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THE ASYMPTOTIC POINCARE LEMMA
AND ITS APPLICATIONS*

RICHARD W. ZIOLKOWSKI" AND GEORGES A. DESCHAMPS

Abstract. An asymptotic version of Poincar/fs lemma is defined and solutions are obtained with the
calculus of exterior differential forms. They are used to construct the asymptotic approximations of multidi-
mensional oscillatory integrals whose forms are commonly encountered, for example, in electromagnetic
problems. In particular, the boundary and stationary point evaluations of these integrals are considered. The
former is applied to the Kirchhoff representation of a scalar field diffracted through an aperture and simply
recovers the Maggi-Rubinowicz-Miyamoto-Wolf results. Asymptotic approximations in the presence of
other (standard) critical points are also discussed. Techniques developed for the asymptotic Poincar lemma
are used to generate a general representation of the Leray form. All of the (differential form) expressions
presented are generalizations of known (vector calculus) results.

1. Introduction. Multidimensional integrals are encountered in many areas of
physics and engineering. A combination of Poincar’s lemma and Stokes’ theorem
provides a means of reducing a multidimensional integral to a lower dimensional form,
hence, constitutes an appealing approach to its evaluation. However, the expressions
that represent solutions of Poincar’s lemma are cumbersome and often difficult to
evaluate explicitly. Furthermore, in many practical problems (for instance, in electro-
magnetics at high frequencies) a large parameter is present and an asymptotic ap-
proximation of these integrals is quite adequate. An asymptotic version of Poincar’s
lemma whose solutions are readily computed would render the Poincar-Stokes ap-
proach very tractable in these cases.

In 2 the asymptotic Poincar lemma (APL) is formulated, and its solutions are
derived with the calculus of exterior differential forms [1]-[3]. (All differential form
notation concurs with that defined in [1].) These results are utilized in 3, 4 to
construct, respectively, the boundary and stationary point approximations of a multidi-
mensional oscillatory integral. The resultant differential form representations encom-
pass the standard vector expressions given, for instance, in [4] and [5]. The boundary
point technique is applied in 3 to the Kirchhoff representationof the diffraction of a
scalar field by an aperture in a perfectly conducting screen. The Maggi-Rubinowicz-
Miyamoto-Wolf expressions [6]-[8] and their properties are recovered. Several other
critical point contributions are also considered in 4. The Leray form [9] is constructed
in an appendix with the APL method of solution. This form is utilized in the asymp-
totic approach given in [10]. The results of this paper are summarized in 5.

2. Asymptotic Poincar6 lemma. Consider on the domain X, a set diffeomorphic to
some open set in e, ap-form of the type

(2.1) erfl,
where over X the phase function F is smooth and real-valued and the amplitude p-form
/3 is smooth and complex-valued. The constant , equals ik, where k is a large real
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parameter. For electromagnetic (quantum mechanical) problems k is 2 rr divided by the
wavelength A: k= 2r/A (k--2r/h, where h is Planck’s constant). A (p- 1)-form, e"ra,
of the same type as (2.1) is desired such that

(2.2) d( era) erB.
From Poincar6’s lemma [1]-[3] it is known that a solution, e"ra, of (2.2) can exist only
if the p-form e"r/ is closed, i.e., only if

(2.3) d(e"r/3) er(v+d )/3-0,
where

(2.4)  =ar.
(Obviously,

(2.5) dx=0,

hence,.x is closed.) Condition (2.3) is satisfied if

(2.6) (x+D)/3=0,
where

(2.7) D=,-’d.

On the other hand, because

(2.8) D(era)=e"r(x+D
(2.2) is equivalently represented as

(2.9)

An asymptotic solution, a, of (2.9), when condition (2.6) is satisfied asymptotically, is
constructed as follows. The result will be an asymptotic solution of PoincarO’s lemma.

Consider a differential p-form of the type (2.1) when/3 has an asymptotic expan-
sion

(2.10) er/--er(/o+ t,-/ + ,-22+.-. ),
where the/3j, are p-forms. It is asymptotically closed to range m if the expression

(2.11) (g + D)/3-(+ D)(/30+ ,-’/3 + u-2/32 +.-. )
has its first (m+ 1) terms (ordered in decreasing powers of ,) equal to zero; i.e., if the
(rn + 1) equations

(2.12) x/30=0
xB +dBo=0,

Im--}- dBm_ =0

are satisfied. When these conditions hold, it is possible to find a (p- 1)-form with an
asymptotic expansion of a similar type

(2.13) e"ra-,-’e"r(ao+ ,-’c, + u-242 +.-. ),
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such that the first (m+ 1) terms of d(era) reproduce the first (m + 1) terms of erfl.
This means an a can be found so that

(2.14) a0-/o,
a +dao- fl,

a+da_ m.

The resulting (p- 1)-form
m

(2.15) 0--/-1 X I-Joj,
j=0

is an m-th range asymptotic solution of Poincar’s lemma.
The relations (2.12) and (2.14), which specify an mth range asymptotic solution of

Poincar6’s lemma, are represented by the flow diagram given in Fig. 1. Each location is
the sum of the contributions indicated by the arrows leading to it. The operator
represents the exterior product by from the left"

(2.16)
The fact that the equations at the (p+ 1)-form level are satisfied results from the
identity

(2.17) do+od=0,

a consequence of x being closed and the Leibnitz derivative rule [1, (H. 16)].

(p-1)-form

P-form

(p+l)-form

FIG. 1. Relations that specify an asymptotic solution of Poincarb’s lemma.

