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New solutions to the wave equation have been shown to exhibit enhanced localization and 
energy fluenee characteristics. The transmission and reception of these localized waves create 
unique problems, since they are essentially transient wave fronts in both time and space. 
Nonetheless, the ability to transmit wave energy through space with these interesting 
properties has many potential applications in a variety of applications areas. To realize their 
potential, new methods must be developed to analyze and process these waves. In this paper, 
approaches to design receiving arrays to reconstruct these special transient waves from noisy 
measurement data are discussed. 

PACS numbers: 43.60.Gk, 43.30.Wi 

INTRODUCTION 

The propagation of spatiotemporal acoustic signals in 
water, for instance, is characterized by wave-type pheno- 
menology satisfying the scalar wave equation. Recently, in- 
terest has been kindled into the possibility of transmitting 
wave energy in nonstandard manners. This has resulted 
from the discovery of pulses and their superpositions that 
exhibit enhanced localization and energy fluenee character- 
istics. 1-6 The design of arrays to receive these space-time 
pulses is the subject of this paper from a signal processing 
perspective. 

We call a pulse with these enhanced localization and 
energy fluenee characteristics a localized wave (LW). It has 
been demonstrated that LW solutions are possible in many 
real physical systems 3-s and that the fields launched by driv- 
ing arrays with these LW pulses exhibit these enhanced lo- 
calization and energy fluenee characteristics. 3'6-a This LW 
effect has been confirmed experimentally with an ultrasonic 
array in water. 7'a 

In terms of transmitting arrays, typical continuous wave 
(cw) driven apertures use various types of phasing schemes 
to achieve focusing and beamforming. On the other hand, 
the LW pulse driven arrays require independently addressa- 
ble elements--<tifferent time signals are launched from dif- 
ferent spatial positions in the array. The result is a spatially 
weighted set of spectra that creates a moving space-time in- 
terference pattern that moves away from the array. These 
LW pulse driven arrays have a vast number of potential ap- 
plications including microscopes and telescopes with ex- 
tremely high depths of field, low-loss power transmission, 
secure communications, remote sensing, and directed ener- 
gy weapons which explains the wide range of military and 
industrial interest. However, to realize the potential of this 
technology, one must be able to receive these signals as well 
as transmit them. This leads to a large class of new signal 
processing issues that we will begin to address below. 

To simplify the discussion, we will be concerned only 
with a specific class of the LW solutions to the scalar wave 

a• Present address: Dept. of Elec. and Computer Eng., Univ. of Arizona, 
Tuscon, AZ 85721. 

equation--the so-called modified power spectrum (MPS) 
pulse. This also limits the direct impact of our results pri- 
marily to acoustic wave propagation. Analogous vector 
wave considerations are necessary to achieve similar results 
for electromagnetic arrays and fields. Our goal is to design 
sampling arrays capable of reconstructing the MPS pulse 
from noisy measurement data. This problem is complicated 
because this pulse is a transient in both time and space lead- 
ing to a broadband response in both the spatial and temporal 
frequency domains. First, we will analyze the properties of 
this pulse that will be useful in limiting the class of arrays to 
be investigated. This will be discussed in Sec. I. In Sec. II, we 
will investigate various candidate array designs based on 
properties of the LW signals and evaluate their performance 
in reconstruction. We will include information on their per- 
formance in the noisy case as well. We will summarize our 
findings and make suggestions for future research efforts in 
Sec. III. 

I. LOCALIZED WAVES 

The pioneering work of Brittingham • first suggested the 
possibility of LW solutions of Maxwell's equations. His 
original "focus wave modes" represent Gaussian beams that 
translate through space with only local deformations. They 
are obtained in a straightforward fashion 2 by assuming a 
particular form of solution: 

•Pk (x,y,z,t) ----- e ik(z + Ct)G(x,y,z -- ct) ( 1 ) 
of the scalar wave equation in real space: 

q• • ( x•v.z,t ) c•x z + • • • (x,y,z,t) 

+ az • • (xd',z,t) c2 at • q)k (x,y,z,t) •- O. (2) 
This ansatz reduces the wave equation to a Schr'6dinger 
equation in the pulse center variable r = z -- ct. Introducing 
the transverse distance p = x/•-•, the resulting Schrr- 
dinget equation has the solution 

G(p,r) = e - go'/(•o + i•)/4rri(Zo + Jr). .(3) 
Thus the original wave equation (2) has 
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(I) k (p,z,t) eik(' + co e- •,'/1•, + a,- col = (4) 
4rri[zo + i(z - ct) ] 

as an exact solution. This pulse has the corresponding pa- 
rameters: beam spread ,4 = zo + r•/Zo, phase front curva- 
ture R = r + •/r, and beam waist w = (,4/k) m. This fun- 
damental pulse describes a Gaussian beam that translates 
through space-time with only local variations. Note that this 
solution has introduced an added degree of freedom through 
the variable k that can be exploited. For low values of k, the 
fundamental Gaussian pulses look like plane waves. More- 
over, for all k they share with plane waves the property of 
having infinite energy. As shown in Reft 2, these fundamen- 
tal Gaussian pulse fields can be used as basis functions to 
represent new transient solutions of the wave equation. The 
general acoustic LW solution 

f(p,z,t) = 40• (p,z,t)F(k)dk 

= I dk F(k)e- 
4rri[zo + i(z - ct) ] ' 

