − ω/c) . (3.2)

Similarly, we substitute (2.6) into (3.1) and setz = 0. The double integration overt andρ

yields the Fourier spectrum of the PFWM; specifically,

8(χ, ω) = 1

4cβ
χ6e−χ2a1/4βδ((χ2/4β) + β − ω/c) . (3.3)

Along the same vein, the substitution of (2.8) into (3.1) atz = 0 produces the MFWM
Fourier spectrum, namely

8(χ, ω) = 1

4cβ
I0(a2χ)e−χ2a1/4βδ((χ2/4β) + β − ω/c) . (3.4)

The initial illumination of the aperture utilizes a wide-band field whose temporal and
spatial frequency contents are coupled together through the argument of the delta function
appearing in (3.2)–(3.4). Such a coupling does not exist for quasi-monochromatic continuous
wave (CW) excitations. Also, we do not have a specific carrier frequency to resort to in
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Figure 1. The spatial spectrum of an infinite-dynamic aperture when initially illuminated by the
FWM, PFWM or MFWM fields.

calculating the diffraction length as in the case of CW. As a consequence, we have to
set a criterion for specifying the maximum frequency components for the temporal and
spatial spectra. We choose to define the maximum frequency as that at which the spectrum
amplitude drops to(1/e4) of its maximum value. This is quite a severe condition and has
been adopted to take the effects of the extended tails into consideration.

In what follows we need to differentiate between the spatial and temporal spectral
contents. Att = 0, the former contains the Fourier information concerning the spatial
distribution of the focused illumination of the aperture. We start by defining the spatial
spectrum as

8s(χ, t) = 1

2π

∫ +∞

−∞
dω 8(χ, ω)eiωt . (3.5)

The spatial spectra of the three cases under consideration are obtained by substituting
(3.2)–(3.4) into (3.5) to give

8s(χ, t) = f (χ)

8πβ
e−χ2a1/4βei((χ2a1/4β)+β)ct (3.6)

wheref (χ) is equal to 1,χ6 andI0(a2χ), for the cases of the FWM, PFWM and MFWM,
respectively. The full curve in figure 1 displays the shape of8s(χ, 0) characterizing the
FWM pulse. From this figure it is clear that most of the significant components of theχ -
spectrum are concentrated at its lower end. It will be shown that, for a finite-time aperture
(cf section 5) this causes the centroid of the pulse to decay quickly as the pulse propagates
away from the aperture. From figure 1 it is also clear that the bandwidth of the FWM
spatial spectrum is1χ = 1415 m−1. Notice that the bandwidth of the spatial spectrum of
the FWM initial pulse is controlled by the second exponential term on the right-hand side
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of (3.6). The(1/e4) point of such a term determinesχmax = 4
√

β/a1 = 1415 m−1. The
FWM maximum spatial frequency is smaller than that of the PFWM and MFWM pulses
because their spectra contain the termf (χ) which equalsχ6 or I0(a2χ), respectively. If we
refer to the dotted curve in figure 1, we notice that theχ -spectrum of the PFWM att = 0
is characterized by having significant components at higher values than those of the FWM
spatial spectrum. Such a difference in the shape of the spatial spectrum allows the PFWM
pulse, generated by a finite-time aperture, to hold together for larger distances before its
centroid starts to decay. A detailed analysis of this point will be provided in section 5. The
bandwidth of the PFWM spatial spectrum is measured as theχ difference between the two
points at which the amplitude is(1/e4) of its maximum value. From figure 1 it is clear that
1χ = 1927.5 m−1. Finally, the broken curve in figure 1 represents the spatial spectrum of
the MFWM pulse. It should be noted that this case is an intermediate choice between the
FWM and PFWM. We notice, however, that the tails of the MFWM spectrum decay more
slowly than those of the PFWM due to the presence of theI0(a2χ) term which increases
exponentially for large values of(a2χ) [12]. The value ofa2 was adjusted so that the peak
value of the MFWM spatial spectrum is as near as possible to that of the PFWM. At the
same time the tails of both spectra were kept close to each other for future comparison
between the two cases. A reasonable value ofa2 is taken to be 0.0048 m. From figure 1,
it is clear that the bandwidth of the MFWM spatial spectrum is1χ = 2537.5 m−1.

The spectra given in (3.2)–(3.4) indicate that the temporal frequencyω is closely related
to the spatial frequencyχ through the delta functionδ((χ2/4β)+β−ω/c). Specifically, we
define the temporal frequency content of the dynamic apertures, whose illumination fields
have the spectra (3.2)–(3.4), as follows:

8t(ρ, ω) =
∫ ∞

0
dχ χJ0(χρ)8(χ, ω) . (3.7)

The temporal spectra of the FWM, the PFWM and the MFWM are obtained by
substituting their corresponding8(χ, ω) Fourier components into (3.7) to give

8t(ρ, ω) = g(ω)