Note that the expression (2.11) is automatically zero to any range if/3 is an n-form.
Also, if the expression (2.10) consists of only the first term e"r/30; i.e., if/3=/30 and all

other/3- 0, from (2.12) the terms of the expansion (2.13) of a are defined by the set of
equations

(2.18) xa0-/3 Rj----diXj_l, for l<j<m.

A solution of the system (2.14) when the conditions (2.12) are satisfied is based on
the solution of an equation of the type

(2.19) xa-/3,
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where the one-form and the p-form fl are given and the (p- 1)-form ct is to be found.
Its solution may be considered as a division of fl by r. Here a represents a0, Ctl,. -,ctm
and correspondingly, fl represents flo, fll-dao,’",flm-dam-1 Multiplying (2.19)
from the left by , one sees that a necessary condition for a solution to exist is that

(2.20) fl=0.

Note that (2.19) and (2.20) are, respectively, the asymptotic (k large) approximations of
(2.9) and (2.6). If x 4: 0, let the one-form K be

(2.21) K_ (1,1)- -1

The definitions of the star operator and the scalar product operation are taken to
be those given, respectively, in [1, Appendices E, F]. With (2.16) the operator "exterior
product from the left by K" is simply

(2.22a)

It is an operator of degree + 1. Its adjoint, K*, is the operator of degree that equals

(2.22b) K*- _,-i/, (_ 1)p- (to. t)-l[_, -, , (_ 1)p]

when acting on a p-form. Applied to fl it gives the (p- 1)-form

(2.23) K*- (1 K)- 11*--,
which is a solution of (2.19).

Proof. The operator g* satisfies the derivative property:

(2.24) *(fl) (*g)fl- (*fl),
hence, the equivalent relation"

(2.25) K*o + R K*-id,

where id represents the identity operator. Consequently, (2.20) and (2.24) yield

(2.26)
hence,

(2.27)

The operator K* is a (right) inverse of , the operator product by x; the solution
is an element of the kernel of x*: x*=0; i.e., x*x* 0. An interesting application of
this inversion algorithm, the construction of the Leray form [9, 3.1], is given in
Appendix A. The condition x ve0 is satisfied except at those points in X at which the
phase function F is stationary. Note, however, that this is only a sufficient condition.
The p-form fl may approach zero in regions where the operator K* is singular (i.e.,
where dF--x--0) in such a manner that given by (2.23) remains finite. This behavior
is encountered in the stationary phase evaluation of an integral and will be discussed
further in 4.



THE ASYMPTOTIC POINCARI LEMMA 539

Consequently, solutions of (2.14) are

(2.28) a0=K*fl0
O ---K*(fl -dao)

Olm-- K*(&-dolm_ ).

These relations are expressed more compactly as

J
(2.28’) Olj-- 2 {-K*d}J-P(K*p)

p=0

To justify that a,...,am are solutions, one must verify that conditions such as (2.20)
apply to each of their equations; i.e., for aj, that (flj-daj_ ) is null.

Proof. From (2.17) and (2.12) one has, respectively, icdoj_l---d(ldj_l) and
j- dfla_ . Thus, with (2.14)

(2.29) (flj-daj_l)-d(gaj_-flj_l)- -d(daj_2)--O.
When =0 (all flj.=0 for j>0) and =0, the solutions (2.28) and (2.28’) reduce to
the expressions:

(2.30) a0=K*fl,
aj -K*daj_ for <_j<_m,

and

(2.30’) aj- {-K*d}J(K*fl) for O<_j<_m.

These results can be summarized with a statement of the
ASYMPTOTIC POINCARI LEMMA (APE): If a given p-form er is asymptotically

closed to range rn over a domain X, a set diffeomorphic to some open set in ; where
dF=/=0, it is asymptotically exact to range rn over that domain; i.e., there exists a
(p- 1)-form era defined over Xsuch that d(era)=er+ O(v-(m+ )).

The first (m + 1) terms of a are readily constructed from those of/3 with (2.28’).
The construction is not valid in general at points where dF =0. This restriction may be
lifted for some particular fl at some points where d, 0 as shown in {}4.

The solution (2.23) of (2.19) is not unique. The general solution of (2.19) is actually

(2.31)

where , is an arbitrary (p- 2)-form, since _=0. The expression (2.31) represents a
gauge transformation of the solution (2.23). The freedom to include a gauge term, x,,
in that solution occurs because (2.19) determines only the components of a "transverse"
to x. In particular, the operator o K* is a projection operator that selects from the
form /3 its component, x(K*fl), along x; i.e., its "longitudinal" component. Hence,
because the identity (2.25) means

(2.32) ( K*fl ) + K*( fl ) fl,

the projection operator {1- K*) selects components transverse to . Therefore,
from (2.19) one immediately obtains

(2.33) K*fl= {1- K*}a=;
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i.e., the (p- 1)-form is the component of a transverse to r. This is also reflected in the
fact that is an element of the kernel of K*. Similarly, the solution, era, of (2.2) is also
not unique. If one replaces a by a’:

(2.34)
where is any (p- 2)-form, the equation

D(era)=er(x+D)a

(2.35) (+D) (-+-D)- (+D):--0.
The one-term asymptotic result (2.31) is clearly recovered in the limit --, oo. The
transformation a -+ a’ of the general rn th range APL solution given by

(2.36) a0

for l<_j<_m

may be considered as an asymptotic gauge transformation of that solution.
Proof. The equations the gauge transformed solutions satisfy:

(2.37)

reduce to (2.14) through the following sequence of relations:

KOlj .qt_ Kd’j_ 1-- j-- dolj_ l- d( i’j_ ),
KOlj jj aolj_ [--]

The gauge transformation (2.36) can be obtained from (2.34) with the (p- 2)-form
m

(2.38)
j=0

and with a truncation of the resultant expression for a’ to degree (m + 1) in v-. Thus,
the asymptotic gauge transformation (2.36) is exact if 3’m is closed (dtm =0).