(5) 

where 

s(p,z,t) = p2/[ Zo + i(z - ct) ] - i(z + ct) (6) 
is an exact source-free solution of the wave equation. This 
representation, in contrast to plane-wave decompositions, 
utilizes basis functions that are more localized in space and 
hence, by their very nature, are better suited to describe the 
directed transfer of acoustic energy in space. The resulting 
pulses have finite energy if, for example, F(k)/xf• is 
square integrable. 

Clearly, different spectra F(k) in Eq. (5) lead to differ- 
ent solutions of the scalar wave equation. With a Hertz po- 
tential formulation one can adapt those fields to solutions of 
Maxwell's equations. 3 Many interesting solutions of the 
wave equation are created simply by referring to a Laplace 
transform table. One particularly interesting spectrum selec- 
tion is the modified power spectrum: 

I4rrifi (fik - b) • - 'e - a{a• - • k > __b F(k) = F(a) ' fi ' (7) 
b 

0, 0<k < •. fi 

It is so called because it is derived from the power spec- 
trum F(k) = k • - •e - • by a scaling and a truncation. This 
choice of spectrum leads to the modified power spectrum 
(MPS) pulse: 

f(p,z,t ) 1 I -beo = e (8) 
Zo + i(z -- ct) (s/fi + a) • 

[For the rest of this paper the MPS pulse,f(p,z,t), will refer 
to the real part of Eq. (8) and the direction of propagation 
will be taken along the positive z axis. ] Much effort has been 
concentrated on this MPS pulse because it has an appealing 
analytical form and its pulse shape can be tailored to a partic- 
ular application with a straightforward change in param- 
eters. This transverse behavior of this MPS pulse at the pulse 
center is essentially 

- ¾z/fiZo e , . 
f(p,z) 1,: •, --e Ytp,zJ [p = 0 .... ,' (9) 

The corresponding transverse spatial spectra, that is, the 
k• -k• spectrum at various distances z = ct, have been 
shown numerically to remain nearly invariant as the MPS 
pulse propagates. Along the direction of propagation z and 
away from the pulse center the MPS pulse decays as 
f• 1/[z• + (z - ct)2]. Hence, it is localized along the di- 
rection of propagation as well. 

Next, we analyze the properties of LW from a signal 
processing perspective. We investigate the temporal spectra 
of the MPS pulse, first at the peak of the temporal response. 
This point corresponds to the maximum of the response 
within the Gaussian, central portion of the pulse. Second, we 
will deal with the minimum or tail-dominant part. 

We first categorize the overall spectral analysis of the 
MPS pulse as viewed through a finite linear aperture whose 
diameter is 2.5 m. We choose a line array of 101 elements 
spaced I cm apart in order to provide enough spatial resolu- 
tion to observe the major features of the MPS pulse as well as 
its spectral content. A simulation using Eq. (8) was per- 
formed at a spatial-temporal sampling interval (Ap = 0.01 
m, At = I ps, z = 0) with the results shown in Fig. 1. In Fig. 
1 (a) we see the MPS pulse, f(p,z,t)I• = o, observed through 
the 2.5-m linear aperture. Note that this finite aperture trun- 
cates the tails of the MPS pulse. This phenomenon is also 
observed in Fig. 1 (b). Here, we see the Gaussian-like pulse 
(center) and plane wave-like tails. The wave number-fre- 
quency spectral domain also reveals some interesting prop- 
erties in Fig. 1 (c) and (d). We again observe a Gaussian-like 
portion of the spectrum (center) in conjection with low- 
amplitude tails. We also note that the overall spectrum is 
bounded by the rectangle [ q- 20 m- •, + 5 MHz] with 3- 
dB bandwidth of [ + 2 m - •, + 0.5 MHz]. Thus we see that 
the MPS pulse is broadband both temporally and spatially. 