2c
J0(2

√
β((ω/c) − β)ρ)e−a1((ω/c)−β)Hs((ω/c) − β) (3.8)

whereHs((ω/c) − β) is the Heaviside unit step function. For the FWM fieldg(ω) = a1.
The full curve in figure 2 shows8t(0, ω) associated with the FWM pulse. We notice from
this curve that the temporal spectrum of the FWM resembles to a great extent the spatial
spectrum. This is the case becauseω/c = (χ2/4β) + β. The temporal spectrum has most
of its significant components concentrated at the low frequency end of the spectrum. The
bandwidth is again defined as the range for which all spectral amplitudes are larger than
(1/e4) of the maximum value of the spectrum. By inspection, figure 2 shows that the
maximum frequency component isfmax = 19.1 THz. The same value could be derived
directly by noting that the e−ωa1 term in (3.8) determines the bandwidth of the temporal
spectrum; specifically,ωmax = 4/a1. The dotted curve of figure 2 represents the temporal
spectrum of the PFWM that hasg(ω) = (4β)3(ω/c −β)3. It can be shown in this case that
the maximum frequency component isfmax = 51.85 THz. It is clear that the bandwidth
of the PFWM is larger than that of the FWM case. For the case of the MFWM we have
g(ω) = I0(2a2

√
β(ω/c − β)). Referring to the broken curve in figure 2, we note that

this temporal spectrum is again intermediate between those of the FWM and PFWM. The
bandwidth in this case isfmax = 61.56 THz. This value is larger than that of the PFWM
as the tails of the MFWM spectrum roll off at slightly slower rate than those of the PFWM
spectrum. Notice that the latter two spectra show a great resemblance to their corresponding
spatial spectra.



Spatial distribution of the illumination of dynamic apertures 5163

Figure 2. The temporal spectrum of an infinite-dynamic aperture when initially illuminated by
the FWM, PFWM or MFWM fields.

The case of the infinite dynamic aperture has been considered in detail in another paper
[2]. It has been shown that such a source is capable of launching a causal localized pulse
that closely resembles the source-free FWM pulse. The generated pulse propagates with
no dispersion at all because the aperture is allowed to expand to an infinite size. Similar
apertures can be postulated for the PFWM and MFWM cases, and the same dispersion-free
propagation is anticipated for the generated pulses. The shapes of the corresponding spectra
do not affect the fields generated from the infinite apertures because they produce fields that
propagate without any dispersion. However, they have direct impact when finite dynamic
apertures are considered. The position of the significant spectral components and the roll
off of the tails have a decisive effect on the range at which the centroids of the generated
pulses start to decay and the rate of the decay.

4. The field propagating in thez > 0 half-space

The initial field defined on the aperture is a superposition of Bessel beams [11] on the plane
z = 0; specifically,

9i(ρ, t) = <
(

1

2π

∫ ∞

0
dχ χJ0(χρ)

∫ ∞

0
dω 8(χ, ω)e−i(

√
(ω/c)2−χ2)zeiωt

)
z=0

. (4.1)

The normal derivative of the field on the aperture is derived by taking the derivative of
the above expression with respect toz before we setz = 0. Consequently, the quantity√

(ω/c)2 − χ2 is restricted to positive values to ensure a forward illumination of the aperture.
Notice, also, thatω is restricted to positive values ifβ is positive. This follows from the
roots of theδ-function in the spectra given in (3.2)–(3.4).

When any one of the spectra given in (3.2)–(3.4) is substituted in (4.1) we obtain an
initial field that has the form of the corresponding source-free solution (cf equations (2.4),
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(2.6) and (2.8), but withz = 0). Because of the exponential term e−βρ2/(a1−ict) in the three
fields under consideration, the resulting illumination appears to have an effective radius
that varies with time. Equivalently we have an aperture whose size varies with time. For
βa1 � 1, the aperture apparently shrinks and expands monotonically at speeds greater than
that of light. This can be achieved by utilizing independently addressable aperture elements
[13, 14].

To calculate the outgoing field propagating into thez > 0 half space, the Huygen’s
construction [15] is applied to the initial excitation of the aperture. Accordingly, the field
at a pointR and timet inside a wavefront surface (being zero outside such a surface) is
given by the following integration over the area of the infinite aperture:

9(ρ, z, t) = 1

4π

∫ 2π

0
dφ′

∫ ∞

0
dρ ′ ρ

′

R

(
−∂z′9(ρ ′, z′ = 0, t ′) + z

R2
9(ρ ′, z′ = 0, t ′)

+ z

Rc
∂t ′9(ρ ′, z′ = 0, t ′)

)
t ′=t

− R′/c (4.2)

whereR =
√

ρ ′2 + ρ2 − 2ρ ′ρ cosφ′ + z2. The primed coordinates refer to source points
on the aperture, while the unprimed ones refer to the observation points n thez > 0 half
space. The substitution of the initial field (4.1) into (4.2) yields

9(ρ, z, t) = <(9̂(ρ, z, t)) (4.3a)

where

9̂(ρ, z, t) = 1

2π

∫ ∞

0
dχ χJ0(χρ)

∫ ∞

0
dω 8(χ, ω)eiωte−i(

√
(ω/c)2−χ2)z . (4.3b)

In the case of the FWM, the initial field exciting the aperture is obtained by substituting
(3.2) into (4.1). The field propagating in thez > 0 half-space, due to this initial excitation,
is obtained by substituting (3.2) into (4.3b). Explicitly, we have

