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A method for constructing solutions of 
homogeneous partial differential equations: 

localized waves 

BY ROD DONNELLY1 AND RICHARD ZIOLKOWSKI2 

1Faculty of Engineering and Applied Science, Memorial University, St. John's, 
Newfoundland, Canada AIB 3X5 

2Department of Electrical and Computer Engineering, University of Arizona, 
Tucson, Arizona 85721, U.S.A. 

We introduce a method for constructing solutions of homogeneous partial differential 

equations. This method can be used to construct the usual, well-known, separable 
solutions of the wave equation, but it also easily gives the non-separable localized 
wave solutions. These solutions exhibit a degree of focusing about the propagation 
axis that is dependent on a free parameter, and have many important potential 
applications. The method is based on constructing the space-time Fourier transform 
of a function so that it satisfies the transformed partial differential equation. We also 

apply the method to construct localized wave solutions of the wave equation in a 

lossy infinite medium, and of the Klein-Gordon equation. The localized wave 
solutions of these three equations differ somewhat, and we discuss these differences. 
A discussion of the properties of the localized waves, and of experiments to launch 

them, is included in the Appendix. 

1. Introduction 

There are various methods of constructing solutions of the homogeneous wave 

equation in three-dimensional space (see (1) below). If we assume a separable solution 
in, say, cartesian coordinates, then we might choose plane waves which travel in a 

particular direction with speed c; in spherical polar coordinates we might choose 

spherical waves centred on the origin. 
Below we introduce a new method for finding both separable and non-separable 

solutions of constant coefficient homogeneous partial differential equations. We do so 

by constructing solutions of four well-known homogeneous equations: the free-space 
wave equation, Laplace's equation, the wave equation in a lossy infinite medium, 
and the Klein-Gordon equation. The solutions are actually constructed in the spatial 
and temporal Fourier transform domain. The basic idea is to choose the Fourier 
transform of the solution as a generalized function which, when multiplied by the 
transform of the particular differential operator, gives zero in the sense of generalized 
functions. 

In the case of the free-space homogeneous wave equation, we show in ?2 how this 
method easily gives the separable solutions mentioned above. Moreover, we show 
how the method can be used to construct the interesting, non-separable, localized 
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wave (LW) solution (Ziolkowski 1985, 1989). There is a free parameter in this solution, 
and the size of this parameter determines the wave-particle nature of the solution. 
A weighted linear superposition, over the free parameter, of the localized wave 
solutions is also a solution. We include in ?2, rather than in the Appendix, two 
properties of the localized wave solutions that follow readily from our transform 
domain representation. We give a simpler derivation of the inequality to be satisfied 

by the free parameter weighting function (spectrum) in order that the weighted 
superposition have finite energy, and we also derive the temporal Fourier transform 
of the localized wave (this is important in launching these waves). We also apply the 
method to construct a localized wave solution of the two-dimensional free space 
homogeneous wave equation. 

In ?3 we briefly construct a solution of the three-dimensional Laplace's equation, 
valid off the plane z = 0, that exhibits a 'focusing' that is dependent on a free 
parameter. 

In ?4 we consider the homogeneous wave equation in a lossy infinite medium, and 
show how to construct localized wave solutions that, apart from a monotonic 
exponential decay factor with time, behave somewhat similarly to the non-lossv 
solutions; the difference lies only in a term which affects oscillation along the 

propagation direction. The Klein-Gordon equation, which we study in ?5, also has 
localized wave solutions, which we construct. Again, the difference between the 
Klein-Gordon and non-lossy wave equation solutions lies only in a term which affects 
oscillation along the propagation axis. Both lossy medium and Klein-Gordon 
solutions exhibit a focusing about the propagation axis which is dependent on a free 
parameter in the solution. 

In ? 6 we compare the real parts of the non-lossy, lossy medium, and Klein-Gordon 
localized wave solutions. It is the real parts which are of importance for launching 
realizations of these solutions. We explain why, although all three solutions exhibit 
the same degree of focusing about the propagation axis for any value of the free 
parameter, as the free parameter ranges from zero to infinity the oscillatory natures, 
along the propagation axis, of the three solutions differ markedly. The value of the 
free parameter where the oscillatory behaviour changes depends on the conductivity 
in the lossy medium case, and on the 'mass term' in the Klein-Gordon solution. 

In ?7 we summarize the general method which we have used in particular to 
construct localized wave solutions of the homogeneous partial differential equations 
mentioned above. We indicate how the richness of this method may be used to 
construct other interesting solutions. Finally, in the Appendix we summarize some 
of the work done on the localized wave solutions of the homogeneous wave equation, 
and refer to experiments to launch superpositions of these waves. Their practical 
potential for application in a wide range of areas, from biomedicine to secure 
communications, is clear from a study of their properties. 

2. Solutions of the homogeneous wave equation 

Consider the scalar homogeneous wave equation (HWE) in x, y, z space: 

(V2- 2)f (r,t) = 
0, (1) 
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where r = (x, y, z). We shall take a three-dimensional spatial Fourier transform and 
a one-dimensional temporal Fourier transform of (1). We thus define 

r -ik00i 
r, t{4} (k, 0))-rEt7 {V} (k, 0) fdr dt ̂ f (r, t) eik reit. (2) 

jM G-oo 

In (2) we denote the vector (kx, ky, kz) of spatial transform variables by k, and (o is 
the temporal transform variable. Equation (1) transforms to 

(k-o _ /^C) b }, t({) (k, 0) = 0, (3) 

where k = /(k2 + k + k2). 
In the sense of generalized functions, we have the result 

f(4) S(N -0) = f(0() 6(g -40), (4) 

for suitably well-behaved functionf, where 4 is an n-dimensional vector variable, and 
8 denotes the n-dimensional delta function. 