Next, we categorize the specific spatiotemporal proper- 
ties of the MPS pulse. In particular, the MPS pulse is com- 
posed of different time signals at different spatial locations. 
Thus we should select sample time (space) series at repre- 
sentative spatial positions and analyze their particular prop- 
erties. We have chosen the "maximum" and "minimum" 

pulse signals in both space and time and have observed their 
contributions to the overall spectrum. The maximum signal 
corresponds to the spatial component MPS time signal at 
which the maximum amplitude is achieved, while the mini- 
mum corresponds to the signal in the tail region where the 
amplitudes are the smallest ones sampled by the array. The 
results are shown in Fig. 2. In Fig. 2(a) the pulses that are 
maximum both spatially and temporally are given along 
with their associated spectra. The latter confirm the 3-rib 
bandwidth of the 2-D wave number-frequency spectrum. In 
Fig. 2(b) the pulses that are minimum signals both spatially 
and temporally are given along with their associated spectra. 
Both the temporal and spatial spectra appear bandpass in 
structure with the temporal bandwidth of about 1.0 MHz 
and center frequency of 1.5 MHz, while the spatial spectrum 
indicates a bandwidth of 1.5 m - • with a center frequency of 
4.0m I. Further examination of the tail-snapshots closer to 
the Gaussian-like center pulse reveals similar bandpass 
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FIG. 1. MPS pulse spectra: (a) Space-time 
MPS pulse. (b) Space-time MPS pulse con- 
tour. {c) MPS frequency-wave number 
spectrum. (d} MPS frequency-wave num- 
ber contour. 
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FIG. 2. MPS maximum and minimum pulse signals: (a) Maximum tempo- 
ral and spatial signals and spectra. (b) Minimum temporal and spatial sig- 
nals and spectra. 
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structure with varying center frequencies and bandwidths. 
We summarize these properties of the MPS pulse in Table I. 

Next we analyze the correlation properties of the LW 
solutions assuming a purely random (white) noise field. In 
particular, we define a random function, say f, as a one-di- 
mensional, time-varying, random field in three-dimensional 
Euclidean space and time such thatf(x,.v,z,t) =f(E,t). The 
corresponding spatioternporal correlation function is defined 
by 

R• (E•o•,t,J): = E(f(p,t)f* (•,•) }, (10) 
where {-} is the expectation value over all space-time. For 
small spatial distances or aperture sizes we make the as- 
sumption of wide-sense stationarity and homogeneity. ø This 
leads to simplifications that 

Rf•(t•,t,•) ---- R•r(•,r): = E{f (p_,t) f*(p_ + •,t + r)}, 
(]l) 

where r = t- • and • =•- •. Thus the spatiotemporal 
correlation function in the stationary case is a function 
between two points and only depends on the time and space 
differences between them. Note that for homogeneous and 
stationary processes the Wiener-Khintchine theorem holds; 
and we have the corresponding power spectrum defined by 
the Fourier transform pair (continuous or discrete): 

P•r(tc, f): = F [Rs(•,r) ], 
(12) 

= F - ' ], 
for •, f the respective wave number and temporal frequen- 
cies. 

If the spatially and temporally sampled wave is observed 
through a discrete 2-D array, then p--,p/ and 
f{E•,tk )-.f(t•t,z, tk ). Thus the corresponding s_patiotem- 
poral correlation function i_s given by Rjf(t•t,t•t,t•,tk ) and in 
the stationary case by R•r(•,rn). 
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TABLE I. MPS pulse characteristics: a = 1 m, b = 600 m- i, a = i, B = 300, zo = 4.5 X 10- 4 m, c = 1500 m/s. 

Theory 
(Infinite aperture) 

Characteristic Boundary Amplitude 

Simulation 

( 2.5-m aperture ) 

Max Min 

Near zone (z </•/2b} < 0.25 m 
Intermediate zone (z•t•/2b} --0.25 m 
Far zone (z > •a/2 } > 150 m 
Amplitude decay (@ l/e) (p =/l•zo/b) 0.15 m 
Waist ( @ 150 m} (to =/•z•/b) 1.5 cm 
Temporal center frequency {Fo) 0.27 MHz 
Temporal 3-dB bandwidth (F•,,•,) 0.5 MHz 
Highest temporal frequency (Fhish) 0.53 MHz 
Lowest temporal frequency (F•o•,) 478 Hz 
Spatial center frequency (%) 0.32(l/m) 
Spatial 3-dB bandwidth (•,•) 0.32(l/m) 
Highest spatial frequency (n•a,s• . 0.32 (l/m) 
Lowest spatial frequency (•ow } 357(l/m) 
Highest wavelength (2 •,,8• ) 3.14 m 
Lowest wavelength (A •o,, ) 2.8 • 10- • m 
Highest Nyquist sampling (dh,g h ) 1.57 m 
Lowest Nyquist sampling (d•o•,) 1.42X I0 -3 m 

f= ! 
0 <f< 1 
f< 1/150 
f= l/e 

(constant) 
(period = nrr/4 ) 
(l/z) 

same same 

same same 

same same 

0.04 m 

0.2 MHz i.5 MHz 
0.2 MHz 1.0 MHz 

0.2MHz 2.2 MHz 

0 1.2 MHz 

12(I/m) 4.0(l/m) 
12(l/m) 1.5(l/m) 
12{ l/m) 4.5(l/m) 

3.0( l/m 
0.083 0.33 m 

--- 0.22 m 

0.04m 0.17m 

--- 0.11m 

In order to estimate this spatial correlation function at 
each snapshot tk, we use the estimator 

Rff(•,tk) = 1 •v(• N(•) t_-• f(gt'z'tk)f(dt + •,z, tk), (13) 
where N(•) is the number of sensor pairs separated by the 
distance vector •. If we constrain the arrays to be uniform, 
then the spatial correlation function can be estimated using 
fast Fourier transform techniques. Additionally, Eq. (12) 
holds true. With these estimators and concepts in mind, we 
will now analyze some of the spatial properties of the MPS 
pulse. 