9̂(ρ, z, t) = 1

8πcβ

∫ ∞

0
dχ χJ0(χρ)

∫ ∞

0
dω eiωte−χ2a1/4βδ((χ2/4β) + β − ω/c)

×e−i(
√

(ω/c)2−χ2)z . (4.4)

The above expression is the same as the source-free solution except that the quantity√
(ω/c)2 − χ2 acquires only positive values [1, 2]. Hence forω/c = (χ2/4β) + β the

square root
√

(ω/c)2 − χ2 acquires either the value((χ2/4β) − β) or −((χ2/4β) − β),
depending on whetherχ > 2β or χ < 2β, respectively. This is the case because only
positive values of the square root give non-zero contributions to the outgoing radiated field
[1, 2]. One can, then, carry out the integration overω to obtain

9̂(ρ, z, t) = i

4πβ

∫ 2β

0
dχ χJ0(χρ)e−χ2a1/4β sin(((χ2/4β) − β)z)ei(χ2/4β+β)ct

+ 1

8πβ

∫ ∞

0
dχ χJ0(χρ)e−χ2a1/4βei(χ2/4β)(z−ct)e−iβ(z+ct) . (4.5)

For βa1 � 1, most of the significantχ -spectral components exist at values greater than 2β

[1, 2, 10]. Hence, the first term on the right-hand side of the above equation is of O(βa1)

relative to the second term. It only contributes significantly away from the centroid of the
pulse. The same conclusion can be directly reached by referring to the full curve in figure 1.
For β = 1.25 m−1, the first integration represents a negligible portion of theχ -spectrum
compared to the second one. The integration of the second term on the right-hand side of
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(4.5) yields the source-free FWM pulse. Thus, integrating (4.5) after neglecting the first
term we get for the radiated field,

9̂(ρ, z, t) ∼= 1

4π(a1 + i(z − ct))
e−βρ2/(a1+i(z−ct))eiβ(z+ct) (4.6)

which is approximately the same as the FWM source-free solution. Similarly, we use the
spectra of the PFWM and the MFWM to define the initial excitation of the aperture (4.1).
It can then be shown that the fields propagating in thez > 0 half-space are approximations
to the corresponding source-free solutions.

Figure 3. The power content of the FWM, PFWM and MFWM central pulses on the aperture
at z = ct = 0.

The infinite-dynamic apertures have radii that shrink from infinity to their minimum
effective values before they expand once more to infinity [2]. The minimum effective
radius of the aperture is the same as that of the generated central pulse. In what follows, we
choose to define the minimum effective radius of the infinite-dynamic aperture as the radius
at which the value of the power content of the field atz = ct = 0 drops to(1/e2) of its
peak value. Figure 3 represents the power of the field on the aperture when it shrinks to its
smallest size (atz = ct = 0). The three illuminating fields under consideration are shown.
The full curve displays the FWM excitation, the dotted one gives the PFWM excitation
and the broken curve represents the MFWM case. Comparing these three curves we notice
that the power of the FWM pulse is distributed over a greater radius than that of both
the PFWM and MFWM pulses. This should be expected because it has a smaller spatial
frequency bandwidth. A comparison of the PFWM pulse to the MFWM shows that these
two pulses are nearly identical up toρ = 1.6 mm. Beyond this value we notice that the
power content in the secondary lobe of the PFWM pulse is greater than that in the MFWM
pulse. From the figure it is also clear that the minimum effective radius of the FWM pulse
is Rmin = 2.83 mm while that of the PFWM isRmin = 1.272 mm and that of the MFWM is
Rmin = 1.33 mm. This shows that the minimum effective radii of the PFWM and MFWM
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are almost equal to each other and that both are about half the radius of the FWM pulse.
It is worthwhile to point out that decent estimates of the minimum effective radii can be
deduced as the reciprocals of the maximum spatial frequencies, specifically,Rmin

∼= 4/χmax.
This expression is especially accurate for the case of the FWM, for whichRmin = √

a1/β,
because of its Gaussian transverse radial dependence and because corresponding spatial
spectrum is also Gaussian.

5. The finite-time excitation of the dynamic apertures

The field generated from an infinite dynamic aperture propagates in thez > 0 half-space
without any decay. Such a scheme suffers from the disadvantage of using an aperture of
infinite size. Moreover, the aperture needs an infinite amount of energy as the illumination
field must exist for an infinite period of time. Thus, a practical realization of such an aperture
is impossible. In this section, we try to circumvent the aforementioned shortcomings by
using a dynamic aperture which is illuminated for a finite period of time. This can be realized
by applying a Gaussian time window to the initial infinite-time excitations discussed in the
preceding sections. The finite-time dynamic aperture utilizes a finite amount of energy.
Moreover, it expands to a maximum radius of a finite extension. In return, the generated
pulse starts decaying after it travels a certain distance away from the aperture. In the
following sections we define the initial excitations of this aperture, calculate their Fourier
spatial and temporal spectra and determine the decay rate of the fields propagating in the
z > 0 half-space.