Now consider the case where the p-form (2.1) is given exactly by the (rn + 1)-term
expression:

(2.39) + +"" + )"
It is of interest to determine when the APL solution is actually an exact solution. Recall
that an exact solution can exist only if the p-form (2.39) is closed. The equivalent
condition (2.6) is satisfied if, in addition to fl being asymptotically closed, tim is closed:

(2.40) dZm-O.
Thus, if (2.12) and (2.40) are satisfied, there exists (locally) a (p-1)-form whose
differential is erfl. This form is not necessarily given by the APL algorithm which
searches for a particular expression era, a given by (2.15) and (2.28’). However, if it is,
the relation (2.9) requires

d m=0

is still satisfied since
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in addition to the satisfaction of (2.14). Since the differential of the relation/3,, a +
dam-l gives

(2.42) dm= -dam,

(2.40) is satisfied if (2.41) is. Conversely, (2.40) and (2.42) only imply that

(2.43) dotm=O.
Hence, the fact that (2.39) is exactly closed does not imply that the APL solution is
exact. With (2.28’) the condition (2.41) can also be represented as

(2.44) dam-d (-K*d)m-t’(K*l, - (-1)m-’(doK*)m-P+,Sp-O.
p=0 p=0

Let the operator

(2.45) /’=-do K*.

Therefore, if
m

(2.46) X fm-p+ flp-O
p=O

the APL solution is exact.
The conditions for exactness when rn =0, will be employed in the next section.

From (2.46) they are, respectively,

(2.47) [/30-0,
(2.48) i(i0 -’"1 ) 0.

The m- condition (2.48) is satisfied if/3- -[/30- dao. In fact, since

m

(2.49) im-p+ [p- [( [3m- dam_ )
p=O

the condition for exactness (2.46) is satisfied in the general case if tim dam-l" In the
m =0 case (2.12) and (2.40) are satisfied if the p-form/--/0 is longitudinal and closed:

(2.50) &=0, dfl0=0,

conditions which are automatically satisfied if/30 is an n-form. Subsequently, if V is the
vector-field associated to the one-form K[1, App. E], (2.47) can also be written as

(2.51)
where the Lie derivative [1, App. L]

(2.52) e v d K* +K* o d.

Thus, if/3o is invariant along the flow defined by V[1, App. L] in the m =0 case, the
APL algorithm is exact.

Figure 2 summarizes (2.12), (2.14) and (2.36), i.e., the expressions defining the
general APL solution. It extends Fig. by including the terms that can be added to the
a’s as expressed by (2.36). Parallel arrows designate the same operation/ or d; each
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PARALLEL ARROWS
ALL MEAN THE
SAME OPERATION

or

\o
FIG. 2. General relations characterizing an asymptotic solution of Poincarb’s lemma.

GAUGE
TERM

K* -d K’ -d

FIG. 3. The general asymptotic solution of Poincarb’s lemma.

diamond pattern represents the identity (2.17). The dotted arrows on the. right express
the asymptotic satisfaction of those relations. Since they represent the expression
dYm=O and (2.41) and (2.40), they also are the conditions which describe when the
APL algorithm is exact. Similarly, the diagram given in Fig. 3 summarizes (2.12), (2.28)
and (2.36), i.e., the general APL solution. The fines ending in solid dots represent the
gauge terms of (2.36). Half-moon elements are added before the operator leading from
the circle surrounding them is applied. When fl= fl0, this diagram simplifies to the one
shown in Fig. 4 which summarizes (2.30) and (2.36) and the condition xfl--0. Note that
with the representation of the operator -K*o d by the dotted lines, the diagram
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FIG. 4. The asymptotic solution of Poincarb’s lemma when --o.

suggests a geometrical progression. In particular, when m c, the (p- 1)-form a can
be written as

(2.53) ol-p-l X p-J(-K*od)Joo-p-l[1-]-lolo,
j=O

where the operator

(2.54) g-v-(-K*od)-----K* oD.

3. Boundary point evaluation of an integral.
3A. General formalism. The contributions to the (asymptotic) evaluation of the

integral

(3.1) foe"r8
also denoted (see [1, p. 677])

(3.1’) erfl163,
from the points on the boundary, Z, of 63 are desired. The domain 63 is an oriented
p-domain of finite extent in X; its boundary X=0@. If (2.2) holds in @, (3.1) can be
evaluated immediately with Stokes’ formula [1, App. J] so that

(3.2) e’r/31(R) a(era)163- e’ral0@ eralx.
The desired asymptotic results follow in a similar fashion from the APL.

It is assumed that F has no stationary points in (R); i.e., that x:/:0 in (R) so that K,
hence, a is not singular. The given p-form e"r/3 can be replaced with an exact differen-
tial of a (p- 1)-form era that is a range m APL solution plus a remainder:

(3.3) er/3-d v-’ er 2 v-Ja v-(m+’)e"r(dtm)"
j:0
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Consequently, with Stokes’ formula the integral relation corresponding to (3.3) is
m

(3.4) erfll(R)- V- E v-J( evFtjl v-(m+ l)(eVFdoml@ ).
j=0

The original integral (3.1) over (R) has been replaced by an (m+ 1)-term asymptotic
series defined over the boundary, X, of (R) and a remainder term defined over (R) that is
of degree (rn + 1) in v-. Because this latter term is the same type as the original, it can
be evaluated in a similar manner. Hence, it is asymptotically small compared to every
other term. in the sum. The desired (asymptotic) boundary point evaluation of the
integral (3.1) is, therefore,

m

(3.5) e’rfl[@’ 1’--1 X lt-J( e’raj[) e’ra[.
j=0

If rn--0, this reduces to

(3.6) erfll@v-l(e’rao[X).
Equation (3.5) is a generalization of the expressions given in [4., Chap. 8]. It is

applicable to the vector as well as the scalar case. Furthermore, if the domain @ is one-
dimensional, (3.5) reduces to the standard endpoint evaluation of an integral given, for
example, in [1 1] or [12]. The following examples demonstrate the utility of the APL-
boundary point analysis.