With the use of (4) we realize that a solution of (3) is given by 

r, t{f)} (k, ()) = c((o) )((kx) (kCy) 8(kz + 0)/c), (5) 

where cc is an arbitrary function, since 

(k2 - 02/C2) a((D) 8(kx) 8(ky) 8(kz ( /c) 

= (O + 0 + )2/C2- 0)2/C2)) (kx() (x(k ) (kz ? O/c) = 0. (6) 

The inverse Fourier transform of (5) is given by 

(r, t) = (2- )4 fdk S dw [cx(w) 8(kx) 8(ky) (kz (?)/c)] eikr e-it 

(2)4 dJ do a() e-i(t +/c), (7) 

which represents a superposition of plane waves, travelling in either the positive or 

negative z direction, of angular frequency (o. In particular, we can choose cc((o) = 

8(0)- (o0) and take the negative sign in (5) to get a single plane wave, of frequency o)0, 
travelling in the positive z direction. 

Another solution of (3) is given by 

r, t{}f( (k, )) = acz() 6(kc2 _- )2/c2). (8) 

As (8) is spherically symmetric in the spatial transform domain, its inverse transform 
has spatial spherical symmetry. As k is the distance from the origin in the spatial 
transform coordinate domain, we have the result that, as generalized functions, 

8(k-2 _2/C2) = (1/2k) (k-/loJ/c). (9) 

To take the inverse Fourier transform of (8) we convert the spatial transform 
coordinates to spherical polar coordinates. The resulting four-dimensional integral 
reduces to 

(r, t) = 2i(2 )3 dw c(w) {exp [-i)(t -r sgn (o)/c)] -exp [-i(t + r sgn (w)/c)]}, 

(10) 
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where sgn (o) = [(ol/o. By choosing, say, ca(o) = &(o-0(o) again, we recover a HWE 
solution which, for t > 0, represents both inward and outward propagating spherical 
waves, of frequency w0. 

The method outlined above, and illustrated by the examples of two well-known 
HWE solutions, can be used systematically to generate other interesting HWE] 
solutions. In particular, we can recover the so-called localized waves (Lws) introduced 
by Ziolkowski (1985, 1989). These solutions are non-separable, propagate along the 
z-axis (arbitrarily) at the speed c, and have angular symmetry about the z-axis in a 
cylindrical (p, 0, z) coordinate system (p = (x2 +y2)). To this end we note that (3) 
may be rewritten 

(K2 + -2/C2) r, t{) (k, O) = 0, (11) 

where K2 = kc + ky. We shall choose a solution of (11) that constrains the transform 
variables kz and co in such a way as to make the expression K2 + kz - )2/C2 vanish. We 
see that, for example 

x2 + ( - K2/4P)2 - ( + K2/4f)2 _ 0 (12) K+(f 
- K /4f)l -( K+ /4f) 0 (12) 

for any choice of the arbitrary real non-zero parameter /f. As such, any function of 
the form 

F(K, f) l[k - (f3-K2/4f/)] 8[0 + c(/+ K2/4f)], (13) 

where S is an arbitrary function of K and f/, will satisfy (11). If we specify S by taking 

, t {f} (k, w) = (c)2/if) exp (- K2Z/4f/) d[kc - (f - K2/4,/)] 8[w +c( + K2/4f)], (14) 

where we now assume that p/ > 0, and also z0 > 0 is arbitrary, then we can apply an 
inverse Fourier transform to get 

2 

V(r t) = ei(z+ct) Sdc e-iK 
' 

exp {-K2 [ + i(z - ct)]/4t }. (15) 

In (15), ic p = k x+k,yy; we are free to choose the kx-axis as lying in the direction 
of p, so that J dK e-iK P reduces to 

dK df e-~iKpcos9. 

The angular integral can be recognized as a zero-order Bessel function. Thus, 

r(r, t) = eifl(z+ct) dKK Jo(Kp)exp -K2 [z+i(z -ct)]/4f3}. (16) 
(if)(2n) 

Finally, the integral in K may be evaluated (Gradshteyn & Ryzhik 1980, result 
6.631.4) to give 

(r, t) = ei8(z+ct) exp{-p2/[z + i( -ct)]} (17) 
47ri[zo + i(z - ct)] 

The function given in (17) represents, for arbitrary positive z0 and /f, the generic 
LW as mentioned above. It has some fascinating properties, which we describe in the 
Appendix, together with a brief summary of results from acoustic experiments to 
launch superpositions of LWs. 

From the steps leading from (11) to (17), we see how 'natural' the LW solutions 
seem when viewed in light of the constraints on the transform domain variables kC 
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and (. Indeed, it can be verified that the constraints implied by (12) and (13) 
represent the simplest nontrivial ones on kz and (. It should be pointed out that this 

'forcing' of the wave operator in the transform domain, k2_- 2/C2, is akin to the 
factorization of the wave operator V2 -(1/c2) a8/t2 as given in Besieris et al. (1989). 

