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This paper presents a framework for designing the driving functions of an array of radiating 
elements given a scalar representation of the desired propagating field at a finite number of 
remote spatial locations. Based on a point source propagation model in a homogeneous media, 
the relationship between the driving functions and the resulting field leads to a system of linear 
equations in the frequency domain. A least-squares solution to the inverse problem is obtained 
by solving the system of linear equations for the unknown array driving functions. The 
proposed framework is suitable for designing array driving functions that could be used to 
generate "source-free" (homogeneous) solutions to the wave equation. This paper focuses on 
the use of the proposed technique for calculating array driving functions for generating 
localized wave energy. Two cases are discussed; one based on a source-free solution to the wave 
equation, and the other based on a numerical traveling impulse function. The results are 
compared to the beam generated by driving the array uniformly with a continuous-wave (ew) 
signal. 

PACS numbers: 43.20.Rz, 43.30. Vh, 43.30.Wi, 43.30.Yj 
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INTRODUCTION 

New solutions to the wave equations have been recently 
discovered which support the possibility of transmitting lo- 
calized, slowly decaying pulses of finite energy known as 
localized waves (LW). I Because the LW are "source-free" 
solutions to the wave equation, much time has been devoted 
to finding a launching mechanism capable of generating 
these special solutions. Ziolkowski • has proposed the use of 
independenfiy addressable, pulse driven antennas as the 
physical launching mechanism. The basic idea is to drive a 
finite array of radiating elements (each element can be excit- 
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ed independently from the other) to produce the desired LW 
field. It is desired that given enough elements in an array of a 
specified size, the transmitted field energy remains localized 
for a reasonable range of distances. 

It has been verified through computer simulations that 
it is possible to generate LW solutions to the wave equation 
over a limitex[ range of distances using a finite-sized array of 
radiating elements. • This is achieved by driving a finite 
planar array of point sources with the appropriately shaped 
pulses. The driving function for each array element is a 
broad-bandwidth waveshape determined by the exact LW 
solution and its derivatives. These functions correspond to 
those required by a Huygens representation of the array gen- 
erated wave field. Although in theory the array should be 
infinite and continuous to recover the exact field at every 
space-time point, the results show that it is possible to obtain 
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FIG. 1. The desired field is used to calculate a set of optimum driving func- 
tions to produce a field similar to the desired field. 

reasonably localized beam fields with a finite-sized array. 
We are currently investigating ways to reduce the aper- 

ture size of the array as well as the number of array elements 
and still be able to generate the LW solution. One approach 
consists of finding ways to squeeze a large array into a 
smaller one by driving the array with a more complicated set 
of pulse shapes whose functions are derived from the original 
solutions within the array aperture and beyond it. • The solu- 
tions beyond the maximum distance are "folded" into the 
interior of the array in a particular way, trading a simple 
source distribution for a more complicated one. 

Another approach is to use optimization techniques to 
find driving functions that will "best" match: ( 1 ) LW solu- 
tions or (2) an ideal "traveling-impulse." The approach is 
illustrated in Fig. 1. Basically, the desired field is specified at 
a finite number of spatial locations. Field samples are then 
used to calculate an optimum set of driving functions that 
will produce a field similar to the desired field. 

In Sec. I, we formulate the least-squares solution to the 
LW inverse propagation problem. Based on a point source 
propagation model in a homogeneous media, a relationship 
between the driving functions and the desired field is formu- 
lated which leads to a set of linear equations in the frequency 
domain. The least-squares solution to the inverse problem is 
then obtained by solving the system of linear equations for 
the unknown array driving functions. In Sec. III, we demon- 
strate the use of the proposed technique for calculating array 
driving functions for generating localized wave energy. Two 
different cases are investigated. In the first case, an LW solu- 
tion to the wave equation is used as the desired field. The 
resulting field is compared to the field generated from a Huy- 
gens reconstruction which has been the traditional way of 
calculating array driving functions to generate source-free 
solutions to the wave equation. A discussion on how to sam- 
ple the desired field is included. In the second case, a numeri- 
cal traveling impulse function is specified as the desired field. 
All the results are then compared to the traditional contin- 
uous wave (cw) or monochromatic case. The last section 
discusses the results and suggests some areas of future work. 
Several possible alternate approaches to solving the inverse 
problem are discussed in the Appendix. 

I. PROBLEM FORMULATION 

In this section, we formulate a mathematical model for 
designing the driving functions of an array of point sources 

given the desired field at a finite number of spatial locations. 
We will be considering acoustic pulses that satisfy the scalar 
wave equation in a homogeneous media with a constant 
speed of propagation. 