We have used apertures larger in size than one would 
use in practice for a given MPS pulse to allow for a complete 
characterization of the corresponding spatial correlations 
and spectra. The MPS truth pulse is again observed through 
a uniformly spaced line array of 101 sensors but here with a 
1.0-m-diam aperture. The space-time wave at z = 0 for I01 
temporal samples at a uniform interval of At = 0.2/as is 
shown in Fig. 3 (a). Since the line array is uniformly spaced, 
we can use 2-D Fourier transform tec,.hniques to estimate the 
spatiotemporal correlation function R• (•,r) a,,nd the corre- 
sponding wave number-frequency spectrum Pff(E0r). The 
results for this case are shown in Fig. 3(b). As expected, 
most of the correlated transient energy of the MPS pulse 
(passing through this aperture) is concentrated in the Gaus- 
sian pulse region. In particular, the correlations lie primarily 
between •= ___ 0.1 m [see contours in Fig. 3(c)] with the 
corresponding wave number-frequency spectrum lying be- 
tween [ ___ 20 m - •, 0.5 MHz]. Recall that the waist of this 
MPS pulse is 0.015m. These results are similar to those ob- 
tained previously for the deterministic MPS pulse and spec- 
trum. 

To design an array to receive an LW signal such as the 
MPS pulse, we must determine primarily its spatial frequen- 
cy content over the spatial extent of the array. We analyze 
the spatial spectrum exclusively by estimating the spatial 
correlation at a gioen snapshot in time, that is, we estimate 

A A 

Rff(•,t• ) and Pff(_•,t• ) at each snapshot t•. The results of 
the spatial estimation for the line array are shown in Fig. 4. 
Both the spatial correlation and the energy spectrum at each 
snapshot are displayed. Note that most of the correlated en- 
ergy is again concentrated within q- 0.1 m, which represents 
the Gaussian center region of the MPS pulse for broadside 
incidence. Sensors placed outside this region will tend to 
sample the MPS tails. The corresponding wave number 
spectrum indicates that most of the spectral energy is bound- 
ed in wave number below q- 20 m - • 

This completes the discussion on the analyses of the spa- 
tiotemporal properties of the MPS pulse. In the next section 
we will illustrate how these properties can be used to design 
various arrays to receive LW pulses. 

II. SAMPLING ARRAY DESIGN 

A. Design constraints 

The design of an array to receive a localized wave is a 
difficult problem because of its spatially dependent, tran- 
sient nature. One can view this problem as one of designing a 
spatial filter to pass certain frequencies and rejecting others. 
However, as the analysis of the previous section showed, the 
frequency wave number spectrum of the MPS pulse is quite 
complex and varies at each position. 

One approach might be to select a sensor arrangement 
producing a spatial pattern with enough spatial bandwidth 
to pass the desired pulse and then weight it at each time 
snapshot with the actual function. This means take 
f(Pt,Z, tn ) =f(p,z,t) [a = .•, - ,• so that at each snapshot t• the 
weight at location Pt is, in fact, f(pt,z,t • ). Thus at the next 
time instant t• + •, the weight becomesf(pt,z, tn + • ). Unfor- 
tunately, for this scheme to function properly, the pulse 
must be precisely aligned and its onset detected. 

In this section, we will consider a more conservative 
approach, the design of spatial filters for certain bandwidths. 
We will introduce the concept and the design of sampling 
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FIG. 3. MPS pulse correlation/spectrum 
for L = 101 element line array with I-cm 
spacing: (a) Space-time pulse for I-m aper- 
ture. (b) Spatio-temporal correlation. (c) 
wave number-frequency energy spectrum. 

arrays to distinguish them (in principle) from the typical 
designs of narrow-band antenna arrays for plane or spherical 
wave fronts. [ In this paper, we are concerned with the spa- 
tial sampling of the MPS pulse for reconstruction purposes. ] 
As stated previously, our main goal is to investigate designs 
that can be used for the reception of localized waves. 

The constraints on sampling array designs for localized 
waves are based on the property that they minimize spatial 
aliasing and enable reconstruction of the LW at the receiver. 
We limit our discussion to designs specifically for the MPS 
pulse. Recall the following properties of the MPS pulse that 
will affect our design: ( 1 ) transient wave (nonplanar wave 
front); (2) broadband spatiotemporal spectrum ([ + 20 
m -• , + 0.5 MHz] ); and (3) circularly symmetric wave 
function [f(x,.V,z,t) = f(p•z,t) ]. 

