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It is well known that the geometrical optics approximation, generally valid for high-frequency fields, 
fails in the vicinity of a caustic. A systematic procedure of V. P. Maslov that remedies this situation will 
be reviewed in this paper. Maslov's method makes use of a representation of the geometrical optics 
field in the phase space M = X x K, where a point m = (x, •c) is a pair of a position vector x • X and 
a wave vector •c • K. A Lagrangian submanifold of M, A, that lies in the dispersion surface and is a 
union of the phase space trajectories selected by the initial conditions is constructed. It can be con- 
sidered as a global representation of the phase. The phase space amplitudes (half densities) satisfy 
transport equations defined along those trajectories in A. Since trajectories in M never form a caustic, a 
globally defined amplitude can be established on A. The field on X is related to the resultant field on A 
by the "canonical operator," an operator introduced by Maslov. It generates an integral form of the 
solution near a caustic that can be evaluated analytically, numerically, or with uniform asymptotic 
techniques. Away from the caustic it recovers the geometrical optics field. Alternatively, the phase space 
field can be projected on a hybrid space Y where some of the space coordinates have been replaced by 
the corresponding wave vector components. For any caustic point in X, one such hybrid space Y 
where this projection does not encounter a caustic exists. A geometrical optics field results in Y that is 
related to the original in X by an asymptotic Fourier transform. The solution in X near a caustic can 
be represented as the Fourier transform to X of that hybrid space geometrical optics solution. These 
techniques are illustrated with two simple but revealing problems: continuation of the field through a 
fold caustic in a linear layer medium and through a caustic with a cusp point in a homogeneous 
medium. 

1. INTRODUCTION 

The purpose of this article is to bring to the atten- 
tion of radio engineers and scientists concerned with 
high-frequency wave propagation some methods, at- 
tributable in part to V. P. Maslov [Maslov, 1972; 
Maslov and Fedoryuk, 1981], that have been applied 
mainly to physics as a bridge between classical and 
quantum mechanics. Their main application is to 
evaluate the field near a caustic where geometrical 
optics (GO), even augmented by the geometrical 
theory of diffraction (GTD) [Keller, 1962], fail. No 
attempt will be made to prove all statements. Rather, 
we will illustrate their application by simple prob- 
lems. We wish to emphasize ideas rather than rigor. 
Furthermore, although the method is quite general, 
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only the two-dimensional wave equation will be con- 
sidered here. The ' ' do not examples 

strat½ adequately the power of the method but are 
more transparent as illustrations of the various steps 
involved. 

There are several relevant articles by mathema- 
ticians such as Duisterrn•iat [1973], Guillernin and 
Sternberg [1977], and Hdrrnander [1971] and by 
physicists such as Berry and Mount [1972], Percival 
[1977], and Voros [1976], but they require a rather 
sophisticated mathematics background and treat 
problems of more relevance to quantum mechanics. 
The basic work of Maslov is reported in [Maslov, 
1972-1, a book written in Russian and translated into 
French, and a more recent book by Maslov and Fe- 
doryuk [1981]. A very readable article is that of 
Kravtsov [1968]. The present paper, in which we 
have borrowed two examples from Kravtsov [1968], 
gives a more thorough discussion of the basic tools of 
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Maslov: the Lagrangian submanifold A, which re- 
sides in the phase space M = X x K and gives a 
global description of the phase, and the canonical 
operator that relates the field descriptions on A to 
those in the original problem space X or in a hybrid 
space Y, whose coordinates are a combination of 
some space coordinates from X and some wave 
vector coordinates from K. A more thorough review 
of Maslov's method is given in Ziolkowski [1980]. 

This paper is organized as follows. Geometrical 
optics (GO) is reviewed briefly in section 2 and is 
applied to our two examples: plane wave propaga- 
tion in a linear layer medium and propagation near a 
cusp caustic in a homogeneous medium. In section 3 
the phase space approach to geometrical optics is 
discussed. Hamilton's equations and the associated 
flow, the Lagrangian submanifold, and amplitude 
half densities are introduced, and their connection 
with standard GO quantities is made. The canonical 
operator and the resultant representation of the field 
are defined in section 4. Two alternate descriptions of 
that representation also are given. Maslov's method 
is then applied to the aforementioned examples. We 
summarize in section 5 the major elements of that 
approach. 

2. GEOMETRICAL OPTICS 

2.1. General aspects 

The GO method seeks (in the presence of a large 
parameter k, which following Leray [1972] will be 
denoted by v -- ik) approximate solutions to a partial 
differential equation 

where x • •n and 

•(•, D•)U(•) = 0 (1) 

of the form 

D• =v 1 (• -1 - -- -- v r3• (2) 

u(•c) = eVa'{•}A(•c) (3) 

where the phase ß is a slowly varying, real-valued 
function and the amplitude ,4 is a slowly varying, 
complex-valued function. In electromagnetics the 
large parameter k = 2r•/it, it being the wavelength, 
and in quantum mechanics, k- 2r•/h, h being 
Planck's constant. The amplitude may be taken as a 
function of v represented by an (m + 1) term asymp- 

totic expansion: 
m 

A(a:, v)= • v-JAj(az) (4) 
j=O 

This expression is sometimes multiplied by v •', # • •, 
which is important only when combining several 
fields of this type with different #. The GO or ray 
optical field (3) separates the phase and the ampli- 
tude. The problem of finding the approximate solu- 
tion resulting from given sources then decomposes 
into two parts: (1) ray tracing, which defines the con- 
tinuation of the phase independently of the ampli- 
tude, and (2) determination of the amplitude, which 
can be carried out by following intensity variations 
along each ray without regard to the solution on 
other rays. 