A. Field generated by an array of point source 

The field generated at some arbitrary location in space 
due to a single point source is given by 

g( t,x,y,z) -- f ( t -- r,xo,Yo,Zo)/( 4rrr), (1) 

wheref ( ) is the driving function, g( ) is the resulting field, 
r is the propagation delay, r is the traveled distance, and 
xo,Yo,Z o are the spatial coordinates of the point source. Based 
on the principle of superposition, the field generated at some 
arbitrary location in space due to an array of point sources is 
then given by 

g(t,x,y,z) = •, f,(t - ri,xi,y,.,zi) (4•rri) ' (2) 
where i is the array element index, ri is the propagation 
delay from the i th array element, r i is the traveled distance 
from the i th array element, and &,yi,z i are the spatial co- 
ordinates of the i th array element. In general, the field gen- 
erated at some arbitrary set of locations in space due to an 
array of point sources is given by 

fi(t -' rii) ' gi(/)::• •r;• l•<i<L, I<•M, (3a) 
where i is the array element index, j is the field spatial loca- 
tion index, r,•. is the propagation delay from the i th element 
to thej th location, r,.¾ is the traveled distartce from the i th 
element to the j th location, L is the total number of array 
elements, and M is the total number of field locations. Note 
that in order to simplify the notation, we have omitted the 
dependency of the functions f( ) and g( ) on the spatial 
coordinates (x,y,z) in Eq. (3a). Nevertheless, the spatial 
coordinates (x,y,z) of the array as well as the field locations 
are needed in order to calculate the propagation delays (r•) 
and the traveled distances (r 0) according to the following 
two equations: 

r• = [(Xj ---Xi) 2 -•- (,yj __yi)2 _• (Zj --Ji)2] 1/2, (3b) 
r o = r•/c, ( 3 c) 
where (xi,y•,z•) are the spatial coordinates of the i th array 
element, (x•,y•,z•) are the spatial coordinates of thej th field 
location, and c is the velocity of propagation of the media. 

B. Definition of the mean-square error 

The mean-square error (MSE) between an observed 
field and a desired field at some arbitrary set of spatial loca- 
tions and for a specified set of discrete times is defined as 
follows: 

MSE =: 1 b-' •[g•(t) --y•(t)] 2 (4) 
where g• ( ) is the desired field at thej th location, y• ( ) is 
the observed field at thej th location, t is the discrete time 
variable, and Tis the total time interval. The goal is to find a 
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desired field => Optimum drivilag functions => actual field 

gt(t) ft(t) y•(t) 

g j(0 fi(t) Yi(t) 

gM(t) fL(t) YM(t) 

FIG. 2. Synthesis problem: Find a set of driving functions f,. (t) that will 
produce a field yj (t) similar to the desired field gj (t). 

set of optimum driving functions (f) that will minimize the 
MSE. This concept is illustrated in Fig. 2. 

C. Derivation of the optimum driving functions (MSE 
sense) 

We proceed by equating the functional derivative (par- 
tial with respect to the driving functions) of the expression 
for the MSE to zero. 

Taking the functional derivative we obtain, 

Ofk(r• -- • • • 2[g•(t) --Y•(t) ] OY•(t•) Ofk(r) 
(Sa) 

From Eq. (3a), we observe that 

•y•(t) _ [1/(4•rrk•), t=r + r• (5b) 
8f• (r) [0, otherwise 

Substituting (5b) into (5a) and equating the result to zero, 
we obtain 

• [g•(r+r•)-yj(r+%)] 
0=Z (6) 

Substituting (3) into (6) then gives, 
i 

r• (4½r% r e ) ' 
for 1 <i<L, 1 <j<M, 1 <k<L. 

(7) 

D. Solving the set of linear equations 

Equation (7) represents a set of linear equations which 
can be solved for the set of optimum driving functions f,. (t). 
We first formulate Eq. (7) in matrix form and then solve the 
resulting matrix system for the driving functions. This can 
be easily accomplished by formulating Eq. (7) in the fre- 
quency domain. 

Taking the Fourier transform of Eq. 

p•kJG•(co) • i p(•-•')F,(co) 
wherep •k• = e c/•'•), F i (co) is the Fourier 
and G• (co) is the Fourier transform ofg1 

We can now rewrite Eq. (8) as 

where h o = p - •' / ( 4rrr• ), h •j = p /(4;rr•j). For a fixed 

(7), we obtain 

, (8) 

transform off (t), 
(t). 

frequency (to), we have L equations which can be written in 
matrix form as follows: 

H*g = H*Hf, (10) 
where 

f= , g= : H---- : '- : , 
•t h•t • '" h•t• 

h •t "' h•'ta H*= i " : 

Ih•, '" h•st 
Solving for f, we obtain 

f = (H'H) - •H*g. ( 11 ) 

IfL = Mand H is nonsingular, then Eq. ( 11 ) reduces to the 
matrix equation 

f=H-•g. (12) 

In this case, we can always obtain an exact solution. 