3B. Kirchhoff approximation. Let the space qL be divided into two regions V and
V2 separated by an oriented surface M=0V1, whose normal points toward . The
surface M is composed of a screen S and of an aperture @ (whose edge is X 0@) such
that M 0 U S and is assumed to lie on side V_ of the screen [1, Fig. 2]. Consider in the
absence of the screen two scalar field solutions uj (j= 1,2) of the Helmholtz equation
whose sources pj are in V
(3.7) {A+ x2}u-- pj.

As discussed in [1, IV], if Ul is the field due to P in the presence of the screen and if

P2 is a point source at s2, the field Ul at s2 can be represented in terms of the cross-flux
of U and u2 through M as

(3.8) U (s2 ) ( U * du2 U2 * aU )IM.

The Kirchhoff approximation assumes that the field U1 and its derivative along the
normal of M (represented by the term *dUl) are zero over S and are equal, respectively,
to u and its normal derivative over 63. The resultant representation of the field (3.8) is

(3.9) UI(S2) -/12l@(u * du2-u2 dUl)l@.

The boundary point analysis will be applied to the integral ill21(R) in several cases. The
results represent a reduction of the Kirchhoff approximation of the field (3.9) to a line
integral over the edge of the aperture.

1. Plane wave-plane wave case. Consider the plane waves uj(r)--exp[v(xa.lr)], where
(xAr) is the duality product (see [1, App. D]) of xj, a constant unit propagation
one-form (i.e., dlcj-- 0 and a.. x--= x[r--- 1), and the position vector r. In Carte-
sian coordinates, for example, --dx+dy+dz and r=XOx+YOy+Zi) so that
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xj.Ir x + y+ ’z. Since

(3.0) au-u,
the cross-flux two-form

(3.11) flz-VU,U, (2- ,) ,(e"r/),
where

(3.12) r-(, +)1
and

(3.3) -,(-,).
One verifies that gB=0 since g-dF- + 2. The APL solution is

*12(3.4) o-*- (1 +,.)

all other %-0 (j- 1,2,-.. ) because ao is a constant. Thus, if

,12(3.15) ,-e"%--u,. g-:
the cross-flux integral

(3.16)

545

(3 17) G(r)- exp(,r)
4rrr

where r Irl. If r; -Ir- s il and -dri, the cross-flux two-form

(3.18) 12--UlU2 *

where the phase

(3.19)
so that

(3.20)
and the two-forms

(3.21)

r r

F-r +r2,

-dF-g+g2

8o--glg2 * (2--l)

Moreover, dB-0 (B is a constant); therefore, from the preceding section one realizes
that (3.16) represents an exact result (hence, the equal sign). Note that (3.16) must be
modified when -0; i.e., when g--, hence, when F,xx2 and (1 +Xl.X2) are all
zero.

2. Spherical wave-spherical wave case. Consider the two fields u(r)-G(r-s.)
(i-1,2) due to point sources at s and s2. These fields represent spherical waves
originating at those points. The Green’s function
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and

( 2 ’ )(3.22) -gg2 * r2 r
so that/-/o + v-/3. The functions

(3.23) g,(r)-
4rrr;

The corresponding APL solution a ,- (a0 + ,- a ) is obtained from the system

(3.24a) Xao-8o,

(3.24b) a -8 dao.

Since /30- 0, (3.24a) is satisfied by

(3.25) a0=2(1 q__lCl.lC2)----g, g2 1+,.2

However, as shown in Appendix B, this means

(3.26) dao- 8
Therefore, (3.24b) together with the condition x*a -0 yields

(3.27) a, =0.

Furthermore, (3.26) is the condition required for the exactness of the APL solution.
Consequently, where x va 0, the differential of the one-form

(3.28) a2-e"ra- --UlU2

is identical to the cross-flux two-form (3.18)

(3.29) da2-82.
The one-form a0 is a singular where --2, hence, where + ’2-0. This occurs
along the line segment ss2 connecting s and s2. Thus, if the line ss2 does not intersect
(R), the field at s2 is

(3.30)
On the other hand, if it does intersect @ and because OS- -, the field at s 2 is

(3.31 ) 1216" --/8,aIM-- 1121S U ($2)

where the first term follows from Green’s theorem. Hence, the field at s 2 is now
composed of the geometrical optics field (the first term) in addition to the diffracted
field (the second term). The expression of the latter shows that it may be considered as
originating on the edge Z of the aperture, an interpretation that agrees with the
viewpoint of the geometrical theory of diffraction (GTD). Furthermore, notice that the
phase function F is stationary (i.e,g-0) along the line ss2, where --x2. In fact,
with the results of the following section it can be shown that the geometrical optics
term is recovered with the stationary phase approach. Finally, it must be re-emphasized
that (3.30) and (3.31) are exact representations of the Kirchhoff approximation of the
field resulting from the scattering of a spherical wave through an aperture.
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3. Plane wave-spherical wave case. Consider the plane wave ul(r)-exp[v(xllr)]
and the spherical wave u2(r)-G(r-s2). The results for this case follow immediately
from the preceding cases. If x14: -2, the one-form

,XlX_2 )(3.32) a2-era- -u’u2 1+ i 2

where

(3.33) F- (,lr) +r2
and

(3.34) a0- -g2

is an exact solution of the equation

(3.35)
where the cross-flux two-form

I+KI’K2

121@ Otl2lX

(3.36) 12-- UlU2 * 11( K 2 K )
r2

When x -2, the geometrical optics field u(s2) must be added to the diffracted field
in (3.35). The case dealing with a general incident field ul(r) can be handled (exactly)
with these results by representing Ul as a superposition of plane waves.