From our previous analysis of the MPS pulse at z = 0, 
we noted that the temporal frequency response appears low 
pass with its 3-dB cutoff located near 0.5 MHz. Typically, 
we expect to observe this pulse through a receiving array 
somewhere along the axis of propagation. Therefore, selec- 
tion ofz = 0 as a spatial position to investigate is not a good 
choice. Through analysis it has been shown • that the tempo- 
ral spectrum of the MPS pulse is bandpass with low- and 
high-cutoff frequencies of f• = bc/2rrlS' = 477.5 Hz and 
f• = c/2rrz o = 0.53 MHz. In water, we have a propaga- 

tion velocity of c---- 1500 m/s; hence, the corresponding 
wavelengths (•t = c/f) are: ;t•iah = 3.14 m and 
2[,o,• = 2.83X I0- • m. Now, if we translate these wave- 
lengths to Nyquist sampling (dx<A/2), then we see that the 
constraints on the sensor spacing to reconstruct the MPS 
pulse must be: d•gh • 1.57 m and d• < 1.42X 10 -3 m. We 
also note that using this criteria satisfies the Nyquist sam- 
pling for both the maximum and minimum pulses since the 
corresponding wavelengths are: /t.,,•----0.083 m and 
'•min = 0.33 m implying g•o,• g/•.• •</t,.i. •/•high' We have 
summarized all of these properties in Table L 

B. Array design concepts 

With these constraints of symmetry and spectra in 
mind, we have investigated the design of two-dimensional 
(2-D) sampling arrays situated along the axis of propaga- 
tion (z axis). Since the MPS pulse is circularly symmetric, 
sensors placed on different radii emanating from the origin 
will uniquely sample it. However, in a more practical sense, 
when noise is present it becomes necessary to have sensor 
redundancy to help enhance signal-to-noise ratio (SNR). 
The sampling array design procedure we have employed is to 
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FIG. 4. MPS pulse spatial correlation spec- 
trum for L = 10l element line array with 
1.0-cm spacing at each snapshot: (a} spatial 
correlation. (b) wave number energy spec- 
trare. 

(1) select the candidate design; (2) determine its spatial 
bandwidth properties; (3) reconstruct the LW from its spa- 
tial samples; and (4) compare the reconstructed LW with 
the "truth" LW simulated by a line array with identical 
spacing. 

For our reconstruction problem, we simulate the MPS 
truth pulse using the parameters of Table I with a sampling 
interval of AT= 2X 10 7 s and an aperture old = 0.1 m 
using a line array ofœ = 101 sensors spaced at d = 0.001 m 
apart. The results are shown in Fig. 5. We will use the truth 
pulse to assess the reconstruction performance. 

First, let us consider some "standard" 2-D array designs 
and analyze their spectral and sampling properties. We will 
then proceed to some more customized MPS designs. To 
account for our practical experimental and fabrication capa- 
bilities, we constrain the aperture size to D = 0.1 m and the 
number of sensors to L = 121. 

If we were to select a 2-D planar array design with uni- 
form spatial sampling interval (Ax,Ay), then the MPS pulse 
is sampled as 

f( xm ,y,,z,t ) = f( rnAx, nA y,z,t ), 

MPS pulse 

...... ,;...,;,.'• 
ß •" %-'.'. ':•.;.',.'• .•gttl# 

..... :.., ,: 

Fourier transtorre 

0.05 

o 0 

-0.05 

MPS pulse 

0 

Time 

5O 
20 FFT contour 

-5 0 5 10 

Frequency (Hz) x10 s 

FIG. 5. MPS pulse truth simulation for 
L = 101 element line array with 1.0-mm 
spacing. 
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for a general 2-D rectangular sampling array of length L. If 
the sampling is uniform and equal in both x and y, that is, 
Ax = Ay = A, and if the intersensor spacing d of the largest 
linear dimension D of the aperture is given by 

D= (L-- 1)A, 

then the sampling of the signal over the array is 

limit is bounded by the precision in fabrication. One of these 
frequency independent designs is the log-periodic array. It is 
so named because it has a response that is periodic with the 
logarithm of the frequency. A variation of our coincentric 
circular design is the log-periodic concentric circular array. 
The elements in this array are located in positions whose 
radii are selected according to the following function TM 

p.•=po ar•, m=0,1 ..... N s--l, (17) 

f(x•,y.,z,t) =f(mA,nA,z,t), m,n = 0,1 ..... L -- 1. 
(14) 

wherepo is the minimum required Nyquist spacing, N o is the 
number of distinct radii (circles), and 

In particular, if we were to choose to design an 11 X 11 
square array with d = 0.01-m spacing, the associated Ny- 
quist sampling d•d•ow = 0.0014 m. Therefore, some spatial 
aliasing would occur in this case. On the other hand, if we 
were to use hexagonal sampling •3 with the same array size 
and element spacing, the signal samples 

f( x.y .,z,t ) = f( 2rn Ax + 2nAx, rn A y -- n A y,z,t ) . 