E. The propagation equation 

We now present a more intuitive derivation of the least- 
squares solution to the inverse propagation problem present- 
ed in the previous sections. We note that Eq. (3a) has the 
frequency domain representation 

g=Hf. (13) 
This result is readily obtained by following the same proce- 
dure presented in the previous section. We refer to this rela- 
tionship as thepropagation equation. Note that each element 
of the matrix H provides the necessary attenuation and 
phase correction factors to propagate the corresponding fre- 
quency component of each array element to the observation 
points. We refer to the matrix H as the propagation matrix. 
The least-squares solution to Eq. (13) is well known: and it 
is given by Eq. ( 11 ), where the expression (H'H) - • is com- 
monly referred to as the pseudoinoerse of the matrix H. 

F. Summary 

Based on a point source propagation model in a homo- 
geneous media, we have derived a least-squares solution to 
the inverse propagation problem (given an arbitrary field, 
find the corresponding driving functions of a given array of 
radiating elements). This solution is obtained by solving a 
set of linear equations in the frequency domain for each fre- 
quency component. The right-hand side of the matrix equa- 
tion is defined by the product of the propagation matrix and 
a field vector. The field vector consists of spatial samples of 
the field, while the propagation matrix is a function of the 
relative distances between the array elements and the set of 
spatial locations that define the field. In the next section, we 
apply this technique to the LW problem. 

II. COMPUTER SIMULATIONS 

This section illustrates the feasibility of the proposed 
technique for calculating the driving functions of an array 
required to generate localized waves. All the results were 
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FIG. 3. Geometry of the source array ( 19 elements, 1-cm aperture). 
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FIG. 4. MPS source-free solution after traveling a distance of 30 cm. 

obtained by computer simulation based on the point source 
propagation model formulated in Sec. I. The computer sim- 
ulations were done on a SUN-3 workstation using single pre- 
cision arithmetic. The signal processing package SIG (Gen- 
eral Purpose Signal Processing Program )3 was used as the 
development environment for implementing all the numeri- 
cal calculations as well as for plotting the results. A conju- 
gate gradient algorithm 4-6 is used to solve the propagation 
equation in all cases. 

The two cases are investigated. In the first case, a LW 

source-free solution to the wave equation is used as the de- 
sired field. This case is intended to illustrate the feasibility of 
the least-squares approach for generating array driving 
functions to generate source-free solutions to the wave equa- 
tion, specifically for producing localized wave energy. In the 
second case, a numerical traveling impulse is defined as the 
desired field. We compare the resulting fields for both cases, 
the LW source-free solution and the traveling impulse, with 
the field generated by driving the array uniformly with a cw 
signal. The performance of each set of results is quantified in 
terms of the beam spreading and the energy efficiency as a 
function of the distance traveled from the array. 

The array that has been selected for the following exam- 
pies consists of a 1-cm aperture array with a total of 19 array 
elements. All the array elements lie on the X- Y plane and 
they have been arranged as depicted in Fig. 3. 
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A. LW source-free solution example 
The LW source-free solution selected for our simula- 

tions is the acoustic modified power spectrum (MPS) 
pulse?,7,8 • -s. 

1 1 -re. 
f(x,y,z,t) = e - •/t• (14) 

zo +j(z-ct) (s/fi + a) • 

where Zo = 4.5 X 10 - 2 cm, b = 6.0 cm - •, fi = 300, a = 100 
cm, a = 1.0, and 

x • y2 s(x,y,z,t) = + --j(z + ct). 
z o +j(z -- ct) 

The propagation media is assumed to be water with a veloc- 
ity of propagation (c) of 1.5 X 105 em/s. It is assumed that 

-64 0 

Lime (J• sec) 

64 

FIG. 5. (a) Reconstructed MPS field based on Huygen's principle, (b) 
driving function for the center element of the array. 
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the pulse is propagating along the Z axis. Figure 4 shows 
contour levels of the energy distribution of the MPS field as a 
function of time, and distance along the X (or Y) axis after 
traveling a distance of 30 cm (since this particular LW solu- 
tion is circularly symmetric, it is sufficient to specify the field 
along the X or Y axis). The reference time t = 0 represents 
the time at which the center of the pulse arrives atz = 30 cm. 

A simple procedure for reconstructing this field using 
an array of point sources is to excite the array elements with 
a set of driving functions derived from the original source- 
free solution using Huygen's principle? Figure 5 shows the 
field generated by driving the array depicted in Fig. 3 with 
those signals. One of the array driving functions is also 
shown. 

Before comparing this field with the one obtained with 
the least-squares approach, we must discuss the strategy 
used to sample the field of the MPS source-free solution. 