It is of some interest to determine the temporal Fourier transform of the generic 
LW in (17). This has not been given previously. The temporal transform should be of 
use when designing schemes to launch superpositions of the LWS (Ziolkowski et al. 
1989). It cannot easily be found directly from (17), but rather, we shall take an 
inverse three-dimensional spatial Fourier transform of the result (14). An inverse z 
Fourier transform gives 

, y t{f}k (kx, ky, z, w) = (i/2ii) exp (- K2z0/4/) exp [iz(fi- K2/4/)] 8 [(w + cf) + CK2/4i]. 
(18) 

We see clearly that the delta function equals zero if () >- cf. We can show that, as 

generalized functions, 

8( -b2 + bb K2) = (1/21b1 b21) (K- lbll/lb21), (19) 

provided b1 = 0 and b2 f 0. Using this result we can take the inverse two-dimensional 

spatial Fourier transform of (18), assuming that o + cfi < 0: 

{ 
= 

( (2) = -exp [w(z0 + iz)/c] exp [i(zo + 2iz)] d(p }= (2^)2 iC 

x exp [ip cos V (4/Plo + cfl/c)]. (20) 

That is, 

o{ - } (1/2ic) exp [w(zo + iz)/c] exp [/f(zo + 2iz)] Jo(pV (4flw + cfl /c)), if o < -c/l 

0o if w > cft. 

(21) 

As Ft{/*}(o) = (,t{f }(-o ))*, where the asterisk superscript denotes complex 
conjugation, we see that Yi {le(fi)} (o) will contain no temporal frequencies in the 

range (-c/, c/f). On the z-axis (p = 0), It(t} (fo)l is independent of z and decays as 
eozo for o < - c/. The parameter f determines the wave-particle nature of k(r, t) in (17), 
depending on whether it is small or large, as has been pointed out in Ziolkowski 

(1985, 1989). Off the z-axis, for any z, the decay of lJt{f} (o)l is further enhanced by 
the term IJo(p/ (4/fl[ +cfll/c))l; in this case the fall off in the magnitude of any fixed 

temporal frequency component increases with increasing p and/or /l. 
As pointed out (Ziolkowski 1985, 1989), appropriate superpositions of generic LWS 

of the form (17), for different values of the parameter f/, also represent solutions of 
the HWE. That is 

f(r, t) = d/fi ,(r, t)F(8), (22) 

is also a solution of the HWE, where ,P has now been used to denote the function 

previously called f in (17). The spatio-temporal Fourier transform of the expression 
in (22) is 

7r 2 oc) F(fl) K2z K2 K 2 

E, t{f }(k, o) i dF(i exp - ( kz- fi- 
t +c fi+ (23) 

and indeed this function of k and o still satisfies (3). 
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The total energy 6, of a scalar wave field, f(r, t), can be represented as 

= f drlf(r,t)2, (24) 

and it is not difficult to see that if the scalar wave field consists of a single generic LW 
with, say, parameter f0 (put F(f) = S(l-/lo) in (22)), then this & is infinite. 
However, as pointed out (Ziolkowski 1985, 1989), the spectral weighting term F(fi) 
in (22) can be chosen so as to cause the 6 in (24) to be finite. This situation is akin 
to that in the classical Fourier plane wave decomposition of a scalar wave field, 
wherein each plane wave has infinite energy. A bound on F(f) in (22), so that the ed 
in (24) remains finite, has been given (Ziolkowski 1989). We shall obtain this bound 
in a somewhat more straightforward way. Using Parseval's theorem, we may rewrite 
(24) 

=(2I)3 dklJr{f}(k,t)l2 (25) 

From (23) we have 

Fr(k, t) = f fi F exp ( xp (itcfide)-t 1 (26) 2i 4fl z 44 47/ 
and so we may write 

If we make the changes of variables /3?-K2/4/f = ~ and 3'--K2/4/i' = y in the second 
and third integrals, respectively, on the right in (27), we find 

16k1 Fdk If I(k, dk d exp / 

dx f (2?2)F((+ vd( F +K2)))l exp [--2(? K) (28) 

In (28) the integral over the changesonvolution of variabtwo delesta functions, and- K2/4 in the secon 
it reduces to hird ( ). The integral with respect to, say, o may then be performed to 
give 

d6k IFd { f (6 
V(2 +?K2)))ex12ep 

? (J2+2) (29) 

s 7 oc< 1-/ (62 + K 2) 2(6_\ 2+K) 

We now make the 'inverse change of variable of two delta /4 functi, so that =- 

~V/(V~+K~)dIc 1F(?(6+ / (V)))Iexp6 --(+2 + K K2))21 exp + ) (29) 

We now make the 'inverse' change of variable of-K 248 , so that fuo 
?1(6+V(2 + K2)) and so 

?~ < 1d dF exp - 

8 d 
,8 

IF(PI ( 2 
8o100 df SF(c). [. (30) 
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Thus the scalar field consisting of superposition of LWS, as given in (22), will have 
finite total energy if 

f d F(f1)l12/fi < oo, 

provided z0 > 0. If z0 = 0 then the generic LW in (17) loses its significant characteristic 
of exponential decay perpendicular to the z-axis, and we are not dealing with a true 
LW any more. 

We can parallel the above analysis to show the existence of LW solutions of the 
two-dimensional HWE. These solutions are of practical interest, for example, in 

waveguide modes of propagation. If we apply a two-dimensional spatial and one- 
dimensional temporal Fourier transform to the equation 

( +____ )(x, +Z, ( t) = 0, (31) 

we get (k2 + kz2 - w2/C2) S Z, t{(f} (kx, kz, o) = 0. (32) 

Equation (32) admits as a solution 

Yx, z, t{V}) (kx, kz, o) = a exp (- k} z0/4/?) 6[kz- (l- k'/4,8)] 8[{? + c(/?+ k c/4fl)], 
(33) 

where a is an arbitrary constant, and z0 > O. If we choose a = 2TC3/2 /(tc,), we find 
that 

c,(x,z,t) = eif(z+ct) exp{-_fx2/[z +i(z-Ct)]}/ (Zo+i(z- t)). (34) 

The solution (34) of the two-dimensional HWE shares properties with the LW 
solution (14) of the three-dimensional HWE. In particular, we can also form 

superpositions 
T d, #f(x, z, t) F(/), 

for ~I as given in (34), which will also be a solution of the two-dimensional HWE. 