In order to investigate the consequences of cutting off the expansion time of the dynamic
aperture at a finite value, we introduce a Gaussian time window having a span of 8T , which
is explicitly given by e−t2/4T 2

. By cutting off the illumination of the aperture att = −4T

and t = +4T , we allow it to start shrinking from a finite initial size, to reach its minimum
extension, then to expand back to the same original finite radius. It should be emphasized,
however, that such a scheme differs from having an aperture of a finite physical size
excited for a finite period of time|t | < 4T . The values ofT chosen henceforth yield
the same maximum radii for the three cases under consideration. Specifically, we choose
cT = 6.25 mm for the FWM, andcT = 2.5 mm for both the PFWM and MFWM. The
reasons for such choices are given in section 6. At this point, the reader should recognize
that the longitudinal extensions of the LW fields investigated are equal to 8cT and is much
larger the length of the highly focused central portion of the pulse which is of order O(a1).

First we shall consider the case of the FWM. The spectral content of the FWM initial
excitation is calculated as follows:

8(χ, ω) =
∫ +∞

−∞
dt

∫ ∞

0
dρ ρJ0(χρ)e−iωt e−βρ2/(a1−ict)

4π(a1 − ict)
eiβcte−t2/4T 2

. (5.1)

Here, the Gaussian time window allows the aperture to expand only fromt = −4T to +4T .
Integrating equation (5.1) overρ and t , the spectrum illuminating the aperture becomes

8(χ, ω) = 1

4βc
δ̂
(ω

c
− ((χ2/4β) + β); cT

)
e−χ2a1/4β (5.2)

where

δ̂
(ω

c
− ((χ2/4β) + β); cT

)
= cT√

π
e−(cT )2((ω/c)−((χ2/4β)+β))2

. (5.3)

Similarly, we can deduce the finite-time Fourier content for the other two cases. This
yields expressions analogous to (3.3) and (3.4) with the Gaussian functionδ̂((ω/c) −
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((χ2/4β) + β); cT ) replacing the Dirac delta functionδ((χ2/4β) + β − ω/c). In the
limit as T → ∞, the Gaussian̂δ-function goes to the Diracδ-function characterizing the
spectrum of the infinite-time excitation. WhencT is large, the Gaussian in the spectrum
of the FWM, PFWM and MFWM reduces to a narrow distribution with a small bandwidth
η(ω) ∼ O(2π/T ), for which ω/c ∼ ((χ2/4β) + β). Such a narrow frequency window
varies withχ and provides most of the significant contributions to the amplitude of the
centroid of the pulse.

To clarify these issues, let us consider the temporal spectrum of the finite-time FWM
excitation, which is given explicitly by

8t(ρ, ω) = T

4
√

πβ

∫ ∞

0
dχ χJ0(χρ)e−χ2a1/4βe−(cT )2(χ2/4β+β−ω/c)2

. (5.4)

In this case, for each value ofω, the significant contributions of the integrand results from
varying χ from

√
4β((ω/c) + β − (4/cT )) to

√
4β((ω/c) + β + (4/cT )). If we examine

this range we notice that for relatively high values ofχ andT , the limiting values in the
range ofχ represent very small deviations around

√
4β((ω/c) + β). Hence, most of the

contributions to the integration come fromχ ∼= √
4β((ω/c) + β). This means the temporal

spectrum of the finite excitation closely resembles that of the infinite illumination case. In
fact, a direct evaluation of (5.4) gives a temporal spectrum which is indistinguishable from
that of the infinite-time excitation given in figure 2. For all practical purposes, we can
consider the finite-time excitation to have a temporal spectrum which is very close to that
of the infinite-time case. Using the same analysis we can show that the spatial spectrum
of the finite-time excitation has the same form and bandwidth as that of the infinite-time
illumination. The same results are valid also for both the PFWM and the MFWM pulses.

To deduce the shape of the field propagating in thez > 0 half-space, we follow an
analysis analogous to that used for the case of the infinite aperture. For the case of the
FWM, the initial field exciting the aperture has the same spectrum as that of the finite-time
FWM spectrum and is given explicitly as

9i(ρ, t) = <
(

1

8πβc

∫ ∞

0
dχ χJ0(χρ)

∫ ∞

0
dω e−χ2a1/4β δ̂((ω/c) − ((χ2/4β) + β); cT )

×eiωte−i(
√

(ω/c)2−χ2)z

)
z=0

. (5.5)

The field propagating in thez > 0 half-space, due to this initial excitation, is calculated by
substituting (5.2) into (4.3) to obtain

9(ρ, z, t) = 1

8πβc

∫ ∞

0
dχ χJ0(χρ)

∫ ∞

0
dωe−χ2a1/4β δ̂((ω/c) − ((χ2/4β) + β); cT )

× cos(ωt − (
√

(ω/c)2 − χ2)z) . (5.6)

In analogy to the infinite-time excitation, the square root
√

(ω/c)2 − χ2 acquires only
positive values to ensure that all the field components are propagating away from the
aperture. To study the decay pattern of the field given in (5.6), we shall concentrate on
the centroid of the pulse atz = ct for t > 0. The integration given in (5.6) is evaluated
numerically. Asz increases, the integrand can become highly oscillatory. This leads to
some difficulty in calculating the double integration (5.6). However, the numerical job can
be reduced significantly if the narrowness of the window is taken into consideration. In
particular, one should note that for the field generated from an infinite dynamic aperture,
the Diracδ-function in the spectrum forces the phase((ω/c) −