B. Sampling the desired field 

In order to apply the least-squares approach, we must 
sample the desired field at a finite number of locations and 
time intervals. Our strategy is to sample the field based on 
sampling theory concepts. Let us first consider the temporal 
and spatial characteristics of the MPS source-free solution. 
Figure 6 shows a surface and contour plot of the magnitude 
in dB's of the MPS field atz = 30 cm. Note that the pulse has 
been defined so that its peak amplitude occurs at x = y = 0 
and at t = 0. The figure shows that it takes a time span of 128 
/•s and an aperture size of 250 cm for the pulse amplitude to 
decrease approximately 45 dB (a factor of about 200) with 
respect to its peak value. 

Figure 7 illustrates the spectral characteristics of the 
MPS source-free solution. Note that near the origin, the 
pulse is wideband in nature, having a bandwidth of approxi- 
mately 2 MHz ( - 45-dB point). In order to preserve this 
bandwidth, the field must be sampled at a rate of about 
4 X 10 a samples/s (twice the highest frequency) in order to 
avoid aliasing effects. 

radial distance (cm) time ( • sec) -45•i o 125. -6• 
radial d y (MPIz) 

...... , ..... :- I .... I .... I 120 
/ I .,...,• I •...m I / 

.... t ........ :.--, ........ I I 
• I I •11I• I •1• •1 1 

' '1 , _ . ,o ___ 
•• 0 ' ' 

-• • m 0 1 2 
•me ( • sec) frequency (MHz) 

FIG. 6. Temporal and spatial characteristics of the MP$ field at z • 30 cm. FIG. 7. Spectral characteristics of the MPS field at z • 30 cm. 
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FIG. 8. Wave number spectrum of the MPS field at z = 30 cm. 

The wave-number spectrum of the MPS field is shown 
in Fig. 8 as a function of time. Note that the shortest spatial 
wavelengths are on the order of 4 cm long ( - 45-dB point). 
Based on the shortest wavelength of the field, we can calcu- 
late the minimum sampling density (number of samples per 
unit area) required to minimize spatial aliasing effects. If we 
use a hexagonal sampling scheme jø (which provides an effi- 
cient method of sampling circular symmetric, bandlimited 
spatial signals), then the sampling density is given by 
2ff3/2 2 where Am•, stands for the shortest wavelength to min, 

be sampled. Therefore, for a 4-cm wavelength, the sampling 
density should be on the order of 0.2 samples/cm 2. Observe 
that a hexagonal sampling scheme was also used to arrange 
the array elements of the source array (see Fig. 3). 

Table I summarizes the requirements for selecting the 
temporal and spatial samples of the MPS field (based on 
sampling theory concepts) to be used for calculating the 
driving functions of the source array using the least-squares 
approach. Based on these results we need a total of 512 tem- 
poral samples (or 256 frequency components, neglecting the 
dc term) at 9800 different spatial locations. In terms of the 
number of mathematical computations involved, this prob- 
lem requires the solution of 256 linear systems of complex 
equations of order 19 X 9800. Unfortunately, the number of 
spatial locations is directly proportional to the squared value 
of the aperture size, and it is also proportional to the squared 
value of the spatial bandwidth (l/)[mi n )2. Therefore, in or- 
der to reduce the number of spatial locations (and, therefore, 
the number of computations), we have to either reduce the 
sampling density or reduce the aperture size. (Another op- 
tion would be to use a different sampling strategy which will 
not be considered at this time). Since the short wavelengths 

TABLE I. Sampling requirements of the MPS field at z = 30 cm. 

Sampling rate 4 x 10 • samples/s 
Sampling density 0.2 samples/cm 2 

Time span 128 
Aperture size 250 cm 
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I I I 
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.... I 'r 
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I I I 

time ( • sec) 

FIG. 9. Reconstructed MPS field based on the least-squares approach. 

are important in order to preserve the localized behavior of 
the solution (which is the main feature that we are trying to 
duplicate), it is more desirable to reduce the size of the re- 
ceiving aperture. 

C. Least-squares solution to the LW source-free 
example 

We now compare the field generated with the Huygen's 
approach with the field generated from the same array using 
a set of driving functions obtained with the proposed least- 
squares approach. The resulting field is slhown in Fig. 9. 
Note that although the beam is not as localized as the exact 
field (Fig. 4), spatially, it is very similar to the beam genera- 
ted from the Huygens reconstruction approach (Fig. 5). 

This reconstructed MPS field was generated using the 
sampling parameters from Table I with a receiving aperture 
size of 40 cm instead of 250 cm. This reduced the number of 

spatial locations needed for sampling the field from 9800 to 
250. 

Based on other computer simulations not shown here, 
our studies indicate that increasing the value of the sampling 
parameters (sampling rate, sampling density, and time 
span) tend to generate smoother energy profiles than the one 
shown in Fig. 9, but the localized characteristics of the re- 
suiting field remain about the same. 