The determination of the phase and the associated 
descriptions--phase front, rays, fields of wave vec- 
tors, or group velocity vectors--is strictly geo- 
metrical optics in its original meaning. We shall des- 
ignate it by GO. In physics this corresponds to classi- 
cal mechanics, where the rays become the point or 
system trajectories. The amplitude transport is actu- 
ally a higher-order construct. 

The general problem considered here is a Cauchy- 
type or "continuation" problem. The values of the 
field U(xo)= U(•o) on a surface Xo c X are given, 
and the function (3) satisfying (1) is to be found in X. 
It is assumed that no caustics intersect Xo and that a 
sense of crossing of Xo is given. Furthermore, the 
given field U(go) is assumed to have the GO field 
form 

u(a•o) = f(a•o) = eV•(•ø)a(a•o) (5) 

and u(a•) is constructed in the same form (3), except in 
some regions (the vicinity of caustics) where a differ- 
ent representation is needed. Maslov's method is pre- 
cisely designed to furnish such a representation. 

Note that the GO solution breaks down at a caus- 

tic in two ways: continuation of the phase by ray 
tracing beyond the caustic and determination of the 
amplitude by the transport equation on a caustic. 
The former difficulty arises because the phase func- 
tion solution of the eikonal equation is (generally) 
multivalued; the caustic coincides with the join of the 
branches of the phase function. The branch of the 
phase function changes as the phase is continued 
through a caustic, and the characteristic r•/2 phase 
shifts result. GO fails to give a prescription for the 
choice of the branch on which the continuation 

should proceed, hence, of the phase shift. Amplitude 
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transport fails at a caustic because the tube of rays in 
which the intensity is being conserved has zero cross 
section there; thus GO (incorrectly) predicts an infi- 
nite amplitude at a caustic. 

2.2. Examples 

To illustrate these methods, we shall consider two 
particular examples of continuation problems. In 
both cases the two-dimensional Helmholtz equation 

«{A -3-/•(x, z)k2}U(x, z) = 0 

(the factor 1/2 is included to simplify many of the 
results derived below) with boundary values given for 

Xo = {(x, •)1• = 0} 

is considered. The first problem is the continuation in 
a linear layer medium, i.e., in a medium of relative 
permittivity, 

of a given field 

e(x, z) = 1 - •z 

and the amplitude satisfies the transport equation 
(terms proportional to v-•) 

O•A• + OzAz + «A AO - 0 (15) 

Obviously, the term v -2 AA is neglected. While the 
tracing of the rays in X = •72 can be done by solving 
a second-order differential equation 

c•2a• = V(-•)= •(•) (16) 
(6) this equation can be replaced by a system of first- 

order equations, the Hamilton equations, 

o,• = O•p(•, %) = • = % (•7) 
(7) 

where the wave vector g = (•, () = • = (•, •) and 
• is a parameter along the rays. Here, • is the arc 
length. Note that in a more general medium the ray 
vector • • 3• p and the wave vector g will not coin- 
cide. The allowed wave vectors g at each point • are 

(8) 
determined by the dispersion relation 

Since 
U(Xo, 0) = e reøxø (9) 

The second problem examines the continuation in 
the homogeneous medium 

e(x, z)- 1 (10) 

of the (aperture) field 

U(Xo, O) = eVXø•/2•'a(Xo) -- •z < Xo < •z (11) 

The GO solution of (6) is determined readily. The 
GO solution of the more general equation (1) is given 
in Appendix B. Rewrite the Helmholtz operator as 

•il•(X ' Oa:)= 1 2 2 8(X, •[Dx + D z - 

and apply it to the GO field (3). One obtains 

•(w, D•)u(w) = e'*[ «(O,, 2 + O• 2 - e)A 

+ v-'(OxA x + OzA z + «AAO)+ v-2«AA] (12) 

where the subscripts denote partial derivatives, for 
instance, (I),, • 3,, (I). The GO solution satisfies 

•(w, D•)u(w) ,-, 0(¾ -2) (13) 

its terms are generated from the equations deter- 
mined by setting the coefficients of different powers 
of v equal to zero. Thus the phase satisfies the eikon- 
al (Hamilton-Jacobi) equation (terms independent of 

p(zc, Ox) = «[0• 2 + O• 2 - e(x, z)] = 0 (14) 

p(•, K) -'- «[K 2 -- /•(•)] -'- 0 (18) 

d d• 
-- 0 -'- O• ' • -- K 2 -'- 8 (19) 
dz dz 

the phase continuation along a ray is given by 

Furthermore, since the operator 

(20) 

d dx 
0x = p,.0• = O•-0• (21) 

dz dz 

the transport equation (15) reduces to an ordinary 
differential equation along a ray' 

d 
A + «A AO = 0 (22) 

dz 

Let the coordinates a = (ty 1 .... , f/n-l) parame- 
terize the rays. A point on any ray can then be labe- 
led by a and z such that the points a: = (a, z) and 
a•o = (a, 0). Let J(a, •)= dxdz/da& be the Jacobian 
of the transformation from those ray coordinates 
(a, z) to the space coordinates (x, z). It can be shown 
[Leray, 1972; Maslov, 1972; Ziolkowski, 1980] that 

d 
-- (ln J) = c•. [p•(a•, Ox) ] = div v = AO (23) 
dz 
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•(x,z)=l-o•z •(x,z)=l z I 
z = z = •o2/• 

_o = o Fig. 2. The rays and the caustic in the homogeneous medium 

Fig. 1. The rays and the caustic in the linear layer problem. problem. 