√
(ω/c)2 − χ2)z = 2βz to

be independent ofχ . Hence the centroid propagates to infinite distances from the aperture
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Figure 4. The decay of the centroid of the FWM, PFWM and MFWM pulses radiated from a
finite-dynamic aperture.

without any decay and only varies sinusoidally over distances that are integral multiples of
π/β. Now, for the finite aperture such a delicate balance does not exist. Even though the
phase

(
(ω/c)−

√
(ω/c)2 − χ2

)
z ∼ 2βz, the Gaussian̂δ-function introduces small deviations

that are dependent on bothχ andz. These deviations introduce oscillations into the integrand
that increase with the distancez. Hence, as the pulse travels to larger distances away from
the aperture, the integration in (5.6) yields smaller field amplitudes. At this point we would
like to point out that the Gaussian̂δ((ω/c) − ((χ2/4β) + β); cT ) becomes very narrow in
comparison to the total bandwidth forcT � a1. Therefore, instead of having an infinite
range of integration overω we effectively have a finite range that we have chosen to vary
from [(χ2/4β) + β − (4/cT )] to [(χ2/4β) + β + (4/cT )]. All the significant contributions
come from this finiteω-window. Subsequently, the computation of the double integration
is greatly simplified. Figure 4 represents the decay of the centroid of the field propagating
in the z > 0 half-space, for the three cases under consideration. In the range investigated,
the amplitudes of the centroids vary sinusoidally with distance. Two consecutive peaks are
separated by a distance equal toπ/β. The figure shows only the field amplitude at those
peaks. From the figure, we notice that near the aperture, the FWM field (cf the full curve)
decays rapidly with distance, which is expected because most of the significant components
of its χ -spectrum lie at low values ofχ . Furthermore, oscillations introduced with distance
appear first at those low frequency values. On the other hand, both PFWM and MFWM
hold for longer distances with the PFWM field performing better than the MFWM field up
to z ∼= 1 km. This is the case because the PFWM field does not have any significant low
χ -spectrum components. Asz exceeds 1 km the MFWM field starts to overtake the PFWM
field because the tails of theχ -spectrum of the MFWM field roll off at a slower rate than
that of the PFWM.

The decay of the central portion of the pulse atz = ct with distance is demonstrated
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Figure 5. The power content of the FWM central pulse atz = 0, 236.2 and 472.5 m.

by plotting the field propagating away from the aperture at certain values ofz. The power
amplitude of the central pulse at the aperture (i.e. atz = ct = 0) has the same distribution as
the case of the infinite-time excitation. As the pulse propagates away from the aperture the
power in the FWM pulse decays with distance as shown in figure 5. The normalized power
amplitude of the pulse is plotted at different values ofz. From the figure, we notice that
the width of the central pulse decreases with distance, as the half power width forz = 0,
236.2, 472.5 m gives the waistw = 2ρ = 3.36, 2.64, 2.24 mm, respectively. For both the
PFWM and MFWM fields the power amplitude of the central pulse is plotted for specific
z values in figures 6 and 7, respectively. The rate of decay of their power amplitude with
distance is initially smaller than that of the FWM pulse. We notice also that both pulses
are narrower than the FWM pulse for the selected values ofz. The MFWM central pulse
decays initially faster than the PFWM, but at farther distances the MFWM field holds better
than the PFWM.

To enhance our understanding of how the amplitude of the pulse decreases with distance,
we demonstrate how the spatial spectrum components are depleted as the pulse travels away
from the aperture. To do this we need to consider the spatial spectrum at any distancez

from the aperture; the latter is defined as

8s(χ, z, t) = 1

2π

∫ ∞

0
dω 8(χ, ω) cos((

√
(ω/c)2 − χ2)z − ωt) . (5.7)

The spatial spectrum of the FWM at any distancez from the aperture is given by
substituting (5.2) into (5.7) to give

8s(χ, z, t) = T e−χ2a1/4β

8π
√

πβ

∫ ∞

0
dω e−(cT )2((χ2/4β)+β−ω/c)2

cos((
√

(ω/c)2 − χ2)z − ωt) . (5.8)
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Figure 6. The power content of the PFWM central pulse atz = 0, 377 and 754 m.

Figure 7. The power content of the MFWM central pulse atz = 0, 377 and 754 m.

The integration in (5.8) is evaluated numerically at different values ofz and the results
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Figure 8. The FWM spatial spectrum atz = 0, 236.2, 472.5 and 708.7 m.

are plotted in figure 8. From this figure, it is clear that theχ -spectrum decays rapidly
with distance due to the high oscillations introduced at low values ofχ . Next, we
consider the spatial spectrum of the PFWM and MFWM that are derived by substituting the
corresponding8(χ, ω) spectra into (5.7). The depletion of their spatial spectra are shown
in figures 9 and 10.