D. The array driving functions 

Our studies show that the least-squares solution to tlhe 
inverse propagation problem tends to generate very large 
low-frequency components which do not seem to be neces- 
sary in order to generate a localized field. Although, at this 
point, this behavior is not well understood, we suspect that 
due to the particular geometry of our problem (array ele- 
ments as well as selected field locations are very close togeth- 
er in comparison to the traveled distance), the inverse prob- 
lem is "ill-conditioned" at the low frequencies. We have 
investigated two ways of suppressing these strong, 1ow-fi'e- 
quency resonances in the driving functions. For the first ap- 
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proach we high-pass filter the calculated driving functions in 
order to attenuate the low-frequency resonances. It also 
helps to taper the ends of the resulting time series after the 
filtering operation. This can be easily accomplished by mul- 
tiplying the driving functions times a Hanning (or similar) 
window function. In the second approach we apply an ener- 
gy constraint to the inverse problem (see last section of the 

Appendix). This approach tends to keep the number of re- 
sonances to a minimum. 

Figure 10 shows the solution to the MPS example in 
both, the time and frequency domains, for the center element 
of the array. The first pair of plots shows the original solu- 
tion to the MPS source-free inverse problem. Note the strong 
resonance at the low frequencies which is responsible for the 

• •. . . 0 . 

_•.• 0 o.s 0 0.5 t • .5 
•,• Nine (• see) frequency (•) 

E- 

Ib• freq•nc? (MHz) 

•e• Ume (• sec) freq•ncy (MHz) 

FIG. 10. Least-squares solutions in the time and frequency domains to the MPS source-free problem for the center element of the array: (a) unconstrained 
solution, (b) filtered solution, (c) solution with an energy constraint. 
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FIG. l 1. Comparison of the reconstructed energy field from the (a) uncon- 
strained solution, (b) filtered solution, (c) solution with an energy con- 
straint. 

very large amplitudes and the sinusoidal waveshape of the 
driving function. The next pair of plots illustrates the high- 
pass filtering approach. In this case, the resonances have 
been suppressed considerably, thus reducing the amplitude 
levels of the driving functions considerably. The waveform 
has also been tapered at the ends by using a Hanning win- 
dow. The last pair of' plots shows the solution to the same 
problem applying an energy constraint to the inverse prob- 
lem, i.e., the sum of the squares of the driving functions is 
constrained to be a constant as well. This energy constraint 
was implemented using the conjugate gradient algorithm 
discussed in the Appendix. Although there are still some 
resonances present in the frequency spectrum, they are 
much smaller than the resonances of the unconstrained solu- 

tion. Note the ringing in the early-time portion of the driving 
functions, which is caused by the remaining resonances pres- 
ent in the solution. 

The corresponding fields at z = 30 cm are depicted in 
Fig. 11 for the above three cases. Note that the results for the 
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FIG. 12. Traveling impulse least-squares solution: (a',, reconstructed field, 
(b) driving function for the center array element. 

557 J. Acoust. Sec. Am., Vol. 92, No. 1, July 1992 Hernandez otal.: Synthesis of driving functions 557 



t. raveled distance (cm) 
-i o 

t. raveled distance (cm) 

lb) t. raveled distance (cm) 

$e 

.i o 

traveled distance (cm) 

•-4 

i- 

(c) t•a•elecl distance (cm) traveled cidstance (cm) 

(d) traveled distance (cm) 
• • 4• •3 

traveled distance (cm) 

FIG. 13. Comparison of the beam performance (efficiency and spreading) for the following cases: (a) MPS using Huygcns approach, (b) MPS using least 
squares with filtering, (c) traveling impulse using least squares with filtering, (d) cw at 345 kHz. 
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constrained and the filtered cases are very similar. More- 
over, both cases produce a beam more localized than the 
beam generated from the Huygens reconstruction approach 
(Fig. 5). 

E. Traveling impulse example 

Ideally, the ultimate wave pulse for the transmission of 
localized wave energy is a traveling impulse function. Al- 
though such a pulse cannot be realized physically, a least- 
squares solution to the traveling impulse problem can be 
obtained by defining the desired field to be the (numerical) 
unit impulse function, i.e., a field with a value of one at 
x = y = 0 and t = z/c, and a value of zero everywhere else. 
Figure 12 shows the solution to this problem using the same 
sampling parameters that were used for the MPS field exam- 
ple. Note that the solution to the traveling impulse problem 
gives a more localized field than the one obtained for the 
MPS source-free problem, given the same source array and 
the same sampling parameters. 