Therefore, if A = J- •/2•, the amplitude • satisfies 
d ~ 

A = 0 (24) 
dr 

and the transport of the amplitude is defined as 

A(az) = 9- a/2(az/azo)a(azo) (25) 

where the divergence factor 

5•-a/2(x/xo) = [J(a, O)/J(a, z)] a/2 = [J(xo/•)] •/2 (26) 

Note that the divergence factor is defined by the be- 
havior of the rays. Consequently, the GO field along 
a ray between •Co and •c is 

u(•) = [exp (v f•tc. dsc)•-•/2(sc/sco)]U(sco)= G(sc, •o)U(Wo) 
(27) 

If n rays whose initial points are •Coj pass through 
the GO field is 

u(•) = • G(•, •oj)U(•oj) (28) 
j=l 

The specific results for the linear layer (LLP) and 
the homogeneous medium (HMP) problems are 
listed in tabular form in Appendix A for quick refer- 
ence. For both examples the rays can be labeled by 
Xo, i.e., a = Xo. Note that J(xo, r) - 0 at a caustic. In 
the LLP this occurs when r = 2•o/•; thus, the 
straight line 

z = • = •/• (29) 

is the caustic. The caustic in the HMP occurs when 

-r--b• 2. Combining this result, the ray equations, 
and the relation Xo =-b•, the caustic points are 

(x = b• 3, z = b•3). Therefore, the caustic is described 
by the equation 

+ ,30, 
It represents a cusp point at (x- 0, z- b). These 
caustics are illustrated in Figures 1 and 2. 

3. PHASE SPACE APPROACH TO 

GEOMETRICAL OPTICS 

A characteristic of Maslov's method is the empha- 
sis on the representation of the GO field in the phase 
space M - •2., where a pair m - (x, •c) consists of a 
position vector •c • X - •'" and a wave vector tc • 
K- •'• (momentum in physics). A connection be- 

,•avevector (momentum) 
/ v • Phasespace 
/ K, \ /r K •X m = (x, •:) e M = X X K 

Fig. 3. Connections between the phase space and the position 
and wave vector spaces. 
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tween the phase space and the spaces X and K is 
provided by the projection maps 

•x : M--} X : m•-} cc (31) 

r• • : M--} K : rn •-} •c (32) 

They are depicted in Figure 3. In the examples, 
x = (x, z), •c = (•, 0, and m = (x, z, •, 0- 

3.1. Dispersion relation 

Because of the slow variation of ß and A, the GO 
field is locally a plane wave with propagation (wave) 
vector •c = Vq) = q)x- This plane wave is a restriction 
to the particular values •c = q)x of the function e TM 
that is defined naturally on M with equal footing in 
both X and K space. For a particular problem the 
allowed values in M of •c for any x are determined by 
the dispersion relation 

p(x, •c) = 0 (33) 

which is obtained by substituting the plane wave 
e TM into (1), 

3•(a•, Dx)e vK'x = eVK'X[_p(a•, •c) + v-•p•(a•, •c) + O(v-2)] 

(34) 

and setting, according to GO, the term independent 
of v, p(•, •c) (called the principal symbol of the oper- 
ator •(•, Dx)) to zero. The local projection of (33) 
onto X through the relation •c = q)x returns the ei- 
konal equation (14). 

The dispersion relation defines a (2n- 1)- 
dimensional hypersurface in M: 

• = {m e M I P(•, •) - 0} (35) 

called the dispersion surface. For the LLP 

• = {(x, z, •, 01 •2 + •2 _ (• _ •z) = 0} (36) 

and for the HMP 

• = {(x, z, •, 01 •'- + •'- - • = 0} (37) 

3.2. Hamilton's equations and flow 

A phase space approach to the GO problem is not 
new. In classical mechanics the trajectory of a point 
particle that results from integrating Newton's equa- 
tion 

d•-• 

m dry_ = F (38) 

can be described by a first-order system in phase 

space, Hamilton's equations, 

dx 

m d-• = ) = 8• H 

-F= 

(39) 

operator 
symbol: 

dx 
- p•(•, 

dz 

(40) 
d•c 

-- p•(a•, •c) 
dz 

The principal symbol acts as the Hamiltonian of the 
GO problem. Hamilton's equations define a vector 
field 

•(m) = p•. c3• - p•. 8½ (41) 

that may be considered a velocity field 

8• m = (8• •, 8• •) = •(m) = (p•, --p•) (42) 

The integral curves of the Hamiltonian vector field 
•(m) (called bicharacteristic strips in the theory of 
partial differential equations) may be considered as 
phase space trajectories (rays). Their projections on 
the space X are the rays of geometrical optics; i.e., 
with the condition r = •, (17) is recovered. In par- 
ticular, note that the projection of the velocity field 
(42) recovers the velocity field 

nx : O•m = (p•, -p•)• O• = p• (43) 

The relationships are depicted in Figure 4. 
Hamilton's equations are convenient for numerical 

integration. They have been used for ray tracing in 
the ionosphere [Haselqrove, 1955] and in mag- 
netoactive plasmas [Batchelor et al., 1980; Bernstein, 
1975]. 

Another aspect of the Hamiltonian vector field 
•(m) provides further insight into the GO problem. 
A flow V • associated with a vector field V over a 

space N is a one-parameter group of diffeomorp- 
hisms (a map f is diffeomorphic if it is one-to-one and 
onto and if f and its inverse f-• have continuous 
derivatives of all orders, i.e., are smooth.) of N into 
itself that is defined by the integral curves of V. The 

where the Hamiltonian H = (,•2/2m)-t-V and the 
force F =-V•. Note that the LLP GO problem 
coincides with finding the trajectory of a point parti- 
cle in a gravitational field (see Appendix C). 

The Hamilton equations on M associated with the 
3•(a•, D•) are defined by its principal 
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mø I 

I 

Fig. 4. The rays and their velocity vectors in the spaces X and 
K are the projections of the phase space trajectories and their 
velocity vectors. 

Hamilton flow is the set of transformations, denoted 
by H •, of the phase space M into itself such that 

and 

c•(H•m) = •f(m) (44) 

Høm = rn (45) 

i.e., a flow line H•rn coincides with the trajectory 
through m. This flow has several important charac- 
teristics. 