The main factor affecting the decay of the centre of the pulse(z = ct) or the depletion
of the spatial spectrum is the oscillations inside the spectral window,

ξ(χ, ω) = e−(cT )2((χ2/4β)+β−ω/c)2
cos(

√
(ω/c)2 − χ2 − ω/c)z . (5.9)

These oscillations depend on the values ofχ andz. For the same value ofz, the oscillations
are decreased asχ increases. On the other hand, for the same value ofχ , the oscillations
are increased asz increases. Equation (5.9) is plotted in the insets of figure 11 for sampled
values ofχ , at z = 784.1 m andcT = 6.25 mm. We observe from this figure that the
oscillations inside theω-window are high for low values ofχ . Hence, the net area under
theξ(χ, ω) curve is nearly zero. Asχ increases, the oscillations decrease and the area starts
to increase gradually. This means that if the spatial spectrum has significant components
at small values ofχ , then a large portion of the spectrum will be quickly depleted with
distance. This effect is shown in the main part of the plot, whereχφs(χ, z = ct) of
the FWM pulse is evaluated atz = 784.1 m and is compared toχφs(χ, z = ct = 0).
Consequently, the field propagating away from the aperture will decay with distance. In
figure 11, we should also note that theω-window has a bandwidthη(χ) must smaller than
that of the total temporal width. This is the case becauseη(ω) ∼ O(2π/T ) is very small
compared to the total bandwidth1(ω) ∼ O(c/a1). However, theω-windows in the insets
are plotted with a scale that differs than that of theχ -spectrum, so we can fit the four of
them together.
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Figure 9. The PFWM spatial spectrum atz = 0, 236.2, 472.5, 708.7 m.

Figure 10. The MFWM spatial spectrum atz = 0, 236.2, 472.5, 708.7 m.

6. The diffraction length of the finite dynamic aperture

There have been several attempts to estimate the diffraction length of localized wave
solutions generated from apertures driven from sources having ultra-wide frequency
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Figure 11. Oscillations affecting different sections of the FWM spatial spectrum atz = ct =
784.1 m.

bandwidths. The usual definition of the near-far field limit depends on the size of the
aperture and the frequency of the source; specifically the Rayleigh limit is usually defined
as πR2/λ, whereR is the aperture radius andλ the wavelength. Since we are launching
narrow pulses from extended apertures of large dimensions, one might wonder which radius
to use; that of the pulse or the maximum aperture radius. In particular, for a Gaussian beam
the waist of the beam is usually taken as the effectiveR. Such a value is used to determine
the Rayleigh diffraction length. The same is true even if the Gaussian beam is generated
from a ‘static’ aperture of a much larger radius. A Gaussian beam of radius 2.83 mm and
frequencyf = 19.1 THz has a Rayleigh limit equal to 1.6 m. This value should be viewed
in the light of the decay patterns of the three investigated LW pulses. Figure 4 shows that
they have decay rates less than(1/R) up to a few kilometres.

On the other hand, one may argue that the use of the maximum radius of the aperture
Rmax in the expression for the Rayleigh limit would yield a diffraction length much larger
than few kilometres. However, in this case we are exciting a pulse having a transverse
extension∼ 7 m. Thus, we claim that LW pulses generated from dynamic apertures are
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suitable for applications that require highly focused narrow pulses with large penetration
depths. Such applications may include medical radiology, high resolution scanning and
secure signalling. A dynamic aperture is an efficient contraption capable of sending narrow
pulses several orders of magnitude farther than comparable ‘static’ radiators. Nevertheless,
there remains the delicate problem of how to characterize the diffraction lengths of such
dynamic sources.

To resolve this situation Hafizi and Sprangle [8] deduced a diffraction length for
apertures that vary their size with time. Their diffraction length depends on the maximum
and minimum radii of the generating dynamic aperture or equivalently one has

ZHS = Rκ

1χ
(6.1a)

whereκ ≡ ωmax/c, ωmax is the maximum frequency contributing to the spectrum andR is
the radius of the aperture (for a dynamic aperture one should takeR = Rmax). One should
note that1χ is approximately the reciprocal of the minimum radiusRmin = O(4/χmax).
Hence, equation (6.1a) may be rewritten as

ZHS = µRmaxRmin

(ωmax

c

)
. (6.1b)

Here µ is a numerical factor of order O(1). It is clear from (6.1b) that for a narrow
waisted pulse generated by a dynamic aperture, the enhancement in the diffraction length
over a ‘static’ radiator is equal roughly to the ratioRmax/Rmin. For sources of ultra-wide
bandwidths, there is a formal problem of determining the highest frequency components.
There have been some attempts to work with an effective frequency that can be derived for
any ultra-wide spectrum [6, 16]. However, we would like to point out that in such inclusive
definitions ofκ, certain features may not be observed. For example, we cannot see that the
centroid of the PFWM pulse will hold together for longer distances (∼ 80 m) before it starts
to decay, or that the centroid of the MFWM will decay at a rate slower than that of PFWM
for distancesz > 1 km. Definitions as that introduced by Hafizi and Sprangle [8] give good
estimates of the behaviour of the generated LW fields in a broad sense. This is particularly
true for pulses generated by dynamic apertures whose size varies monotonically. In order to
see how our three examples agree with the Hafizi–Sprangle diffraction length [8], we need
to determine the maximum effective radii of the three apertures considered in the preceding
sections. For each case we deal with the initial excitation on the aperture which is given by
(4.1). The maximum effective radius of the FWM is directly deduced from (4.6) by setting
t = 4T andz = 0. Considering only the real part we have the following excitation of the
aperture