4. Asymptotic field-spherical wave case. Consider the field ul(r)-exp[v(r)]A(r)
which asymptotically satisfies the Helmholtz equation and the spherical wave u2(r)-
G(r-s2). The cross-flux two-form truncated to an asymptotic order corresponding to
that of the incident field u is

(3.37) ]12,’l)UlU2 (K2--KI).
The subsequent asymptotic expression

(3.38)
where

m

(3.39) Ctl2 -Jaj
j=O

follows immediately from the APL-boundary point formalism. In particular, the phase
function

(3.40) F-+r2,

and if de-/i; =)/: K2,

(3.41)

so that

,K1/2 )a-K*fl- -Ag2 +Xl-X2

(3.42) aj- (-K*d}Jao (1 <_j<_m).
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The stationary point situation (where dI’--Cl+t2--0) is handled as shown in the
following section.

The preceding results recover those given in [6]-[8]. However, the discussion has
been appreciably simplified using differential forms. Moreover, it refutes the statement
in [8, p. 210] that it is impossible to derive in a simple way the representation and the
properties of the vector potential which corresponds to the one-form e"Vo. In fact, in all
of the above cases if = such that r-rj., the one-form solutions

( *11K2 )(3.43) e"rct- -UlU2 +l-r2
are simply related to the vector potentials W of [8]

(3.44) W-er -uu2 + l 2
Furthermore, these results are readily extended to vector-field problems. A discussion
of those problems is in preparation.

4. Stmiona int conibutions. The asymptotic evaluation of the integrM

(4.1) erlx= eV(x)A ( x ) dxNlX
where x=(xl,x2,...,x,) is a point in X and the volume n-form dxN=dx dx2... dx",
is desired when a nondegenerate stationary point, x0, is the only critical point of F in X
and the function A is smooth over X, is zero at infinity and is integrable. A point x0 is a

stationa point of F if

(4.2) dF(x0)=0;
it is nondegenerate if, in addition,

where 0x F means OF/Oxj. Note that only the case for which fl is an n-form is
considered explicitly. The general case in which fl is a p-form integrated over a
p-domain is handled in a similar manner; the generalizations of the following results to
that case will be apparent. Also, if there is more than one stationary point of F in X
and if they are not near to one another, each stationary point can be localized with
neutralizers as shown, for instance, in [4] and treated like the present case. Problems
involving the coalescing of stationary points, branch points, poles, and so on will not be
discussed. The situation where the domain is an n-domain @ rather than the whole
space X will be discussed at the end of this section.

In the vicinity of xo the Morse lemma [13] realizes a change of variables which
reduces the phase to a quadratic form with coefficients (--+ 1). Denote the new variables
by u=(u,...,u,,). They are functions of x in the vicinity of Xo; hence, they may be
expressed as u(x, xo). Furthermore, they satisfy the relation

n

u(4.4) X
j=l

where /j= --+ 1. For each xo there is an associated map

(4.5) /xo" UX: ux-#xou" 0 Xo,
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which expresses x in terms of the new variable u. It will be called the Morse map. The
desired quadratic form:

(4.6) Q(u)-
j--I

is defined as

*o[r()-r(xo)]-O(u),
where/*x0 is the pullback through the Morse map,/x0. To complete the integral (4.1),
the change of variables or pullback/*xo must be applied to the amplitude n-form,/3.
This yields

where

.*o .*o[A(x ) ax a( u, Xo ) u,
(4.9) G(u,xo) Id,Xo[Z(x)( duN )

-1]* -(xoU)J(u Xo)
dxN

and the Jacobian of the transformation from the u to the x-lxou coordinates"

(4.105 J(u,xo)-{*xo[detllOxu(x,xo)l}]J-l-detlJo.(x-txoU)[I.
Finally, with this change of variables the integral (4.1) becomes

(4.11) er[31X= er(xo)[eOt)G( u, xo ) duNIU =-- l( v, Xo ).
This expression can be rewritten immediately as

(4.12) I(v,xo)-e"r(xo)G(O,xo)[e"Q(")duNIU
+er(xo){e"(U)[G(u,xo)-G(O,xo)] duNIU).

The first integral in (4.12) is simply [4], [14]

(4.13) e"9"(U)duVlU=cnc-l(k)-"/2-exp [(r)i sgn

where

(4.14)

and

Cn-2-"/exp[i( )indl]

(4.15) c-
k n/2

and where if n+ and n_ are, respectively, the number of positive and negative rtj.
(j- 1,2,. ., n), then the signature sgn 1 n / n_ and the index Ind n_. The re-
suits of the lemmas proved in Appendix C allow one to manipulate the second integral
into a form suitable for an asymptotic evaluation. In particular, let the one-form

n

(4.16) O
i--I
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As shown in Appendix C, the amplitude n-form G(u, x0)duN can be expressed in terms
of its value at the stationary point u--0 of Q(u) and a term linear in p

(4.17) G( u,xo ) duN-- G(O,xo ) duN+ pHo( u,xo ).