1. The principal symbol is invariant with respect 
to the transformations H•: 

p(H'm) = p(m) (46) 

2. The canonical two-form 

fl = d•c' dsc = dKldw 1 + ''' + d•c•dsc • (47) 

is preserved by the flow 

n(H•m) = f•(m) (48) 

This means the Hamilton flow is symplectic [ArnoI'd, 
1978]. 

3. The volume element co = d•vNd•c N = d•v • ... 

d•cnd•c •... d•c • is preserved by the flow (Liouville's 
Theorem) 

o•(H'm) = o•(m) (49) 

Equivalently, the Hamilton flow is incompressible: 

div •f = c%. PK + c•K. (-p•) = 0 (50) 

Hence, if •o = m and • =H'rn, then 

•- 1/2(•/•0) -- j1/2(,•,o/,•, ) = 1 (51) 

Therefore, its trajectories do not form a caustic, i.e., 
the phase space rays are caustic free. This is a major 
reason for applying the phase space approach to GO. 
Note that the conservation properties (46), (48), and 
(49) are frequently expressed as 

and 

œ•e P = 0 (46') 

œ•efl = 0 (48') 

œ•e•o = 0 (49') 

where œ• is the Lie derivative with respect to the 
vector field • IDeschamps, 1981, Appendix L]. 

3.3. Lagrangian submanifold of M 

The construction of the phase function in the GO 
problem requires the introduction of an n dimension- 
al Lagrangian submanifold of M. Note that a smooth 
n dimensional manifold A is a topological space that 
can be covered by a collection of open sets Ui, each 
of which can be mapped continuously by a smooth 
one-to-one (injective) function •Pi into a Euclidean 
space •t" and which satisfy the compatibility con- 
dition: on the overlap Ui • Uj of two sets, the func- 
tion •p•o•pj defined on •pj(U• Uj)is smooth. 
Roughly speaking, A locally "looks like" •t ". The 
manifold A is a submanifold of a manifold N, provid- 
ed there is a smooth injective mapping ½:A• N 
whose derivative map de is also smooth and injective 
at each point of A. A submanifold A of M is isotropic 
if the canonical two-form fl restricted to it is zero. If 

A is maximally isotropic (dim M = 2 dim A), then it 
is said to be a Lagrangian submanifold of M. 

Now consider the phase function (or eikonal--the 
action in physics) ß for a particular geometrical 
optics field. It defines the vector field •c = •x as a 
function of w. The pairs (w, •c) lie on the graph A of 
that function: 

A = {(•, •)1• = q)•(•)} (50) 

This graph is an n dimensional Lagrangian submani- 
fold of M(LSM) and (I) is its generating function. 

Conversely, an n dimensional Lagrangian subma- 
nifold A of M defines locally a phase function (I)(w) 
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under the following conditions: 
1. Over a simply connected open region W• of A 

that contains it, the projection nx is diffeomorphic. 
Therefore, over the open region Wx of X, which is the 
projection (nx) of W•, the diffeomorphism 

•, 1 :•/•l•,•---(•/•, K;) (51) 

defines •c as a function of x: 

• = •(•) (52) 

2. The one-form •c-d•c is integrable over Wx, i.e., 
there is a tI) such that •c = tI)x only if on Wx, 
d(•c.d•) = f• = 0 or, equivalently, curl tc I^ = 0. This 
means a phase at it2 is related to a phase at it• by 

F(22) - F(2•) + •c. dx (53) 
1 

where the path from it• to it2 does not have to be 
specified. Letting •ci = •x(iti)(i = 1, 2), we define 

(I)(x,) = F(2,) (54) 

Let those points of the manifold A at which the 
projection •x is diffeomorphic be called regular 
points; the others being called singular points. Clear- 
ly, a neighborhood of a singular point A can no 
longer be generated by a phase function over X be- 
cause the maps (51) and (52) are not defined there. A 
tangent plane to A at it = (•c, •c) can be described as 

TxA= {(•c', •') • M. (•'- •),- • k=l 

(55) 

(•'-•b = • s,,(•'-•),} /=1 

where the indices i and j are elements of the sets I 
and J, respectively, that satisfy I c• J = {0} and 
I v J = {1,..., n} and where 

rank (a•) + rank (sjt)= n (56) 

We call the term 

N(it) = n - rank (ai•) (57) 

the singularity index of it. At a regular point it,, (52) 
gives rank (a,,)= n, hence N(it,)= 0. In contrast, 
N(its) • 0 at a singular point its- Therefore, at its the 
tangent plane to A has become degenerate with re- 
spect to X and "vertical" (i.e., contains some direc- 
tions that are parallel to K). We denote by I5 all of 
the singular points of A; 15 is called the singular set 
or apparent contour of A. 

A submanifold A of M locally represents a solu- 

•2 

Fig. 5. 

I 

A 
I 

X 

TpA 

c(A) 

x 
Regular and singular points of a one-dimensional LSM 

A. 

tion of the eikonal equation p(•v, (I)•) = 0 if and only 
if (1) p(it) = p(•v, •c) = 0 for all it • A, i.e., A lies in •; 
(2) A is a Lagrangian submanifold of M; (3) N(it) = 0, 
where •v = nx(it). The obstructions to a global solu- 
tion (i.e., a generating function ß defined solely over 
X) are precisely those points at which (3) fails, i.e., the 
singular points. In fact, the caustic set of A 

c(A) = •(Z) (58) 

(the projection of 15 to X) coincides with the caustics 
of GO. Furthermore, the singular points can now be 
interpreted as the points at which the branches of A 
join together or, equivalently, where A bifurcates. 