9i(ρ, t) = e−t2/4T 2

4π
√

a2
1 + (ct)2

cos(tan−1(ct/a1) + βct − βρ2ct/(a2
1 + (ct)2))e−βρ2a1/(a

2
1+(ct)2

)

(6.2)

at t = 4T . In figure 12(a) we have plotted|9i/(9i)max|2 using (6.2). We show only the
maximum values of thecosineterm which occurs at

ρ = [((a2
1 + (cT )2)/βcT )(tan−1(cT /a1) + βcT + 2nπ)]1/2 (6.3)

wheren is an integer whose values are 0, 1, 2, . . ., etc. The maximum radius of the aperture
is defined as the radius at which the power amplitude of the field on the aperture drops to
(1/e2) of its maximum value att = 4T . This definition is quite severe because the radius is
estimated at the time when the illumination of the aperture is turned off. The field exciting
the aperture is already too sparse. At such an instant, the maximum field amplitude is about
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Figure 12. The field distribution of the excitation of the aperture att = 4T .

a1 times its value att = 0, when we have the most intense illumination of the aperture.
From figure 12(a) the maximum effective radius of the FWM isRmax = 7.07 m. We notice
also from this figure that most of the significant components of the field are located at low
values ofρ and the power distribution over the aperture resembles to a great extent that
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of the χ -spectrum. For the case of the PFWM the maximum radius is calculated from the
real part of (2.6) which is plotted in figure 12(b) (cf the dotted curve) at values ofρ that
correspond to the maximum of the function. These values ofρ were found to be

ρ = [((a2
1 + (cT )2)/βcT )(tan−1(cT /a1) − π/2 + 2nπ)]1/2 1 6 n 6 476

ρ = [((a2
1 + (cT )2)/βcT )(tan−1(cT /a1) + π/2 + 2nπ)]1/2 n > 476.

(6.4)

From the figure it is clear thatRmax = 7.02 m. Similarly the maximum radius of the
MFWM is calculated from the real part of (2.8), where for(ct � a1) the broken curve in
figure 12(b) shows the amplitudes of the illumination atρ values given by

ρ = [((a2
1 + (cT )2)/βcT )(tan−1(cT /a1) + βcT (1 + a2

2/(a
2
1 + (cT )2)) + 2nπ)]1/2 . (6.5)

In this case,Rmax = 7.26 m. Again, the power distribution on the aperture is similar to
that of the spatial spectrum shown in figure 1. This demonstrates the relation between the
spatial spectrum and the distribution of the field on the aperture.

We would like to point out that we have chosencT = 6.25 mm for the FWM aperture
andcT = 2.5 mm for both the PFWM and MFWM in order that the maximum extensions
of the three sources become equal. It has been shown in the preceding analysis that the
three apertures acquire maximum radii∼ 7 m. Because the sizes of the three sources are
taken to be equal, a comparison of the decay behaviour (cf figure 4) of their radiated pulses
should reflect solely the role of the spectral content of their excitations.

Considering the diffraction length of the three cases, and starting as usual with the FWM,
we have1χ = 1415 m−1, ωmax = 1.2 × 1014 rad s−1 and Rmax = 7.07 m. Substituting
in (6.1a) we haveZHS = 1998.8 m. For the PFWM we have1χ = 1927.5 m−1,
ωmax = 3.26 × 1014 rad s−1 and Rmax = 7.02 m. These values giveZHS = 3955.2 m.
Finally, for the MFWM, the quantities1χ = 2537.5 m−1, ωmax = 3.87 × 1014 rad s−1

and Rmax = 7.26 m yield ZHS = 3688.4 m. It can be inferred from figure 4 that these
estimates of the diffraction length correspond to the distances travelled by the waves before
the amplitude of their centroids drop to about(1/e4) of their values on the aperture. We
should mention here that a different definition of the maximum spectral width may change
the ZHS value. For example, choosing a(1/e2) criterion for the spectral width instead
of (1/e4) reducesZHS calculated by a factor of

√
2. Again we emphasize the fact that

certain near-far-field features exhibited by our examples are effaced by an analysis of the
type given above. Specifically, the better initial performance of the PFWM followed by
an improved decay pattern of the MFWM at larger distances cannot be deduced from an
inclusive definition of the diffraction length similar to that calculated above.