A suitable choice for the (n-1)-form H0 is generated with the inversion algorithm
introduced in 2

(4.18) /-/o- (o o)- ’o* du ).
Comments on the nonuniqueness of this choice also follow from those given in 2. With
(4.13) and (4.17) the expression (4.12) becomes

(4.19) I( ,,xo ) ( CnC- )e’r(xo)G(O,xo ) + e’r(xo)[ e’O-(U)pHo( u,xo )[U].
The integral in (4.19) can be evaluated using the APL algorithm. Since

(4.20) /3o=OHo
is an n-form and since

(4.21) =duQ= O,

the condition

(4.22) /o= 0

is trivially satisfied. Although the (sufficient) condition x :/= 0 was needed in the preced-
ing section, we can still give meaning to the expression a0-- K*flo. Because fl0, as well
as , is zero at the stationary point u--0, the combination K*flo has a finite limit there.
Therefore, the (n- 1)-form a0 is well defined over U. Furthermore, since p*H0- 0,

(4.23)
With the relation

(4.24)

K%- (o-o)- o* U,Xo ).

Du[ e"9-(’)ao( u )] e"O-(U)o( u ) + e"2(U)Duao,
one immediately obtains

(4.25)
where

eO(u)/3olU -,[e(?(U)HolOU] + p-l[eQ(u)G 1( U’Xo ) duNlg]

(4.26) Gl(U,Xo)duN-- -duO0

Because the boundary, 0U, of U is at infinity and the amplitude function A is zero
there, the boundary integral in (4.25) is zero. The other integral has the same form as
the original integral in (4.19); hence, this process can be repeated. After (m + 1) steps
(4.12) becomes

m

(4.27) I(u,Xo)-er(xo)(c,c-’) u-Gj.(0,Xo)
j=0

+ p--(m+ ,)e r(x0)[ e,,O_(U)Gm + 1( U,Xo ) duNIU],
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where G0- G,

(4.28) (O<_j<_m)

(4.35)
j

each term in the braces being treated as operators and applied in order from right to
left. The advantages are that the leading term of the series is independent of k and that
the contributions to the expansion from the phase and the amplitude are apparent. The
operators Tr depend on derivatives of the phase evaluated at the stationary point at
most to the order 2(j+ 1) and contain derivatives which are applied to the amplitude
and evaluated at the stationary point at most to the order 2 j. For instance, when n 1,
if I" O/xoF, then

(4.36)
and

(4.37) F2Ox/xo + 12F220/xo]24F2/2 [(5F2- 3F4F2 )0/xo 12F3 2

where

and

(4.29) Gi(u,xo)duN- -duHi_ (1 <_i<_m+ 1).
Truncating the remainder term in (4.27) which is of degree (m + 1) in u-, the (rn + 1)-
term stationary phase approximation of the integral (4.1) is

m

(4.30) I(v,Xo)’eVI’(x)(Cnc-l) X v-JGj(O,xo)
j=0

Furthermore, as shown in Appendix D,

(4.31) G(O,xo)- -- ff. ’Ju/o G(u,xo),

where the (modified) Laplacian operator

n

(4.32) = X jO2uj--’O2u
j=l

and

(4.33) u/of(u)-uf( u)l,=0
The standard stationary phase expressions are readily obtained from (4.30) and

(4.31) [14]. Furthermore, the preceding derivation is a generalization of the ones given
in [4] and [5] which employed vector identities (divergence theorem) and, hence, were
restricted to Euclidean spaces. In contrast with [4] and [5], for example, the results of
this section remain valid in cases where X is a manifold.

One can rewrite the expression (4.31) in a more manifest form [14]
m

(4.34) cI(v, xo),-, e"rx0) v-Tj.rA(x0),
j-0
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Applications and ramifications of these results are given in [14] in connection with the
asymptotic evaluation of the Fourier transform.

Now consider the integral cerl, where (R) is an n-domain in X. Let F have an
isolated, nondege__nerate stationary point, x0, in the interior of @; in particular, dF v0
on Y- 6. Let (R) be the complement of (R) in X whose boundary is oriented such that
06- . Thus,

(4.38) cerfll(R) ce rfllX- cerfll
The asymptotic evaluation of the first integral clearly yields the stationary phase
contribution, cI(v, xo) F(v, xo). Since (R) is devoid of any stationary points, the second
integral can be handled with the boundary point formalism. Thus, with the APL
solution

m

(4.39) O--P--I ’ --Jolj--l--ll,
j=0

it gives

(4.40) cerl-- ceralY. --(-lC)[erSlN v-1/2[ gercly] -1/2E(/y, ),

where

(4.41)

Therefore,

(4.42)

k (n-- 1)/2 q./.

O-- i(2r)-’/2 { ( -- exp[--i()(n-- 1)] }
ce"rfl](R) F(, xo) + u- /2E ( u, X )

the total asymptotic expansion of the integral is defined in terms of the stationary and
the boundary point contributions. This result assumes those contributions are indepen-
dent. Modifications of (4.42) would be necessary if this condition was not satisfied.