These features of a one-dimensional, two-branched 
LSM are shown in Figure 5. The points it• and it2 of 
A are regular points. They both project to the same 
point •v on X, but they belong to different branches 
of A. The tangent plane T o E at the singular point 
p -- E is shown. It is vertical, i.e., parallel to K. The 
caustic point of A--c(A)---is indicated. The point p is 
clearly the join of the two branches of A. The de- 
generacy in the derivative of nx at p is also apparent 
as •v approaches c(A). 

Now reconsider Figure 5. Although A is not regu- 
lar with respect to X near E, it is regular there with 
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Fig. 6. 

A10 = A1 FI A 0 

A2o = A2F) A 0 

x c(A) 

x 
Decomposition of a one-dimensional LSM A into regular 

and singular sets. 

respect to K. Thus the diffeomorphism 

n• x: •c • (a:, •c) (59) 

defines a neighborhood of p, W•, as a function of •:, 
w = s(•c) (60) 

and W• can be generated by a phase function •(•:) 
defined over K as 

w• - {(•, •) I • - - %} (61) 

If •:i- •g(2iXi- 1, 2), the relationship of the phases 
F and W is 

ß (•c,) = r(/t,) (62) 

where 

F(it2) = F(itx) - a:. d•c (63) 
1 

The minus sign is introduced so that d(-az.d•c) = 
the canonical two-form, in the same manner that 
d(•:. d•b)= fl. Consequently, by decomposing A into 
the "regular" sets Ax and A2 containing /Ix and 
and into the "singular" set Ao containing p as shown 
in Figure 6, one can associate to A the phase func- 

tions {tI)•, (I)2, klJ0} that generate those sets. The gen- 
eral case is treated in an analogous manner. 

Let the point a• = (x, z), where x = (x•, ..., x j) and 
z = (z•, ..., Zn-), and let the wave vector •: = (•, 0, 
where • = (•, ..., •j) and • = (•, ..., •n-)- We call 
the space Y, whose coordinates 3•- (•, z) are com- 
posed of (n -j) components of the position vector a: 
and j components of the wave vector •: correspond- 
ing to different directions, a hybrid space. A contri- 
bution by Maslov was the realization that, if an LSM 
A is no.t regular over X in a neighborhood W• of a 
singular point p, there is at least one hybrid space Y 
with respect to which p is regular, i.e., with respect to 
which the projection map 

r•r:M--} Y:(w, •c) = (x, z, •, •)•3• = (•, z) (64) 

is diffeomorphic over W•. Thus W• can be defined 
through • • as a function of 3• 

{• = s(y) (65) 
and generated by the phase function •(y) defined 
over Y as 

W• = {(w, •c) l• = •z(v) x = -•e(v)} (66) 

where if 3• = nr(2i)(i = 1, 2), 

and where 

(67) 

F(it2) = r(it•) + •. dz - x. d• (68) 
1 

Consequently, to a given LSM A, one can associate a 
set of phase functions {(I),, •} that are defined over 
the spaces X and Y and that generate the regular 
and singular sets {A,, As} of A. This description is 
completed by defining how the phase functions (I)• 
and •s fit together in an overlap region A• r• At. 

Return once again to Figure 6. The overlap region 
A xo = A• r• Ao is described equivalently by the rela- 
tions •: = a(a•) and a• - s(•:) and is generated equiva- 
lently by the phase functions (I)x and Wo so that •: = 
q)xx and -a:- WoK. This means that over Wxo the 
map a = s-• and that the phase Wo is the Legendre 
transform [Ziolkowski, 1980; Guckenheimer, 1973, 
1974a, b] of (I)x (denoted by •o = Z•'(I)x)so that 

'I'o(•:) = *•(s(•)) - •. s(•:) (69) 

or equivalently, (I)• is the Legendre transform of W o 
(denoted by (I)• = ff'Wo, where if' = •a-• = •a) so 
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that 

ß ,(•) = 'I'o(•(•)) + • .•(•) (70) 

Similarly, in the general case the phase functions •, 
and • are related by a Legendre transformation in 
the overlap region A,, = A, • A,. 

Recall that the boundary values of the field, and 
hence the initial values of the GO field, are given in 
the form of a function e•*a on a surface Xo c X. The 
initial wave vector 

•c o = (I)• Ixo (71) 

at •o • Xo is defined by the phase •b(Xo) of that func- 
tion as follows. The function •b defines the gradient 
Vr•b(•o), which is the projection of too on the plane 
tangent to Xo at point •o. However, the vector too 
must belong to the dispersion surface • at •o, i.e., 
p(a:o, •Co)= 0. Therefore, with the given sense of 
crossing of the field through Xo (for instance, accord- 
ing to the side of Xo occupied by the sources), the 
vector •Co is unambiguously determined. The pairs 
(•o, too) as a:o describes Xo generate a particular 
surface Ao (an isotropic submanifold of dimension 
n- 1) in the phase space M that lies in •. Since the 
principal symbol p and the canonical two-form fl are 
invariants of the flow, the surface A• =/-PAo also lies 
in • and is isotropic. Therefore, the flow-out of Ao 
through H •, 

A = (J H•Ao (72) 
•>•0 

is n dimensional, hence an LSM, and lies in •. 
Consequently, the LSM A associated with a particu- 
lar equation (•(•, D•) defines p(•, to)) and initial con- 
ditions (•b and sense of crossing with the dispersion 
relation define Ao) lies in • and is the union of the 
phase space trajectories that originate in Ao. The 
latter description is depicted in Figure 4. 

The LSM's in the examples are readily obtained 
from the equations for the phase space trajectories 
and the initial conditions. For both examples the ini- 
tial submanifold 

where 

and 

^o = {too = (•o, 0, ½o, •o)} (73) 

{•_.o LLP (74) •o = qb,•o(Xo)= xo/b HMP 

-4- (1 - •),/2 I•ol <• 1 (75) •rø= q-i(•-l) '/2 I•ol>l 

The LSM for the LLP is 
! 