7. Conclusion

In this work, we have studied three excitation schemes of dynamic apertures. One of these
uses the FWM field and has been investigated in detail in another paper [1]. The other two
utilize variations of the FWM excitation, the spectral components of which are distributed in
a different manner. Whereas the FWM has most of its significant components located at the
lower end of its spectrum, the other two examples have most of their spectral components
located at higher frequencies. It has been demonstrated that the shape of the spatial spectrum
affects the rate of decay of the pulse. In the near-far-field range, the LW pulses can hold out
better than equivalent pulses radiated from static radiators [1]. Such an enhancement has
been shown to be roughly of the order of the ratioRmax/Rmin. Thus for dynamic apertures
having equal maximum radii, the radiated LW pulses typified by narrower focused waists
should hold out longer before they start to decay. Figure 4 shows that this is true for both
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the PFWM and MFWM pulses exhibiting slower decay rates than the FWM pulse in the
near-field range. For the FWM pulseRmin is equal to 4/χmax. A slower decay, hence,
follows from increasing the spatial bandwidth. Nevertheless, pulses like the PFWM and
MFWM can reduceRmin while keeping the anticipated increase inχmax at bay.

The shape of the spatial spectrum has a direct effect on the range through which a pulse
can travel before it starts decaying, and it also determines the rate of decay of the pulse. For
example, the generating field of the PFWM pulse has no low-frequency components. As a
result, this pulse holds itself for longer distances before it starts decaying even though it has
approximately the sameωmax as the MFWM. The amplitude of the latter initially starts to
fall off at a faster rate; however, it takes over at larger distances. This is the case because
its spectrum exhibits extended tails of relatively small strength. Far from the aperture, these
spectral components come into play, and the amplitude of the centroid of the MFWM falls
off at a slower rate than that of the PFWM. One should also note that the slow-down in
the decay rates of the PFWM and the MFWM has been achieved primarily because of the
decrease inRmin without increasing the frequency bandwidth as would have been required
for the case of the FWM. As such one can regard the latter as having a relatively larger
effective bandwidth and thus expect its decay to slow down as we get farther away from
the aperture. This effect can be seen in figure 4 where it is clear that the amplitudes of the
three pulses are almost equal atz = 2500 m, even though the MFWM and PFWM have a
much slower decay rate in the near field region.

To further our understanding of the basic factors underlying the amplitude fall off of a
LW pulse as it propagates away from its generating aperture, we have carried out a detailed
analysis of the depletion of the spectral components with distance. This has been done for
a dynamic aperture excited for a finite time controlled by a Gaussian time-window. Such
an aperture has an effective radius that shrinks and expands monotonically. It has been
shown that as the pulse travels away from the aperture, high oscillations are introduced
into the integrand of (5.6). These oscillations appear at the lower end of the spectrum
and progressively deplete the higher frequency components as the pulse travels to longer
distances from the source. Hence, a clever design of the shape of the spectralω-windows
to reduce the oscillations introduced into them with distance can slow down the decay rate
of the associated LW pulse.

The aforementioned effects on the propagation of the LW pulses in the near-far-field
region might be overshadowed in inclusive definitions of a diffraction length [6, 16]. Such
definitions usually give a diffraction limit that depends on the maximum size of the aperture,
the bandwidth of the spatial (or transverse)χ -spectrum and the maximum value of the
temporalω-spectrum. Various authors set different criteria for defining1χ andωmax. For
example, one can use either a 3 dB point, a half-power width or even adopt a more strict
criterion (e.g. the(1/e4) used in this work) to try to include the effects of the extended
tails. This is just a pedagogical issue that does not add anything new to the physics of
the problem. The aforementioned definitions of a diffraction length give a good estimate,
in a broad sense, of the behaviour of a generated LW as it propagates in the near-far-field
region. Our three examples show good agreement with the predicted diffraction lengths,
apart from minor differences, such as those observed in the comparison between the PFWM
and MFWM pulses. Namely, that the PFWM holds better at smaller distances, and that
MFWM takes over at larger ones.

The main issue here is the following: can we use two apertures of the same maximum
radii, both having almost the sameω- andχ -spectral widths, with one of the two apertures
generating LW pulses that decay at a slower rate than the pulses generated by the other?
Along the same vein one may wonder if we should hold to inclusive definitions of diffraction
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limits when we discuss the dispersion of ultra-wide-bandwidth pulses, or does it suffice to
set up criteria that allow us to use our apertures and source generators in a more efficient
way? We claim that the quantitative analysis of the depletion of the spectral components of
propagating pulses presented in this work is an effective approach to resolving such issues.

The time dependence of the radius of the investigated aperture reflects its dynamic
character. Other suggestions to generate other FWM-like pulses are based on moving
sources, the speeds of which are very close to the velocity of light [17–20]. Among such
schemes the works of Borisov and Utkin [18, 19] and that of Palmer and Donnelly [20] are
prominent. Such moving source schemes are derived from Green’s function variables. The
translation of the source with time should be contrasted to the expansion of our aperture;
they both allude the dynamic nature of the sources needed to generate LW pulses. In
fact, one may argue that dynamic apertures represent atemporal focusing scheme. This
should be contrasted withspatial focusing using curved apertures. For dynamic sources,
the excitation time sequence of the illumination wavefield can control the focusing depth of
the generated LW pulses. Applications requiring fast and frequent changes in the focusing
depth can benefit from atemporal focusing procedure which may become superior to the
mechanically rigidspatial one. We believe that a combination of the two schemes can
provide more possibilities for existent and new applications.
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