Notice that the boundary integral can be reparameterized in terms of local coordi-
nates on . The resulting integral can then be evaluated asymptotically. If the resultant
phase function is stationary at some point (a critical point of the second kind; the
stationary point x0 in the interior of (R) being a critical point of the first kind), the
stationary phase formalism can be applied directly to that integral. In electromagnetics
these terms account for the diffracted ray contributions to the total field--those rays
generated from boundaries such as edges. The stationary points of the first kind, on the
other hand, produce the geometrical optics terms. The characteristic k-/ difference
between these contributions is apparent in (4.42). However, in some instances every
point on the boundary is a stationary point, and it becomes necessary to keep the
nonlocal integral representation of the boundary point contributions. Similarly, if the
boundary E has critical points such as discontinuities in its tangents (critical points of
the third kind) or in its curvature (critical points of the fourth kind), the boundary Y

can be subdivided into regions over which the derivatives are continuous to a certain
order and whose boundaries coincide with the points of discontinuity. The integrals
over these subregions can now be treated with the boundary point formalism. Standard
results given in [4] or [5] are readily recovered. Note, however, that the differential form
expressions are especially suited to calculations of these types.
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Finally, consider the case where x0 is a nondegenerate stationary point of F and
lies on the boundary X. Near x0 a local coordinate system u-(u’,Un) (where u’--
(Ul,"" ",U-l) defines a point on X and un is defined along the unit normal to X at x0)

*Fcan be constructed such that the transformed phase function, /0 is stationary at
2 where / +1 (-1) ifu (u’,u)-O and takes the form (/*oF)(u) F’(u’,xo)+lUn,

un is positive (negative) for a point in the interior of . Consequently, one has

(4.43) er/l= e"’""g(u,,,Xo; v)a(lu,,),

where

(4.44) g(u,,,Xo; v)--e"r’(u")G(u’,u,,,xo)du’l

and where is a real positive constant. Note that with k large, the constant can be
replaced with c, [4]. The asymptotic approximation of the original integral is obtained
by applying the stationary phase approach first to the (n- 1)-dimensional integral over
X treating the u-variable as a parameter and then to the one-dimensional integral over

uo. The final result differs from (4.34) because of the form of the latter integration.
Because that integration is only over the nonnegative reals, odd orders of derivatives
and (referring to (4.13)) the coefficient 1/2, characteristic of this case, appear. The
expressions given in [4] and [5] are readily reproduced.

5. Conclusions. Exterior differential calculus techniques were used to formulate
and to obtain asymptotic solutions of Poincar’s lemma. In particular, a new method of
solution of a general type of differential form equation was developed. Several applica-
tions of these asymptotic Poincar lemma results were presented. The boundary and
stationary point contributions to the asymptotic approximation of a multidimensional
integral were derived. Other critical point contributions and asymptotic techniques
were also discussed. The boundary point approach was applied to the Kirchhoff
representation of the diffraction of a scalar field through an aperture. A representation
of the Leray form was synthesized that did not require the introduction of any local
coordinate system. In all of these applications the resultant differential form expres-
sions encompass, as special cases, standard vector calculus representations. Further-
more, in contrast with their vector counterparts the differential form expressions are
easier to obtain and their properties are more transparent. The asymptotic Poincar
lemma and the associated techniques constitute a versatile approach to a large class of
problems encountered in physics and engineering.

Appendix A: The Leray form. Consider an (n- 1)-dimensional hypersurface S in
X. A neighborhood V of a point on S can be defined by the equation e(xl,’",Xn)--O
where P is an infinitely differentiable function such that dP 4:0 on V (i.e., there are no
singular points on V). A form 0, which satisfies

(A.1) dxu dPo

is readily obtained with the inversion algorithm introduced in 2. In particular, since
dPdxU=-O (the volume form dxv is an n-form), a solution of (A.1) is

dP* dxN ,NP
(A.2) o- dp,---d-ff (- 1) dP
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where s is the index of the metric associated with the space X. This (n-1)-form is
called the Lerayform [9, Chap. III, {}1 ]. Note that we have taken

(A.3) , dxN--1
and

(A.4) ,-,- (_ 1) , w(n +1),

where w is the operator which applied to a p-form/3 gives wfl=(-1)P/3. Clearly, the
Leray form depends only on the function P by which V is represented. If P(x)
represents (up to higher order terms) the distance from x to V, the (n-1)-form w
reduces to the Euclidean element of area on S. Statements concerning uniqueness
follow directly from those discussed in the APL. In particular, the form o+(dP),
where 3’ is any (n- 2)-form, is also a solution of (A. 1). Notice that if one assumes on V
some ,;P4 0 such that dP (O,,jP) dx/, (A.2) reduces to

(A.5) 0--(-- 1)j-1 dx dxJ- dxJ+ dx

 x,e
Similar arguments can be applied to an (n-j)-dimensional manifold defined

locally by the equations" P(x) 0, P2(x) 0,-.., Pa.(x) 0. The (n -j)-form

(A.6) 0
(de,... d6 )*( de, d6

( -1)S , ( dP, dPg. )

satisfies the relation

If , is any (n-2j)-form, the form oa+(dP.., dPa.)7 is also a solution of (A.7).
Furthermore, with the expression

(A.8)

where the Jacobian

(A.9) J(P,,’-. ,Pj; x,,..- ,xj) detll O;Pll<i,= 1,’’’, j)’

and with the adjoint operator identity (aa2)*-a’a*2, the Leray form (A.6) becomes

dx/+ dx(A.10) -J(Pl,...,Pj.;Xl,.. ",Xj)
The preceding results coincide with those given in [9]. Note, however, that the

present approach differs from the standard construct employed in [9]. For instance,
(A.5) can be derived by introducing the local coordinates (u,...,u,)=u such that
Ui--X for i=/=j and u/-P, hence, J(x; u)-(OxjP)- and

(A.11) dxN=j(x;u)du’...du/-ldPdu/+’...du

Equation (A.3) is recovered immediately from (A. 1) and (A.11). On the other hand, the
Leray form expressions (A.2) and (A.6) are globally valid and avoid the interjection of
the local coordinate system.
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Appendix B: The APL solution to the Kirchhoff diffraction of two spherical waves is
exact. It will be shown that the l-term APL solution to the Kirchhoff diffraction of
two spherical waves is exact; i.e., that dao-flt. Let 0j-gj. The one-form (3.25) can
then be rewritten as