Again, of practical interest for launching superpositions of (34), we should like to 
know the temporal Fourier transforms of the solution. If we apply an inverse two- 
dimensional spatial Fourier transform to (33) we obtain, 

(2cos (XV(4/I+C/l/CI)). r 2 cos (x/=(4f/lo+cAl/c)) exp [o(zo+iz)/c] exp [i(z0 +2iz)], if o < -cf, 
F{,} (X, z, W) = /(cl (+c1l/7) 

0, if o > -c/. 

(35) 

We note the singular nature of Ft {fr,} (x, z, o) (albeit integrable with respect to Pf) as 
( - (c/)_ in (37). The temporal Fourier transform in (35), as compared with (21), 
is somewhat simpler. In particular, because of the JO appearing in the latter, the 

temporal Fourier transform of the so-called 'modified power spectrum' (MPS) 
solution (resulting from a particular choice of F(/?) in (22) (Ziolkowski 1989)) cannot 
be found exactly, except for p = 0. This is somewhat of a nuisance when designing 
means to launch acoustic realizations of these three-dimensional superpositions. The 

trigonometric term appearing in (35) should alleviate this problem. 
Proc. R. Soc. Lond. A (1992) 
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3. Solutions of Laplace's equation in three dimensions 

We can apply the above method to find interesting solutions of Laplace's equation. 
If we apply a three-dimensional spatial Fourier transform to 

V2f(r) = O, (36) 
we get (k + k + k2) {} (k) = (37) 
We see that k2+(8i- 1k/4/)2_-(/f+ kz/4/f)2 = 0, (38) 
and this suggests a solution of the form 

Yr{ff}j (k) = E(kx) [ky + (f3 + kx/4f3)] {8[z + i(f3 + kx/4fi) + 8[k- i(3 + kx/4f)]. 
(39) 

If we choose S(kx) = aexp (-kz0o/4,/), with zo > 0 and a = (2)2 V/(C//f), then the 
inverse z Fourier transform exists only if Izl > 0. We get 

If-(r) = e ) exp [- _,x2/(Zoif zl I> O, (40) 
V/ (Z0+ Iz -iy) 

where we choose the branch cut of the square root function to lie along the negative 
real axis. It is readily verified that (40) is indeed a solution of Laplace's equation in 
the region lzl > 0. 

4. Solutions of the HWE in lossy media 

We apply the above method to show that lightly modified LW solutions exist for 
the equation governing wave motion in a lossy medium having permittivity e, 
permeability /,, and conductivity or (all assumed to be constants): 

{V2-e/ -. - (r,t) = 0. (41) 

Applying a three-dimensional spatial and a one-dimensional temporal Fourier 
transform to (41) results in 

(K2 + k - W2/C2-i iy) r, t{ f} (k, o) = 0, (42) 

where c2 = 1/eU and y = ior. With the a priori expectation of a solution that decays 
with time, throughout space, we consider the following transform domain function: 

r, t{})(j (k, () = -(K) 8[kZ + (p1- K2/43)] 8[ - c(ib - (p2 + K/4f))]. (43) 

In (43), we assume that , > O, 3(K) is arbitrary, and that p1,P2 and b are, as yet, 
unspecified real parameters. Substituting this function in the left-hand side of (42), 
and collecting real and imaginary coefficients of K2 and K0, we get 

{K2[1 -pl/2f--p2/2fl] + iKK2 [b/2,3 + y,c/4/] + [p2 + bb2 -p2 + ycb] 
+ i[2bp2 + YCp2]}r, t{(V} (k, W). (44) 

Thus the function (43) will represent a solution of (42) if the following constraints are 
met: 

(i) P1 p2 = 2/3; 
(ii) b= -yc/2; (45) 

(iii) p2-p2 = b2. 
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P2 

2 
(i I I(I I i) 

0 

--2 -1 0 1..... . 2... 

P1 

Figure 1. Parameter constraints on lossy medium wave equation LW solution, shown plotted for 
bl = 1 and 8 = 1. (i)p,+p2 = 2f; (ii) p2-p2 = b2 

We may demonstrate constraints (i) and (iii) graphically. Referring to figure 1 we see 

that, for any value of / > 0, we have the unique solutions 

p = /+b2/4/P, p2 = /f-b2/43P. (46) 

We note that, for f/ < libl- = -c, P2 becomes negative. In any case, with the above 
constraints, (43) is a solution of (42), and f > 0 is the only free parameter. We may 
apply inverse z and t Fourier transforms to (43) to get 

y{ ,fVfpj (K, Z, t) = 

- (K(K)/(2n)2) exp [iz(pl - K2/4)] exp [- ict(ib- (P2 + K2/4f/))], 

if t > 0; 

0, if t< 0. if t>0; (47) 

Finally, if we choose S(K) = -aexp (-K2Zo/4/,), where z0 > 0 and a = (21)3/2/P, we 
can apply inverse x and y Fourier transforms to (46) to get 

, )(p, z, t) = e-tlb exp [i(zp1 +ctp2)] exp {--/p2/[Zo +i(z-ct)]}/[z + i(z-ct)] (48) 

as a solution, for t > 0 of the lossy medium wave equation (41), where P1,P2 and b are 
fixed through (44). 