Choosing Ax = Ay = A, we would then have 

f(x•,y.,z,t) =f[2A(m q- n),A(m -- n),z,t ], 

m,n = 0,1,...,L -- 1. (15) 

Both designs satisfy the spatial bandwidth requirement, that 
is, the passband of + 20 m- • is satisfied. Another approach 
is to directly sample in radius (p) and place any redundant 
sensors on circles defined by each radii. The resulting array 
is called the coincentric circular design. In this case we see 
that the sampled MPS pulse is given by 

f(p..z,t), rn = 0, I,...,N• -- 1, n = 0,1 ..... L. _ i' 
(16) 

where N s is the number of distinct radii (circles) and L., is 
defined as the number of sensors in the ruth circle. Note also 

that the total number of sensors is given by 

In the case of a deterministic signal (noise free), one has 

f(p.,.,z,t ) = f(p•o•,t ) = '" = f(PmL., - • ,z,t ). 

This indicates the redundancy available in the coincen- 
tric circular design that will be exploited in signal processing 
to increase the SNR in a noisy environment. 

These square, hexagonal, and eoincentric circular ar- 
rays possess reasonable patterns to pass much of the MPS 
energy. However, the MPS pulse is very broadband; and we 
must investigate designs that exhibit even broader response 
patterns. 

Arrays that theoretically have no bandwidth limitation 
are called frequency independent. The low-frequency limit is 
determined by the size of the array while the high-frequency 

The distance pN• is the half-aperture length (D/2). It has 
been shown (see Followill m ) that it is desirable to select an 
odd number of sensors per circle starting with a sensor at the 
origin and increasing the number of sensors per circle until 
the total number available are utilized. For our L = 121 ele- 

ment design, the resulting log-periodic coineentric circular 
pattern is shown in Fig. 6(a). Again note that we maintain 
the redundancy properties of the coincentrie design, but ob- 
tain a much broader pattern. 

Our final design is also considered to be frequency inde- 
pendent. It is the so-called log-spiral array. In this design we 
distribute the sensors in the array logarithmically on a spiral 
with the initial sensor location at Po (above) based on the 
minimum Nyquist spacing and the largest Pt• determined by 
the maximum allowable aperture dimension D. The equa- 
tions for this design are given by 

p•=e •'", m=O, 1 ..... L--l, (18) 
with 

qS• = lnpo/b + (m'-- 1)A•, 

and 

A• = [1/(L- 1)]ln(p•/po), 

wherep is the radius from the spiral origin to the sensor. The 
terms Po and PL are bounding circles of the array defining 
(according to the Nyquist sampling constraints) its mini- 
mum and maximum radii, respectively. The constant b is the 
spiral rate constant: b = (l/p)(dp/dq•). 

Note that this log-spiral design offers some desirable 
features based on the MPS properties. Besides the broad- 
band response shown by the pattern in Fig. 6(b), it enables 
"unique" sampling of the MPS pulse. This sampling proper- 
ty is very useful in a high SNR environment. Many sensors 
are located around the origin providing a large number of 
samples of the Gaussian-like center portion of the pulse 
whereas fewer sensors are located along the array extrem- 
ities to sample the low-frequency MPS tails. 

C. Array sampling properties 

Having completed the discussion of the various candi- 
date designs selected, we now consider the capability of these 
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For given sets of sensor coordinates ({X m },{Yn }) We then 
have 

a,,=p•, for {x,•},{.v,} Vrn,n•_lo. 
Mathematically, this means that all redundant sensors at 
locations ({x,,:},{y, }) lie in the index set, I//of unique sen- 
sors having the same radiusp#. From a sampling and recon- 
struction point of view, we are only interested in the unique 
samples of the MPS pulse. Therefore, we only require the set 
of unique radii {P0} for reconstruction. Thus in effect we are 
actually constructing a 1-D line array perpendicular to the 
axis of propagation with enough spatial bandwidth to 
uniquely sample the MPS pulse in p. Note that we are no 
longer uniformly sampling this function. For instance, con- 
sider the square array shown in Fig. 7. In Fig. 7(a) the full 
square array, including redundant sensors and the corre- 
sponding sampled MPS function, are shown. The redundant 
sensors result in bands of time signals that are identical. Ex- 
traction of the unique samples from the array (neglecting 
the symmetrical portion of the function) leads to the results 
shown in Fig. 7(b). It illustrates the nonuniform spacing of 
the sensors (displayed on a line at 0) and the corresponding 
signals. Note that of the 121 sensors in the square array only 
20 provide unique spatial samples in radius. In contrast to 
the square array, the log-spiral design is shown in Fig. 6(c). 
All 121 sensor signals are given because each sensor in that 
design provides a unique sample of the MPS pulse. More- 
over, it has a large number of samples of the Gaussian-like 
center portion of the MPS pulse. In contrast, the square ar- 
ray samples the tails more densely. 