F. Performance study 

We now compare the performance of the different solu- 
tions against each other and against the classical cw beam. 
This comparison is accomplished by calculating the effi- 
ciency of the beam and its spreading as a function of the 
distance the transmitted beam has propagated from the ar- 
ray for each set of driving functions. The efficiency of the 
beam is defined as the ratio of the on-axis beam energy to the 
total energy of the integral of the array driving functions as a 
function of the distance traveled by the beam. This quantity 
is given by the following formula: 

efficiency (Zo) = 4 J' lY(zø't)lZdt (15) 
c 2 •, J' Ij"f(t)dt 12 dt ' 

where y( ) represents the field on-axis (x=y=0) at 
z = Zo. The factor (4/c:) has been introduced to make our 
results conform to the far field expression obtained from 
Huygens' representation, i.e., (2/c)y()yia, g,• •/2rrcr, 
where g( ) is the signal delivered to the i th element of the 
array. Our driving functions are the signals leaving the ar- 
ray, i.e.,f/( ) = (a/oat) gi (). Moreover, in order to sim- 
plify the implementation of the software, we expressed all 
distances in units of the speed of propagation, in this case 
centimeters. The term .f• ()dt is the integral of the i th 
driving function of the array. It represents the signal gi ( ) 
delivered from a power source to the i th element of the ar- 
ray. 

The beam spreading is defined as the radial distance 
from the z axis (the center of the beam) to the point at which 
the beam energy decays to half its on-axis value. This quanti- 
ty is also a function of the traveled distance of the beam. The 
energy spreading and efficiency results for all the cases pre- 
viously discussed are shown in Fig. 13. All the results corre- 
sponding to the least-squares approach were high pass fil- 
tered as previously discussed. The first set of curves 
corresponds to the field generated by using the MPS source- 
free solution via the Huygens' approach. The second set cor- 
responds to the least-squares solution to the MPS source- 
free case. The third set corresponds to the least-squares 

TABLE II. Summary of the beam performance at z = 5:0 cm for: ( 1 ) the Iw 
example via Huygens approach, (2) least squares with filtering, (3) least 
squares with au energy constraint and filtering, (4) the traveling impulse 
example using least squares with filtering, (5) least squares with an energy 
constraint and filtering, (6) cw at 345 kHz, (7) cw at 2 MHz. 

Effective Spreading 
Case freq. Efficiency (cm) 

Huygens 345 kHz 2.6X 10 - 4 6.4 

Iw-least square w/HPF 258 kHz 1.3 X 10 - 5 5.2 
w/constraint + HPF 476 kHz 1.3 • 10 - 4 5.6 

impis-least square w/HPF 249 kHz 3.2 X 10 - 5 3.6 
w/constraint + HPF 836 kHz 1.3 X 10 - 3 3.6 

cw @ effective freq. 345 kHz 2.6X10--4 11.9 
cw $ maximum freq. 2 MHz 8.9X 10 - 3 2.1 

solution to the traveling impulse case. The fourth case was 
generated by exciting each array element with a 345-kHz cw 
signal. This frequency corresponds to the effective frequency 
of the driving functions delivered to the array that were gen- 
erated via Huygens approach. The effective frequency (.feel) 
represents a measure of the "maximum" frequency of the 
signals driving the array, and it is defined by the expression: 

ß .f •(t)12dt •,.f ioatg•(t)12dt 
(2•fe•r) • = 

Z œ Jj'•.(t)dt j2 dt -- • .f Jg,(t)dt j2 dt' 
(16) 

All the results including the effective frequency of the driv- 
ing functions for all cases are summarized in Table II. The 
results based on the least-squares approach were generated 
with filtering, and with an energy constraint plus filtering. 
We have also included the results for the 2-MHz cw case. 

This frequency corresponds to the maximum allowed band- 
width in all of the cases. Note that excluding the 2-Mltz 
case, the traveling impulse solution produces the most local- 
ized beam. Furthermore, the least-squares. solution to the 
MPS example shows an improvement in energy spreading 
over the Huygens approach of calculating the array driving 
functions. Note that the beams corresponding to the least- 
squares approach are not very efficient. We believe this is 
due to the fact that in spite of the energy constraint imposed 
on the solution and the high-pass filtering, there are still 
some resonances present in the driving functions due to the 
geometry of our problem. The fields associated with these 
low-frequency resonances expand rapidly, hence, the ampli- 
tudes decrease quickly once they leave the array. However, 
they require a significant amount of energy to generate them. 
Thus these fields increase only slightly the spreading charac- 
teristics of the propagated beam, but decrease significantly 
the overall efficiency of the array. 

Note that we used a cw signal of infini•re time duration. 
This signal was the easiest to implement with the Fourier 
approach. Cases were'. tested in which finite record length cw 
signals or tone bursts were used to drive the array. The fields 
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FIG. 14. Field at z = 30 cm corresponding to: (a) cw @ 2 MHz, (b) least-squares approximation to an ideal traveling impulse, (c) MPS via Huygens, (d) 
MPS via least squares with filtering. 

generated with the tone burst driving functions were typical- 
ly 40% less efficient than the pure cw case. The decrease in 
efficiency results from an increase in the leakage to the field 
outside the main beam. Since the infinite time record cw case 

is not achievable in practice, the cw performance noted here 
is better than one could realize physically, making the com- 
parisons presented here the most stringent that one could 
achieve. 