The lossy medium LW solution (47) may be compared with the non-lossy solution 
in (17). Aside from the damping factor, e-ctbl, (47) differs from (17) in that the term 

exp [i(zp1+ctp2)] can represent the modulation of the remaining term by a plane 
wave that travels either in the negative or positive z direction, depending on whether 

f > \lbl or /f < lbl. Regarding this modulating plane wave, we see that p1/27, 

corresponding to the wave number (i.e. number of waves per unit distance) is a non- 
monotonic positive function of pf. From (45) we see that p1 has a minimum (of Ibl) 
when f/ = lbl, and it is precisely this value of / which sets p2 = 0. At this value of f 
the modulating plane wave becomes stationary in time, with harmonic oscillations 
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along the z axis of propagation. The modulating plane wave has a phase velocity of 
cp2/p1 units per second, and tends to -c as / -- 0, is zero for f3 = 'Ilb, and tends to + c 
as f - oo. On the other hand, the modulating plane wave eiI(Z+ct) in (17) has a 
monotone increasing wave number, ft/2n, and a constant phase velocity c in the 

negative z direction. In both solutions the envelope (magnitude) of the solution 
travels with speed c in the positive z direction. 

We note that, as o -+ 0, b - 0, p1 and P2-> f3 and the lossy solution (47) reduces to 
the non-lossy LW (17), apart from constants. Thus the original LW is recovered for 

vanishing conductivity. 

5. Solutions of the Klein-Gordon equation 

Consider the Klein-Gordon equation: 

__V2(, 
{ 

2 v2 ? ,it2} 3f (r, t) = 0. (49) 

If we apply a three-dimensional spatial and a one-dimensional temporal Fourier 
transform to (48) we get 

K2 + ? - _2/C2 + l r2} ,r t{f} (k, C)) = 0. (50) 

Consider a transform domain function of the form 

or, t{{<} (k, o E(K) = ( [k + (p1 - K2/4/3)] 6o + c(p2 + K2/4/3)], (51) 

where, again, we assume that f > 0, S(K) is arbitrary, and that Pl and P2 are, as yet, 
unspecified real parameters. Substituting the function (50) in the left-hand side of 
(49), and collecting coefficients of K2 and K0, we get 

{K2[1 -p1/2/-p2/2/] + [pL-p2 + 12L]} r, t{Y?} (k, ). (52) 

Thus, (50) will represent a solution of (49) if the following constraints are met: 

(i) Pl +P2 = 2f; l 

(ii) P2-P2 = 2. ) 

The constraints in (52) are shown graphically in figure 2. For any value of / > 0 we 
have the unique solutions 

p ,= -I-2/4/3, P2 =-/ +,/4/. (54) 

For f/ < l,al, p1 is negative. If we choose '(K)= aexp (-K2o/4f/), where a=- 
(21)3/2/f, we find from (50) that 

p (p, z, t) = exp[i(zpl + ctp2)] exp {- p2/[Zo + i(z- ct)]}/[o + i(z- ct)] (55) 

is a solution of the Klein-Gordon equation (48), for any f > 0, with Pl and P2 given 
in (53). 

Comparing (54) with the original LW solution in (17), we see that in (54) the term 
representing the modulating plane wave, exp[i(zp + ctp2)], can travel in either 
the negative or positive z direction, depending on whether f/ > IltI or / < jljtl, 
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Figure 2. Parameter constraints on Klein-Gordon equation LW solution, shown plotted for 
/, = 1 and fl = 1. (i) p,+p, = 2f/; (ii) p2-p = 2. 
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Figure 3. Phase velocity/c as a function of f/ for the plane wave term in the Klein-Gordon LW 
solution, valid for u = 2. 

respectively. As noted in ?4, the term representing the modulating plane wave in 

(17), ei+z+ct), travels only in the negative z-direction, with wave number /f/2Tc and 

speed c. The modulating plane wave term in (54) has a wave number Ipl1/2n, which 
is zero if f = /al; this results in a standing wave modulation eictll. The phase 
velocity of the plane wave, in the positive z direction, in (54) is -cp2/pl 
-c(4/2 +2)/(4f2 -a2). As seen from figure 3, as /?PO+, this phase velocity tends to 
c, but as /fl -_, the phase velocity tends to infinity. As / - oo the phase velocity 
approaches -c, but as /->/,+, the phase velocity approaches minus infinity. For all 
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positive / we have clp2/p, I > c. Thus, as the wave number approaches zero, the phase 
velocity of the modulating plane wave becomes unbounded. The envelope 
(magnitude) of the Klein-Gordon solution (54), for all /f, travels with constant speed 
c in the positive z direction. 

6. Comparison of the time varying solutions 

An explanation of the differences between the homogeneous wave equation, lossy 
medium wave equation, and Klein-Gordon equation localized wave solutions (which 
we shall label V'.WE, ,fiMwE, and ~?KGE, respectively) is straightforward. For 
comparison purposes we shall neglect the arbitrary factor of 41i in the denominator 
of H)WE in (17) (which was only included to show agreement with the original 
reference), and also the decay factor, e-ctlb, in the QI.w solution. For purposes of 
launching realizations of these solutions we need be concerned only with their real 
parts. We shall explain the spatial distributions of the real parts of these solutions 
for fixed time, t (in figures 4, 5 and 6 we choose t = 0). For this purpose it suffices to 
consider the solutions for p = 0 and t = 0; we see from (17), (50), and (57) that the 
decay perpendicular to the z-axis is the same for all three solutions. From (17), (50) 
and (57) then, neglecting the effects mentioned above, we have 

Re {rHWf (0,z, 0)} = Re ?+ iz (56) 

Re {/PiIMw (0 z, 0)} = Re{xp [iz(fi+ b2/4f)] (57) '0 
zI z0 =+ Riz J 

Re{K (0f, 0( Z, 0)}1= Re {ex [iz(-1 A /43)] (58) 

where b = -yc = - r/V(,/e), from (45), and the t (permeability) term in b should 
not be confused with the a (mass) in the Klein-Gordon solution. For fixed b and z 
(say, conductivity in the lossy medium, and mass in Klein-Gordon equation, 
respectively) we see that for large f/, the terms exp(-izb2/4f/) and exp(izau2/4f/) 
will contribute very slow oscillations to (57) and (58) as z varies, as compared with 
the term eizI, which is common to all three solutions. If f, is very small, the terms 
exp (izb2/4f) and exp (-iz/t2/4f/) will contribute very rapid oscillations, as z varies, to 
the solutions (57) and (58), respectively. Thus for large f/ we expect (56), (57) and (58) 
to look similar, whereas for small f/ we expect (57) and (58) to oscillate more rapidly, 
as z varies, than does (56). Note, however, that for the value /f = 2a there is no 
oscillatory term in the p,,KG solution, (58). 