The other arrays discussed above yield similar results. 
In particular, the number of unique samples provided by 
each array is: log spiral ( 121 ), square (20), hexagonal (15), 
log-periodic circular ( 11 ), and coineentric circular ( 11 ). 
Next we must consider the reconstruction problem using 
these arrays. 

FIG. 6. MPS pulse array design: (a) Log-periodic circular array and pat- 
tern. (b) Log spiral array and patternß (el MPS pulse sampling using log 
spiral array. 

arrays to reconstruct the MPS pulse from simulated data. 
Since most of the arrays selected have some design redun- 
dancies, it will only be necessary to use the unique (in radi- 
us) samples for reconstruction. In particular, since the MPS 
pulse is circularly symmetric, any 2-D sampling array will 
satisfy the relation 

f( x,,y, ,z,t ) = f(Pm• ,z,t ), 

and 

m=0 ..... L, -- 1, 

n = 0 ..... L• -- 1, 

rn = O,...Lx -- 1, 

n =0 ..... Ly -- 1, 
where the total number of sensors 

(19} 

L = L• X L•. 

.-O.lO 

•) 

)' I,,05 

;1o 

FIG. 7. MPS pulse sampling with the square array: (a) redundant sam- 
pling. (b) Unique (radius) sampling. 
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D. LW reconstructions 

The problem of reconstructing the MPS pulse from a set 
of discrete spatial samples is the prime motivation in design- 
ing the samp•ng arrays. More formally, we would like to 
determine anf(p,z,t) such that the reconstruction error 

e(p,z,t ) = f(p,z,t ) -- •(p•,t ) Ip - •,., 
is minimized. In the ideal case, the signal (according to the 
sampling theorem) is "exactly" reconstructed from its sam- 
pled values using cardinal interpolation (see Candy l' ) as 
long as Nyquist sampling can be achieved. Unfortunately, 
this solution requires an infinite aperture or a spatially band- 
limited signal, neither condition being satisfied by the theo- 
retical MPS case under consideration. 

Our reconstruction approach is to develop a 1-D spatial 
interpolation that sorts through available samples for the 
preselected interval and linearly interpolates between miss- 
ing samples. A linear interpolator to obtain uniform spatial 
samples (temporal sampling is already uniform) is given by 

•(p,Z,t)=f(p,,z, tk), l=O ..... Np-- !, k=O ..... N,-- I. 
(20) 

[Here, we always assume that any 2-D array design has been 
"resampled" to remove sensor redundancies providing N• 
unique spatial samples. ] 

For fixed z, tk the interpolator is defined by 

• (i): =f [Pt (i),z,t• ]. 
Explicitly, the linear algorithm is: select Ap(i), then 

pt(i+ 1) =pt(i) + Ap(i), 
(21) 

•(i+ 1) =•(i) +(aft •pt(i+ 1), i=0 ..... Art -- 1, 
\apt/ 

where 

Aft = f(Pt,z, t ) -- f(Pt- • ,z,t), 

N, = 
and 

ft(O) =f(Pt-, •.,t), f•(N/) =f(pt,z,t), 

pt(O) =p•_ •, pt(N/) =Pt. 

In this scheme, a desired spatial sampling interval Ap(i) is 
preselected over the entire aperture length. Those samples 
coinciding with this sampling criterion are used directly; the 
samples missing those points are linearly interpolated. In 
this way we achieve a uniformly sampled spatial-temporal 
function from the nonuniform array samples given by 

•e[p(i),z,t•], i=0 ..... N•-- 1; k=0 ..... N,-- 1. (22) 
The corresponding wave number-frequency spectrum at a 
given distance away from the array z is estimated using the 2- 
D Fourier transform, that is, 

F [K. (m),11, (n),z] 

•' ..... --j[rp(m)i + 11t(n)k ] = • •'. j[p•t•,z,t•l e , (23) 
i•O 

where trp(m): = (2rr/N•)m and 11,(n): = (2rr/Nt)n. 
Some of the reconstructions and corresponding spectra are 
shown in Figs. 8 and 9. Statistically, we can quantify the 
reconstruction error by its mean and root-mean square given 
by 

m• (p,r,t) = E [e(p,z,t) ], 

(24) 

ß = •E [e(p,z,t) •] -- {E [e(p,z,t) 1)•. 
These terms are estimated using the usual statistical sam- 
pling techniques. The error is calculated by comparing the 
reconstructed pulse to the "truth" pulse generated at the 
same spatial sampling interval used by the interpolator. 