In summary, the proposed least-squares approach is 
suitable for calculating array driving functions for generat- 
ing lw source-free solutions to the wave equation. In all 
cases, the least-squares solution produces a beam with better 
spreading characteristics than its cw counterpart (cw signals 
with the same effective frequency). Furthermore, solving 
the traveling impulse problem seems to generate a beam 
whose mainlobe characteristics are almost as good as the 2- 
MHz cw case. Although the 2-MHz cw case shows a more 
localized beam with higher efficiency when compared to all 
the other results, this case suffers from much larger sidelobe 

levels than any of the other cases as illustrated in Fig. 14. 
These sidelobe levels appear because the wavelength of the 2- 
MHz signal is much smaller than the separation distance 
between the source array elements. 

III. SUMMARY AND CONCLUSIONS 

This paper presents a framework for calculating an opti- 
mum (least-squares sense) set of driving functions for an 
array of point sources given a scalar representation of the 
desired field. The problem is formulated as a set of linear 
equations in the frequency domain. We have demonstrated 
the use of the proposed framework for calculating array 
driving functions to generate localized wave energy. Two 
cases are considered: (1) a lw source-free solution to the 

wave equation, and (2) a numerical traveling unit impulse. 
Both cases show an improvement in energy spreading and in 
energy efficiency when compared to the cw case for the cor- 
responding effective frequency of the driving functions. Fur- 
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thermore, there are no sidelobes effects. The least-squares 
approach appears to be suitable for generating localized- 
wave source-free solutions to the wave equation. Moreover, 
based on the different cases that were studied, defining the 
desired field to be a traveling impulse function gives the most 
localized and efficient beam for a given bandwidth excluding 
the cw case which suffers from sidelobes. 

Our studies show that the proposed technique tends to 
generate very large low-frequency components which do not 
seem to be necessary in order to generate a localized field. 
We suspect that due to the particular geometry of the local- 
ized energy problem (array elements as well as selected field 
locations are very close together in comparison to the trav- 
eled distances), the inverse problem is "ill-conditioned" at 
the very lowest frequencies. These large resonances can be 
reduced by high pass filtering the driving functions. They 
can also be minimized by solving the inverse problem with 
an energy constraint on the solution. This approach and sev- 
eral other possible alternate approaches are discussed in the 
Appendix to follow. 
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APPENDIX 

In this Appendix, we discuss some modified versions of 
the least-squares solution to the inverse propagation prob- 
lem. Although we have not implemented these approaches 
(with the exception of the conjugate gradient method ), they 
are alternatives to the one presented, and are currently being 
investigated. 

1. The weighted MSE solution to the propagation 
equation 

Let us consider the case where a large number of field 
locations are specified relative to the number of array ele- 
ments (M•,L). Since in this case there is no guarantee that 
there exists a set of driving functions that can reproduce the 
desired field at all the specified locations, we consider 
weighting the error function. This is useful in cases where a 
degradation in performance at some locations is acceptable 
at the expense of improving the performance at some other 
locations. 

We start by redefining the cost function to be minimized 
as, 

WMSE= • u• [g• (t) --y•(t) ] 2, (A1) 
where to• is the weighting factor for the error at thejth loca- 
tion. 

Minimizing the new cost function gives rise to a set of 
linear equations similar to the ones formulated previously in 
Sec. I [see Eqs. (5a)-(7)], 

• %gj(r + ) • • w•(r + rk• --%) (A2) Z Tkj 
r• ( 4•rr•j r o ) 

We proc•d again by fo•ulating the problem in the fre- 
quency demon in order to solve for the driving functions. 
After taking the Fourier transfo• and simplifying the nota- 
tion • we did previously [see •s. (8) and (9) ], we obtain 

j • 

• w•h•G•(•) • • •h• • h•F•(•). (A3) 

We can now rewrite •. (A3) in matrix form as, 

W*g = WtHf, 
where 

W* = w,h i h 

(A4) 

We refer to W as the weighted propagation matfix. Notice 
that ill = Mand H is nonsingular, Eq. (A4) reduces back 
to Eq. (12), which is independent of the weighting factors 
wj. This is expected since in this particular case there exists 
an exact solution to the inverse problem, and therefore, mini- 
mizing the MSE is the same as minimizing the weighted 
MSE (WMSE). 

2. Energy constrained solution to the propagation 
equation 

It is of interest in some applications to find solutions to 
the propagation equation that constrain the total energy of 
the driving functions. From a mathematical point of view, 
we want to solve a set of linear equations (the propagation 
equation) such that the squared norm of the solution vector 
does not exceed some maximum value •, i.e., 

solve g--Hf, subject to Ilflh<g. (Am) 

The solution to this minimization problem is given by 

f= [HtH + g I] - •H*g, (A6) 

where g is a decreasing function of• and is called the biasing 
parameter. ? 