The approximate cut-offs for 'large' and 'small' ft oscillatory behaviour can be 
chosen from plots of the functions f/, f/+ b2/4f/, and f -,a2/4/f against the variable fl. 
Below the value f/ = IlbI the function f/+ b2/4/ begins to diverge from the line fi; 
below the value f8 = 2a the functions f/-a'2/4f becomes negative and diverges from 
the line fl. Thus for small values of the parameter f8 the real lossy medium and 
Klein-Gordon focus wave modes oscillate more rapidly, as z varies, along the 
propagation axis as does the non-lossy localized wave, which behaves more 'plane- 
wave' like for decreasing values of /. As f/ becomes large the functions + b2/4, and 
f,8-,2/4f, asymptote the line f and consequently all three solutions display 
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Figure 4 (a). Re 
{#bHWE} (p, z, 0), (b) Re 

{r/WE} (p, z, 0) and (c) Re {fr,,E} (p, z, 0) surfaces for 0 < p < 
10 cm and -10 < z-ct < 10 cm, with t = 0. We choose b = -1, a = 1, zo = 1, and = 0. 1. 

Figure 5. Legend the same as in figure 4, except here ft = 0.5. 

essentially the same oscillation along the propagation direction. Again, all three 
solutions exhibit the same degree of focusing, perpendicular to the propagation axis, 
as ft increases. 

This behaviour is shown in figures 4-6. In each figure we have plotted the surfaces 

corresponding to the real parts of the non-lossy medium, lossy medium, and 
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Figure 6. Legend the same as in figure 4, except here f = 5. 

Klein-Gordon LW'S as functions of p and z-ct (hence p and z, as we choose t = 0). In 
each of the three figures we choose lbl = 1 for the lossy medium LW, and #, = 1 for the 
Klein-Gordon LW. Figures 4-6 correspond, respectively, to fixing fl = 0.1, 0.5 and 5 
for each of the three LWS. The oscillatory behaviours of the various LWS along the 
propagation direction, as fi changes, is evident. 
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7. General discussion 

The method we have used is based on choosing the Fourier transform of the 
solution of a homogeneous partial differential equation as a generalized function 
which, when multiplied by the transform of the differential operator, is zero in the 
sense of generalized functions. If, for example, we consider the homogeneous wave 
equation (1), then its Fourier transform is given in (3), which we reproduce here: 

(k2 _ 2/C2) r, tJf} (k, o) = 0. (59) 
To get the non-separable LW solution in (17) we coupled the temporal and z spatial 
transform variables (o and kz) to the transverse distance (p) transform variable, K, 
through the two delta functions in (14). A more general solution of (56) is given by 

f(k, o) 8(g(k, o)), (60) 
where g(k, o) is a function which is zero only on (possibly part of) the surface k2 = 
(o2/2 in kx, ky, kz, o space. In the case of the localized wave solution, whose Fourier 
transform is given in (14), we see that the support of the delta function in (57), i.e. 
those points where g(k, w) is zero, consists of the intersection of the surfaces 

kz = f-K2/4 and o= -c(3+K2/4/). (61) 
If we consider the three-dimensional half-space - oo < kz, ( < co, K > 0, the surfaces 
in (58) represent to 'half parabolic' sheets at right angles. Their intersection line lies 
on the surface K2 + k2 - o2/c2 = 0. The function exp (- K2z/4f/) in (14) was chosen so 
that the inverse Fourier transform could be evaluated; it is responsible for the 
gaussian decay of the space-time solution perpendicular to the axis of propagation. 

Although this method makes the localized wave solutions seem natural, what is 
needed is a greater understanding of how choices of g(k, (o) and f(k, w) in (57) affect 
the space-time behaviour of the solution. With this understanding it will be possible 
to 'design' solutions (for launching) with desired characteristics. We have not 
attempted to study this more general problem in this paper. Rather, we have 
contented ourselves with showing how relatively simple transform domain 
manipulations can lead to the intricate, non-separable, localized wave solutions in 
space-time. The experiments conducted to launch superpositions of the localized 
wave solutions (outlined in the Appendix) have all relied on having an explicit 
expression for the space-time superposition. However, perhaps this is not necessary. 
Once the transform domain representation for the solution is chosen, whether or not 
the inverse transform can be evaluated in close form, if we can find (or at least 
approximate) the temporal Fourier transform of the solution (as we did, for example, 
in (21)) it may be possible to design passive or active filters whose frequency 
responses will guarantee the necessary space-time behaviour of the solution; that is 
to say, transform domain synthesis may be all that is necessary. For example, this 
might include some type of converter which could take a pulsed gaussian beam and 
transform it into a beam exhibiting the localized wave properties. On the other hand, 
perhaps some modulator could be designed to extract the necessary time signal 
components of a localized wave from one of the new ultrafast pulse sources, such as 
the photoconductive switches now under development by many groups. Of course, 
this is where a greater understanding of the duality between transform and space- 
time domain properties becomes crucial. However, in future experiments to launch 
various types of acoustic and electromagnetic localized waves these considerations 
may be important. 
Proc. R. Soc. Lond. A (1992) 