A typical reconstruction estimate for the square array is 
shown in Fig. 8. Here, we see the reconstructed MPS pulse. 
Comparing with the truth pulse in Fig. 5, we note the simi- 
larity in structure. Observing the error surface and the corre- 
sponding Fourier spectrum, we first note that the majority of 
the error for the square array occurs in the reconstruction of 
the Gaussian-like portion of the MPS pulse. This is located 
at the center of the error contour in Fig. 8(c) and corre- 
sponds to the high frequencies of the wave-number spectrum 
contour. In contrast to this square array reconstruction, we 
observe the log-spiral array results in Fig. 9. As expected, 
since the log spiral has many unique spatial samples of the 
Gaussian-like portion of the MPS pulse, most of the associat- 
ed reconstruction error is located in the tail regions. This is 
illustrated by the error contour in Fig. 9(c) at the upper and 
lower parts of the figure. The corresponding error spectrum 

4 6 6 10 
Time x10 • 

{c} Ermr: mean O.OQQ2 R• 0.01 

-2 0 2 

Time (s) xl G -4 

w q•ctrm• 

Wavm•mb• F•I. u•y 

Error Four• .•ct rum 
5• 

-lO -5 o 5 lO 

Frequency (Hz) x10 • 

FIG. 8. MPS pulse reconstruction from a square sampling array. (a) Re- 
constructed MPS pulse and corresponding 2-D Fourier spectrum. (b) 
Pulse and spectral contours. (c) Error and error spectrum contours. 
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FIG. 9. MPS pulse reconstruction from a log-spiral sampling array. (a) 
Reconstructed MPS pulse and corresponding 2-D Fourier spectrum. (b) 
Pulse and spectral contours. (½) Error and error spectrum contours. 

Recall that N o is the number of unique spatial samples (in 
radii). After processing, the reconstruction is performed as 
before using the interpolator. The results for the square ar- 
ray are also shown in Fig. 10(c) for comparison with the 
deterministic simulations of Fig. 8. More sophisticated inter- 
polator designs can be achieved using the actual model [ Eq. 
(8) ] to predict between samples, but these represent work 
for the future. 

III. SUMMARY 

Various designs of arrays to sample and reconstruct 
transient waves from noisy measurement data have been de- 
veloped. Particular applications of these sampling array de- 
signs were applied to LW pulse reconstruction in noiseless 
and noisy environments. Using properties of the particular 
wave function under investigation, it has been shown that 
log-periodic designs coupled with a spatial interpolation 
scheme can satisfactorily reconstruct the desired wave. 
When noise is present, it was shown that redundant sensors 
can be used to improve the SNR and therefore array perfor- 
mance. Future work will investigate coupling the advan- 
tages of both design concepts into distinct sets of subarrays 

•) 

O, lO• indicates that most of the error energy occupies the lower - 0 

frequency part of the wave-number spectrum (sec Fig. 9). i • I Statistically, the mean and rms reconstruction error statis- 

tics indicate superior performance by the log-spiral array •0•0,' over the square array, since m•:(3X 10-6<200X 10 -6) 
and a•:(8.5 X 10-4<95X 10-4). 

When noise is present, however, it is necessary to per- •,, 
form some signal processing to achieve satisfactory perfor- 
mance. For instance, observe in Fig. l0 the performance of 
the square array when additive Gaussian noise is introduced 
at 45 dB SNR. The noisy measured MPS pulse is defined by 

y(p...,z, tk ) = f(pm.,z, tk ) + v(pm...z, tn ), (25) 
for 

rn=0,...,Lx--1, n=0 ..... L•--I, k=0 ..... N,--I, 
wherey is the field measured at sensor location (x,,,y,) cor- 
responding to radiusp,,, at z and time (snapshot) t•; f is the 
deterministic but unknown LW function spafially sampled 
at p,•,; and v is the zero-mean, Gaussian random noise field 
with covariance 

The signal-to-noise ratio is then defined by: 
SNR: = (peak)2/•. Clearly, the reconstruction has severe- 
ly deteriorated when noise is present. 

The redundant sensors in the array designs can be used 
to achieve an improvement to overall SNR. If we perform 
signal averaging spatially over the redundancies, then the 
processed signal is given by 

f(p/,z,t• ) -- 1 r•- i L,.- , 
k=0 ..... N, -- 1, /=0,...No -- 1. (26) 

aooaooooooo o 

x•Ml•(m) x-c(xx'dlnste (m) 

Frequency 

FIG. 10. MPS pulse reconstruction from a square sampling array of noisy 
measurement data (SNR = 45 dB) using signal averaging. (a) Array 
and 2-D unique sensor sampling. (b) Total measured and signal average 
dam. (c) Reconstruction and 2-D Fourier spectrum. (d) Reconstructed 
(interpolated) signal and spectral contours. 
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in a larger array thereby achieving the optimum perfor- 
mance. We will also try to demonstrate that improved per- 
formanee can be attained by using interpolators incorporat- 
ing the wave model '2 into the reconstruction process even in 
a noisy environment. 
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