A = {m = (x, z, •, •) • M I 7(x, z, •) 

_= (•2(•)/•) _ (• _ z) = 0} (76) 

Clearly, A lies in the dispersion surface • defined by 
(36). For the HMP 

A = {m • M [ 7(x, z, •) -- x + b• - [•/•(•)]z = 0} (77) 

where the dispersion relation gives •(•) = (1 - •2)1/2, 
the square root being defined as in (75). The tangent 
plane turns vertical (i.e., is parallel to a wave vector 
axis) in the LLP when 7c - 0, hence 

y• = {m • ^ I • = [•(•r - z)]•/• = o} (78) 

and in the HMP when 7½ = 0, hence 

•2 = {m • A I b -(z/• 3) = 0} (79) 

Upon elimination of the wave vector coordinates, the 
corresponding caustic sets are obtained' 

c(A) = {(x, z)• X Iz = •} LLP (80) 

c(A) = {(x, z) • X l(x/b) 2/3 + (z/b) 2/3 = 1} HMP (81) 

3.4. Index 

The GO description is completed by the introduc- 
tion of an index that will determine the phase shift 
when a ray passes through a caustic. Although it is 
commonly associated with the amplitude, the index 
can be interpreted geometrically in terms of various 
properties of the LSM A. It was first interpreted in 
this manner by Maslo• [1972], although Keller dis- 
cussed its behavior in an analogous context earlier 
[Keller, 1958]. Arnol'd [1967] developed a descrip- 
tion of the index in terms of the tangent planes of A 
rather than A itself. H6rmander [1971] later refined 
that description and modified its representation to 
conform with his Fourier integral operator ex- 
pressions of the asymptotic solution. Our discussion 
will be slanted toward Maslov's original definition. 

The singular set •; has co-dimension [Poston and 
Stewart, 1978] + 1 in A (in the examples this gener- 
alizes the property that •; is one-dimensional). Fur- 
thermore, a singular point p can be characterized 
by the condition that O•/Otq- 0 for some 
i= { 1, ..., n} (T o A is vertical over X and parallel to 
K along the direction •q). The term r3a:•/r3•:• has a 
different sign on both sides of •;; hence the singular 
set •; is orientable. This sign does not depend on the 
choice of variables • and tq. (Equivalently, these 
conditions mean that with an arbitrarily small defor- 
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X 3 

X 2 

X5 •o 

X 1 

X 6 

X 4 

Singular Set of A = {a,b,c,d,e} 

ind 7i = O, +1, O, + 1, +2, +3 •),ri-- X i - X 0 
for i= 1 ..... 6 

Fig. 7. Calculation of the index on a one-dimensional La- 
grangian submanifold of M. 

mation or rotation, A can be put into "general posi- 
tion" with respect to the projection map •x.) The 
positive side of 12 is taken as the one on which c%vi/ 

The index (ind) of an oriented curve 7 whose end- 
points are not contained in I2 and that does not coin- 
cide with 12 is defined to be the index of intersection 

of • with I; 

ind 7 = n+ - n_ (82) 

where n+ is the number of positive crossings of 12 
(i.e., the number of times 7 crosses 12 from the nega- 
tive side to the positive side) and n_ is the number of 
negative crossings. Thus ind is a locally constant, 
integer-valued function on A. 

A one-dimensional example that illustrates the cal- 
culation of the index is shown in Figure 7. The posi- 
tive and negative sides of each point in 12 = {a, b, c, 
d, e} are indicated, and a vector is shown that indi- 
cates the sense of positive crossing at these points. 
The indexes of the curves 7i for i= 1, ..., 6 whose 
initial point is 2o and whose terminal points are 2• 
are0, +1,0, +1, +2, +3. 

The index ind can be used to define two separate 
indexes, ind and Ind, whose values can be identified 
with characteristics of the GO solution. Let 12: be the 

component of 12 in A:. In the examples, 12: is a set of 
distinct points. Let W•i and W o be disjoint regular 
sets of A:, and let 2:• and 2 o be points in those sets. 
The index ind of a path l[2:•, 2o] in A,, from 2:• to 
2 o is defined as 

ind l[2•i, 2•j] = ind l[2•i, 2 o] = n+ - n_ (83) 

where now n+[n_] is the number of positive [nega- 
tive] crossings of 12: by l[2:i, 2o]. If 2:•, 2:i, e W•, 
then 

and 

ind 112•,, 2:,,] = 0 (84) 

ind/(2,i. 2 o] = ind/[2,i,, 20] (85) 

This index defines the relative values of the phases of 
the terms constituting the GO solution at a point of 
intersection of two or more rays. Similarly, the index 
Ind of the phase space trajectory H:2o through the 
points 2o and 2: = H:2o is defined as 

Ind H'2o = ind H'2o = ind/[2o, 2,] (86) 

This index describes the phase shift in the GO solu- 
tion as a ray passes through a caustic. It coincides 
with the Morse index [Maslov, 1972; Arnol'd, 1967]. 