3. A modified steepest descent approach 

We now consider an iterative method for computing the 
driving functions based on a steepest descent approach. The 
basic idea is to iteratively cause incremental changes on the 
driving functions based on the gradient of the MSE. This 
procedure can be formulated mathematically as 

f•(r) .... =fk (•') øIs /2 0MSE (A7) 
2 o•fn (r) 

The parameter/z is a constant that governs the stability and 
the rate of convergence of the algorithm.• • 

After combining •s. (5a) and (5b), we can rewrite •. 
(A7) as 

• e•(r+ r•) 
fn(r) .... =fnr)ø'a+ (TM) '• • . (AS) 

(4•%) 
If instead we wanted to minimize the WMSE, then (A7) 
•comes, 

561 J. Acoust. Sec. Am., Vol. 92, No. •. July 1992 Hernandez ota/.: Synthesis of driving functions 561 



fk (•') new =fk ('T) øld -•- (TM) -•tz • w/ei(r+ •'kl) 
(4•rrk/) 

(A9) 

One disadvantage of the current form of Eq. (AS) or 
(A9) is that unless the parameter/x is allowed to vary, the 
adjustments made to the driving functions from each avail- 
able location will depend on the traveled distance rk;. Field 
samples from far away locations will contribute a smaller 
adjustment than relatively closer field samples. This is due to 
the explicit ( 1/rk• ) factor in Eq. (AS) as well as the implicit 
( 1/r•/) factor in the error function itself. This dependency 
can be removed by scaling the error function by the square of 
the corresponding traveled distance. This allows all the field 
samples to contribute equally to the adjustment of the driv- 
ing functions while keeping the parameter/z constant. We 
can also compensate for the factor T- l in order to make the 
choice of/x independent of the time duration of the func- 
tions. Therefore, a modified steepest descent solution is giv- 
en by the expression, 

J 

f• (r) "½w =f• (r) ø•a + M - •tz • 4•'r•ie• (r + •-• ). 
(A10) 

Note that the steepest descent approach does not involve the 
inversion of matrices or the computation of Fourier trans- 
forms. However, it does require the propagation of the driv- 
ing functions at the end of each iteration cycle in order to 
compute the error functions (e•). This procedure, when im- 
plemented as formulated in Eq. (13), does require taking 
Fourier transforms as well as a vector-matrix multiplication 
for each frequency. However, it is possible to implement Eq. 
(A10) in the frequency domain and therefore, avoid taking 
Fourier transforms at each iteration cycle. Taking the Four- 
ier transform of Eq. (A10) gives, 

J 

Fk(ro)new= Fa(co)ø'd + tz • qn•E•(co), (All) 
where 

q•i = M - •4rrr•ip •kj . 
The equivalent matrix relation is given by 

f,½w =fold +/zQe, (A12) 
where 

q• '" qlM Q= i ø- : 

I qL • "' 

We refer to Q as the back propagation matrix since basically 
it propagates the error functions back to the source loca- 
tions. 

The main motivation for using an iterative approach 
such as the one just described, is to solve problems where we 
have a very large number of field locations which might cov- 
er a wide range of distances. This situation can cause severe 
numerical problems when trying to invert the pseudoinverse 

of the propagation matrix (H'H) - •. The basic strategy is to 
break the total set of field locations into smaller sets and then 

apply the steepest descent approach, iterating over each sub- 
set of field locations. Since the iterative approach allows for 
an initial set of driving functions, we could first compute an 
optimum set of driving functions [see Eq. ( 11 ) ] based on 
one of the subsets of field locations (perhaps the most impor- 
tant one), and then switch to the iterative approach. 

4. Conjugate gradient method 6 

The propagation equation can be solved using a conju- 
gate gradient method. This method is similar to a steepest 
descent approach. Although it is slightly more complicated 
to implement, it converges faster than the steepest descent 
method. As with the steepest descent method, the current 
gradient vector is computed at each iteration. However, a 
linear combination of previous direction vectors is also add- 
ed to obtain a new conjugate direction vector along which 
the solution moves. This is the technique with which we had 
the most success. One nice feature of the conjugate gradient 
method is that it is very easy to implement the energy con- 
strained solution (the sum of the squares of the solution is 
constrained to be a constant). This is done by controlling the 
number of iterations of the algorithm based on some criteria. 
The criteria used for generating the results in Sec. II is based 
on the apparent condition number of the propagation ma- 
trix. The particular code that was used allows the user to 
specify an upper limit for the condition number of the ma- 
trix. If this limit is exceeded, the code terminates the iter- 
ation procedure. We modified the code so that not only will 
it stop iterating,but it will also return the previous estimate 
of the solution. This seems to help since the solution can 
grow a lot in just one iteration, especially when the matrix is 
badly "ill-conditioned." For more information on the conju- 
gate gradient technique, consult Refs. 4 and 5. 
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