687 



R. Donnelly and R. Ziolkowski 

In attempting to launch superpositions of the LW solutions, one must be careful 
that the weighting (spectrum) leads to superpositions with finite total energy. As we 
saw in ?2, a superpositions of LW solutions of the homogeneous wave equation with 
spectrum F(fl) will have finite total energy if 

dfF dl(fi) 12/f o 

is finite. Although a similar analysis can be applied to lossy medium LW 

superpositions, the working is more involved and so here we merely give the result: 
a superposition of lossy medium LWS will have finite energy if the spectrum satisfies 

fidp/lf_ b IF(/)12 < cx. (62) 

If we compare this constraint with the non-lossy medium one, we see that the lossy- 
medium spectrum can have larger growth as fi-> 0, but its behaviour is more severely 
restricted near fi = Ibl = urc. A similar analysis can be applied to a superpositions of 
Klein-Gordon LWS to obtain a constraint on the superposition spectrum. 

Appendix A. Localized waves 

The homogeneous wave equation (1) has the moving, modified gaussian pulse 
(Ziolkowski 1985, 1989) 

,?(r, t) = eif(z+ct) e-fp2/V/47niV (A 1) 

as an exact solution. This is the scalar counterpart of the original FWM. The complex 
variance 1/V = 1/A-i/R yields the beam spread A = o+T 2/Zo, the phase front 
curvature R = Tz+ z/T, and beam waist W = (A/f)2. Because it can be associated 
with a source at a moving complex location (p = 0, z = ct+izo), (A 1) represents a 

generalization of earlier work by Deschamps (1971) and Felsen (1976) describing 
gaussian beams as fields radiated from stationary complex-source points. None the 
less, the solution (A 1) is source-free in real space. One usually specifies the real part 
of (Al) as the desired field since the resulting function has its maximum at (p = 0, 
z = ct). These results are also related to earlier work by Trautman (1962), who 
considered constructing new solutions of the wave equation by applying complex, 
inhomogeneous Lorentz transformations to known wave equation solutions. 
Referring to the Fourier transform (21), the parameter f is free and represents the 
lowest radian frequency lt)minl = PC contained in the solution, i.e. the plane wave 
term in (A 1) acts like a high-pass frequency filter. Similarly, the parameter lomaxl =: 

c/zo defines the 1/e roll-off point in spectrum of the solution, i.e. it represents the 
maximum radian frequency in the spectrum. 

The fundamental gaussian pulses (A 1) have either a transverse plane wave or a 
particle-like character depending on whether f8 is small or large (Ziolkowski 1989). 
Moreover, for all ft they share with plane waves the property of having finite energy 
density but infinite total energy. However, as with plane waves, this is not to be 
considered as a drawback. The above solution procedure has introduced an added 
degree of freedom into the solution through the variable f8 that can be exploited, and 
these fundamental gaussian pulse fields can be used as basis functions to represent 
new transient solutions of (1). 
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Q t1 

distance from its initial position. Pulse centre at (a) 0 km, (b) 942 km. 

Cip 

(a) (b) 

-1 J1 1 

wave. The square of the real part of 4711, is shown for the parameters 3 = 3.333 x 10-5 cm-' and 
Zo = 1.0 cm-. 

As illustrated in figure 7, the HWE solution (A 1) describes a gaussian beam that 
translates through space-time with only local variations. Figure 7 shows surface 
plots and the corresponding contours plots of Re {47if, (p, z, t)} with z0 = 1.0 cm and 

fl = 0.333 cm-. These plots depict this quantity relative to the pulse e centre locations 
z = 0.0 km and z = 9.42 x 102 km. Those distances correspond to the times t = 0 and 
t = n x 10-3 s. All of the field quantities plotted in this figure and in figures 8-10 are 
normalized to their maximum value at t = 0 and the direction of propagation is 
taken along the positive z-axis. These choices do not affect the generality of the 
following results. The transverse space coordinate p is measured in centimetres; the 
longitudinal space coordinate, z-ct, is the distance in centimetres along the direction 
of propagation away from the pulse centre z = ct. 

The fundamental gaussian pulses have several interesting characteristics. First, it 
is easily seen that (A 1) recovers its initial amplitude at very large distances from its 
initial position. In particular, 

Re [41izo0 fl(p = 0.0, z = ct)] = cos (2,/z), 

so that its initial amplitude is recovered for every z = nn/fl, n being a positive 
integer. The times in figure 7 were chosen to illustrate this behaviour. Secondly, with 
z0 fixed, the pulse becomes more localized with increasing values of fl. This effect is 
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direction of propagation. The square of the real part of 4itif is shown for the parameters 

o o10 

% 510 

f = 3.333 x 10-1 cm- and z = 1.0 cm-1. 

illustrated in figures 8-10 where [Re (47iVi,)]2 is plotted. Note that the scales of the 
axes have been varied to ensure adequate visualization of the major features of this 
quantity. The parameter ft is increased from 3.333 x 10-5 cm-1 in figure 8 to 
0.333 cm-' in figure 9 to 3.333 cm-1 in figure 10. These figures illustrate that for low 
values of / the HWE solution (A 1) looks like a transverse plane wave locally and that 
for large ft it becomes localized near the z-axis, the axis of propagation. Finally, for 
all ft the fundamental gaussian pulses share with plane waves the property of having 
infinite energy, but finite energy density. The infinite energy results because the 
variation of the magnitude of (A 1) with respect to the transverse coordinate yields 
a constant for each partial energy integral over a transverse cross section. However, 
as with plane waves, this is not to be considered as a drawback. The form of the 
solution (A 1) has introduced an added degree of freedom into the solution through 
the variable fl that can be exploited. As shown in Ziolkowski (1989) these 
fundamental gaussian pulses can be used as basis functions to represent new 
transient solutions of (1). 