As shown in [Maslov, 1972] and [ArnoI'd, 1967], 
for any two trajectories H:2o and H:2• the indexes 
ind and Ind satisfy the relation 

ind l[2g, 20] + Ind H•2o = Ind H•2b + ind 1[2;, 2•] (87) 

A 
Hrx 0 

Hrp 0 

A 

3'0 HrXg 3," 
Po 

HrXg 

Fig. 8. Phase space trajectories connect points on the initial sub- 
manifold A o and its flow out A T - H•Ao . 
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Fig. 9. The z - z o level curve of the LSM A. 

where it, = HUto and it', = H'it• in A,. This means the 
index of it, relative to it; is independent of the path 
connecting them. Note that this correlates with the 
path independence of the definition of the phase 
function on A. Choosing a reference point ;t o for the 
index in Ao, the index at a point it in the examples 
reduces simply to the Morse index of the phase space 
trajectory H'ito through it (i.e., since no caustics inter- 
sect Xo, Ao itself is regular and ind/[ito, ;to] - 0 for 
all ;to e Ao). We denote this simply as 

ind it = Ind H*ito (88) 

The calculations of the indexes ind and Ind are 

illustrated in Figure 8. The trajectories through the 
pairs (ito, it), (it•, it'), and (;tg, it") are H•ito, H•it•, and 

H•it•, respectively. The trajectory H•po passes 
through the singular points Po and p and is a subset 
of •;. One has ind l[itg, ;to] = ind l[it•, ;to] = 1, ind 
l[itg, it•] = 0, Ind H•itg = Ind H•ito = 0, ind l[/l", 
it'] = ind l[it", it] = 1, ind l[it', it"] = 0, and Ind 
H•it• = 1 such that 

ind l[itg, it•] + Ind H*it• = Ind H*itg + ind l[it", it'] 

and 

ind/[itg, ;to] + Ind H*ito = Ind H*itg + ind l[it", it] 

Since it indicates that a phase space trajectory has 
crossed the singular set, the index also marks the 
passage of a GO ray through a caustic. This is de- 
picted in Figure 9 and 10. In Figure 9 a segment of 
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ind ?t I = + 1 

/nd X 2 = 0 

xC X 

Fig. 10. The z -- z o plane shown in Figure 9. 

the z = constant = Zo cross section of the HMP A is 
shown. The phase space trajectories H•itox and H•ito,. 
pass through the points itx and it2, which lie in differ- 
ent branches of A. Those trajectories' project onto 
GO rays 1 and 2 as displayed. Furthermore, the 
points it x and it,. are regular; their projection on X is 
•c. The projection of the singular point p is C; it lies 
on the caustic of the GO rays. Figure 10 displays the 
contents of the z = Zo plane in Figure 9. The positive 
side of the singular point p is indicated. Since the 
trajectory H•ito,. has not yet crossed E upon reaching 
it•., the index of it• is 0. As shown in Figure 9 this 
corresponds to •c being a point on ray 2 before it has 
passed through the caustic. In contrast, from Figure 
10 it is immediately seen that the index of it x is 
q- l(ind l[it•., it•] = q- 1) and hence, equivalently, that 
H•itox has crossed E, that it• lies on a different 
branch of A than it2, and that •c lies on ray 1 beyond 
the caustic. Note that the intersection of two rays at 
•c corresponds to a• having two preimages, i.e., that A 
has two branches over 

3.5. Half densities 

To complete the phase space GO representation, 
amplitudes on the LSM A and their variations along 
the phase space trajectories must be defined. This is 

Y have the forms 

o• x = f (a;) I dXl (89) 

o• - a(v) IdYl (90) 

where f(•) and g(•) are complex-valued functions 
over X and Y and the (unit)densities 

dX = dw • ... dw" (91) 

dY = d• • ... d•" (92)' 

If the transformation # maps X to Y diffeomorphi- 
cally, 

#:X-• Y:w•-}• = #(w) (93) 

and if 

J(v/w) = dY/dX (94) 

is the Jacobian of that transformation, the densities 
•x and •r are related as 

•x = #*•r (95) 

(where #* is the pullback through the map # [Des- 
champs, 1981, Appendix I]) hence their amplitudes 
(coefficients) are related as 

f(w) = •*[g(•) I J(x/•) I- •] - g(•(•)) I J(•/•) I (96) 

This represents the well-known "change of variables" 
result from integration theory. 

Similarly, half densities on X and Y are defined to 
have the forms 

l•x = A(w) I dX I •/2 (97) 

/• = •(•) lay I •/• (98) 

They are related through a diffeomorphism # as 

fix = lU*fir (99) 

and their amplitudes satisfy the transformation rule 

A(w) = B(#(•)) I J(•/•) I '/• (100) 

This rule also takes the more symmetric density form 

A2(•) IdXI- B2(3•)IdYl (101) 

Now we take 2 = (itx, ..., it,) to be the coordinates 
of the LSM A and let its unit density be dA = dit x .-- 

accomplished with the introduction of densities of dit n. (Note that, rigorously, the coordinates iti of A 
order 1/2, half densities for short. The connection 
between amplitudes defined on A and those defined 
on X and the hybrid spaces Y is provided by the 
transformation properties of the half densities. 

First, consider the more familiar concept of the 
volume density, density for short. Densities on X and 

are related to its phase space coordinates itvs = (x, •c) 
through an (immersion) map t as itps = t(iti). We will 
not make this distinction explicit because it would 
add unnecessary complications to the discussion. It is 
simply a matter of treating A itself or as a subset of 
M. The resultant inaccuracy in all of the following 
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expressions is corrected by replacing any projection 
map r• with r• o t.) Over a regular set W• of A the 
amplitude h of the half density on A 

O^ - h(2) IdA 11/2 (102) 

is related through the projection map r•x and the 
half-density transformation rule to the amplitude of 
the half density (97) on X as 

h(2) = A(r•x(A))lJ(w/2)11/2 (103) 

Similarly, over a set W• of A that is regular with 
respect to Y, the amplitudes h and B are related as 

h(X) - B(r•r(X)) I J(v/X)11/2 (104) 

Consequently, in an overlap region W• c• W• the am- 
plitudes A and B must satisfy the consistency relation 

A(w) = B(#(w)) l J(3,/w)11/2 (105) 

where the diffeomorphism 

# = rrr o •.• 1 (106) 

Equations (103)-(105) provide the desired connec- 
tions between the GO amplitudes in A, X, and Y. 