(B.1) ao- -gig2

Let

(B.2)
and

Since

(B.4)
one has

so that

(B.6)

and

rlr2 + Pl P2

A r r:z ( r r2 -+- O 02 )

B-- 2rlr2 + ol O2.

d(01"02)-01-+-02,

dA (r, r2 )- [( B+ r? )r22p + ( B +r )r?p2]

2A-(dA*p2)--(rlr2) ’r22[B(Pl.P2)+(rlr2)2] (r’r2+Pl’P2

rl) )2(B.7) 2A-(dA*ol)-- (rlr2+01"02

Consequently, with the identity

(B.8) d*( h3/ ) hd*3/- ( dh )*v,
where h is a scalar function, is any q-form and the codifferential operator [1, F. 9]

(B.9) d* ,- d , (-1) q,
when it is applied to a q-form, and with the relation

(B. 10) d*( P,P2 )= 2( p,- 02 ),
one obtains

(B.II)-(4r)2dao-,[d*(A-’p -2 [2A(p,_p2 )+dA*(,

=(r,r2)-l, ( p-p)r} r}
so that

(B.12) g2 /1 )dao- g g2 * --ill"r. r
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Appendix C: Linear representation of a p-form about a point. The inversion algo-
rithm will be used in this appendix to generalize the following lemma to p-forms.

LEMMA C.1. Let f be a C function in a convex neighborhood M of the point
Xo-(O,...,O, Xp+l,. ..,x) in X. Then

P

(C.1) f(x)-f(xo)- X xjhj(x)
j--I

for some suitable C functions hj defined in M, with (Ox/f)(xo) hj(xo ).
Proof.

f(x) -f(xO) =fo df- ( tXl," ,tXp,Xp+ l," ,xn) dt

j= xj ( tX txp xp+ Xn )Xj dt

Therefore, set h(x)- f(Of/Ox) (tXl,. .,txf,Xp+l,. .,xn)dt. [--1

Note that Lemma C.1 is a simple extension of [13, Lemma 2.1]. Now consider the
following lemma.

LEMMA C.2. In X let the p-form

(C.2) 8(x ) a,(x ) dx’,

where J is the multi-index of length p: J=j J2" "Jp, so that

dx-dx,dx,. dx,.

With the subset = {j,j2,. ",Jp } of the set { 1, 2,..., n }, let the one-form
(c.3) o- X f ax ,

where fj is a scalar function. Then, if not all of the fj are zero, the p-form (C.2) has the
linear representation

(C.4) (x)-Oa(x),
where is some suitable (p- 1)-form.

Proof. The relation (C.4) follows immediately from the inversion algorithm dis-
cussed in {}2. In particular, the necessary condition

(C.5) O(x)-O
is trivially satisfied. Thus, since at least one fj. 4 0, hence, 0 4 0, set

(C.6) OI(X)--(O*O)--I[o*[(X)]. -]

COROLLARY. Let the one-form
(C.7) O- , cjxdxj,

je$

where c. is a constant, and let Xo-(Xlo,...,x,o ) be the point whose components Xo-O
forj },. Then about xo one has the linear representation

(c.8) x ) Xo ) Ott( x ).

for some suitable (p- 1)-form H.
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The corollary is clearly a special case of Lemma C.2; a suitable H is

(C.9)
Equation (C.8) is the desired generalization of (C.1).

Appendix D: A representation of the stationary phase amplitudes. The (modified)
Laplacian

applied to a p-form

where J is a multi-index of length p, acts only on its coefficients:

Lua ( L,a ) dus.
J

If the q-form

Hj-E hjiduI,
i

where I is a multi-index of length q and the one-form

P-- 2 rliUi dui
i=1

then
n

(D.1) Lu( pnj ) 2 E iLu( uihj, ) duidu I

i:1 I

n n n

E 2[’rliui(tuhjl)] duiduI-’[-2 2 E 2(’rlirllOutUiuthjI) duiduI
i=1 I i=1 1=1 I

n

=oL,/-/.+2 2 2 ( Ou,hjl ) dui dul- pLuHj+ 2duHj
i=1

With the identity

d,, Lu- L,, d,,,

repeated applications of (D. 1) give

e;.(og) e;.-l(o.g+ 2d.<.) m-,-[Oe2g+ 2d.(eH,.) + 2Cu( dul+,.)]
L:-2[pLtl.+ 4L,,( d,/-/j. )] pL’Hj.+ 2mL’-’( dulla. ).

Thus,

(D.2) Au/o(pnj ) ~m-,-2mAu/o(dutl)
Now consider the p-form fl(u, xo) and the ( p 1)-form/-//(u, xo) which satisfy the
system
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flj(U,Xo)-flj(O,xo)+pHj(u,xo) (O<-j<-m),

flj(U,Xo)- -duHi_ (1 <_i<_m+ 1).

Equation (D.2) then gives

7/oflj( u xo) 2m "m-

Therefore,

~j--I ~j--2Ju/oBo(U,Xo)-- --2j’Au/oB,(U,Xo)--(-2)2j(j 1)Au/oB2(U,Xo)
(- 2)Jj !flj.(O, Xo),

hence

(D.3) (O,xo)- - . /o flo(U,Xo).

Consequently, with the n-form

U, Xo ) U, Xo ) aU

(D.3) yields

(D.4) jw.  /o 6o(U,Zo).
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