Solutions to Maxwell's equations follow naturally from the scalar wave equation 
solutions. Letf be a LW solution of the scalar wave equation (1). Defining the electric, 
He = fn, or magnetic, Hh = fi, Hertz potential along the arbitrary direction n, one 
readily obtains fields satisfying Maxwell's equations that are TE or TM with respect 
to n. For instane, if a TE polarized fied d is desired, 

E= -ZoVxct Hh, 

H = V(Vv.H )- h,J (A 2) 

where Z0 = V/(uo0/e) and YO = V/(oe0/o) are respectively the free-space impedance 
and admittance. 

(a) LW transmission experiments 
The physics behind the LW effect is the coupling of the usually disjoint portions of 

phase space: space and frequency, due to the non-separable nature of the LW 

solutions. The component waveforms, and, therefore, their broad bandwidth spectra, 
are strongly correlated to each other, a self-similarity property inherent to the LW 

solution. This means that at any observation point one has different pulses arriving 
from different locations with different, but correlated, frequency content; i.e. the 
component waveforms arrive at the right place at the right time with the frequency 
components necessary to reconstruct the wave packet. A moving interference pattern 
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Figure 10. For large fi, the fundamental gaussian pulse is very localized along the direction of 
propagation. The square of the real part of 4niif is shown for the parameters f, = 3.333 cm-' and 
z0 = 1.0 cm-1. 

forms at enhanced distances as the individual waveforms continue to propagate 
away from their sources. From a practical point of view, a new type of array is 
necessary to achieve this effect; each array element must be independently 
addressable so that the appropriate waveform can be radiated from it. 

The LW effect has been verified with a set of three acoustic experiments using 
ultrasound in water. The first set of acoustic experiments in water was reported by 
Ziolkowski et al. (1989). Successful localization of a transient, pencil-beam of 
ultrasound launched from a LW pulse-driven array was exhibited. The array was 
linear, synthetic, and driven with the modified power spectrum (MPs) pulse. The next 
set of experiments simply extended the previous results to circular and square 
synthetic arrays. In both cases the pencil-beam generated by the LW pulse-driven 
array outperformed the corresponding beam transmitted by an array driven with a 
continuous wave (cw) tone burst. This was true when the array was uniformly 
illuminated (an effective piston which produces a naturally focused beam) and when 
it was shaded with a spatial gaussian taper (an initial transverse gaussian with the 
same waist as the MPS pulse). The beam quality was better than the highest 
frequency gaussian tested and avoided the inherent near-field variations associated 
with a piston generated field. 

The final experimental series involved an actual array of ultrasonic transducers. 
This experiment was designed to avoid some of the ambiguities that arise in 
comparing LW and cw driven arrays. In particular, the LW solutions are composed 
of broad bandwidth waveforms while traditional performance criteria are based upon 
cw, narrowband concepts. There is no special frequency that can be selected to 
define, for instance, a Rayleigh distance when several different broadband spectra 
are involved. Nevertheless, performance comparisons are desirable and a specific 
Rayleigh distance LR was derived for these comparisons (Ziolkowski & Lewis 1990). 

A 25-element, 5 x 5, square array was fabricated which is 1.05 cm on a side and has 
0.5 mm diameter disc elements (acoustic transducers) spaced on 2.5 mm centres. The 
small number of elements limits the number of cw configurations; there are too few 
elements for any effective shading or focusing. Six unique waveforms were designed 
for this array to achieve a 10-fold experiment; i.e. maintaining localization at least 
to 10 x L. For the maximum frequency of significance included in theese signals, 
LR w 2-3 cm. The signal design was accomplished with a numerical simulation of 
the experiment which accounted for the effects (time derivatives of the signals) of the 
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receiving transducer as well as those of the transmitting ones. Although the resulting 
time derivatives have no effect on a cw field other than multiplication by a constant, 
they greatly influence the result of the LW fields because of the inherent correlation 
between the spectra associated with the spatially distributed set of time signals (an 
effective coupling of space and time). Comparisons of the energy efficiency (energy 
received relative to the energy delivered to the array) and beam profile (half width 
at half maximum of the intensity profile) were made and confirmed more than a 10- 
fold enhancement of the Rayleigh distance of the beam. As in the synthetic array 
experiments, the pencil-beam generated by the LW pulse-driven array outperformed 
the corresponding beam transmitted by an array driven with an equivalent cw tone 
burst. The sidelobe levels of the LW pencil beam were greatly reduced, especially 
when compared to beams exhibiting grating lobes which are generated by driving 
this sparse array with much higher frequency cw tone bursts. The LW pencil beam 
is quite robust even with a variety of losses and perturbations inherent in the 
experimental apparatus. Recent analytical results (Ziolkowski 1992a, b) have 
extended the meaning of diffraction lengths for the radiated and measured field 

energies and intensities and of the transverse widths of these beam quantities to the 
broad bandwidth cases associated with these localized wave pulse-driven arrays. The 
theoretical and experimental results are in excellent agreement. 

This work was done when R.D. was a Visiting Scholar in the Department of Electrical and 
Computer Engineering at the University of Arizona, during the autumn of 1990. This work was 
supported by the Canadian Natural Sciences and Engineering Research Council Operating Grant 
OGPIN 011. 
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