The transport equation for the phase space GO 
amplitude h in the examples is obtained as follows. 
The general case is treated briefly in Appendix D. 
Equation (23), which describes the variation of the 
divergence factor along the GO rays, has the half- 
density representation 

• I dX I 1/2 = «(div v) I dX 11/2 

Since 

œ,•fix = (œ,•A) IdX[ x/2 + Aœ,• IdXI •/2 

= •zzA+•(divv)A I dXI 1/2 

(107) 

(108) 

port equation 

(d/dz)h = 0 (112) 

This means the phase space GO amplitude is a con- 
stant along a trajectory: 

h(H•;•o) = h(2o) (113) 

The initial values h(,•o) on Ao are obtained from 
those given on Xo through the transformation rule 
(103): 

h(2o) - A(r•x(2o)) l J(xo/2o) I '/2 (114) 

4. THE FIELD NEAR A CAUSTIC 

Maslov recognized the importance of the LSM A 
and the central role it can play in producing global 
solutions to the GO problem as well as uniform rep- 
resentations in the caustic regions. In his approach 
the problem is transformed (lifted) from the space X 
to a problem on a particular LSM A where, as noted 
earlier, the trajectories present no caustics. A GO 
field compatible with the initial conditions in X is 
constructed on A and transformed back to the space 
X by means of an operator called the canonical oper- 
ator. When A is regular over X, the canonical oper- 
ator projects the GO field on A to X; the resulting 
field coincides with the GO field in X. However, 
when difficulties arise in that projection, which hap- 
pens when a trajectory crosses the apparent contour 
E of A or, correspondingly, when a ray meets a caus- 
tic, the canonical operator looks at the GO field on 
A from a different point of view by projecting it on a 
hybrid space Y. It then generates the desired field in 
the caustic region as the Fourier transform of that 
hybrid space GO field. There, uniform approxi- 
mations are derived readily from this representation. 

the half-density form of the transport equation (23) in 
both examples is 

œ•flx -- 0 (109) 

It is readily shown (see Appendix D) that this is the 
projection on X of the equation satisfied by/•^ on A' 

œ•]•^ = 0 (110) 

Moreover, the incompressibility of the Hamilton flow 
gives 

œ•e IdAI •/2 = 0 (111) 

Therefore, the amplitude h of fi^ satisfies the trans- 

4.1. Fourier transform 

Following the notations of Maslov [1972] and 
Leray [1972], the Fourier transform 

•Oc/w)' f(•)•-}foc) = c; e-V•'xf(•) dX (115) 
where the constant c - (-v/2rO n/2 is precisely defined 
by taking its argument equal to (-nr•/4), 

C = (k/2•) n/2 exp (- inr•/4) (116) 

and where the integration extends over the entire 
space X. The Fourier transform •(a•/•c), which is the 
inverse of .7(k/•c)' .9 - •-•, results from replacing v 



1014 ZIOLKOWSKI AND DESCHAMPS' ASYMPTOTIC FIELDS NEAR A CAUSTIC 

and c in (115) by their complex conjugates, i.e., by 
- v and 

•-- (+ v/2rc) n/: -- (k/2rc) n/: exp (into/4) (117) 

This definition of the Fourier transform and that of 

its inverse are only variations of the ordinary one. 
The inclusion of the factor k in the exponent of the 
kernel of the transform and the factors (_+ v) n/• facili- 
tate asymptotic considerations. 

4.2. Maslov's canonical operator 

The connection between the GO field constructed 

on A and the approximate solution in the space X is 
provided by the canonical operator oYF^. The oper- 
ator is a linear mapping of functions defined on an 
LSM A to those on X that has the following charac- 
teristics. If 2 is a point in a regular set W• of A, it 
assigns to the GO amplitude h at 2 the expression 
z•F^ h at the point w = r•x(2): 

off ̂h(w) = e't•{x)h(nj•(a•))lJ(2/a•)l •/2 (118) 

where the phase 

R(a•) = k(I)(a•)- (r•/2) ind [r•fc •(a•)] (119) 

the generating function of W• being defined by (53) 
and (54) as 

tI)(a•) = 4•(a•o) + f••:(a•)-da• (120) 
On the other hand, if 2 is a point in a set Ws of A that 
is singular over X but regular over Y, it gives 

off^ h(:c) = J(a•/v)[eiS{•')h(n• a(V))I J(2/V ) I a/2] (121) 

where 3• = nr(2)and the phase 

S(v ) = •(y)- (r•/2)ind [r•{ •(V)] (122) 

the generating function ß of Ws being defined by (67) 
and (68) as 

•(v) = ½(Vo) + f•i(•' dz - x.d•) (123) 
Note that, as 3• = it(w), the initial point 3'o = tt(Wo)- 
Furthermore, the initial manifold Ao is also regular 
over Y, hence the initial phase ½ in Y is the Legendre 
transform of 4>: 

½ = •a•b (124) 

The minimum number of wave vector coordinates in 

Y equals the maximum singularity index N(2) for 
2 • Ws. If there are several points 2t on A that proj- 

ect to the same point w in X, and if the it, l • r[l • s] 
are regular (singular) over X, then the canonical op- 
erator assigns to the GO amplitude h t (the restriction 
of h to a neighborhood of it) the value 

off^ h(a•) = • off^ h,(a•) + • off^ hj(a•) (125) 
ier jes 

where each of the terms in the first sum is defined by 
(118) and the terms of the second sum by (121). 

The canonical operator expressions are related 
readily to GO fields. From (51) and (113) one obtains 

h(r•j •(a•))I J(2/w)I •/2 -- h(r•j •(a•o))I J(2o/• ) 1•/21J(2/Wo) I •/2 

-- a(a•o) l J(a•o/2o) I•/• l J(•o/•) I •/• 

= a(a•o) lJ(a•o/a•)I •/2 (126) 

Furthermore, as shown in [Ziolkowski, 1980], 

5•- •/2(•/a•o) = I J(a•/a•o) I- •/2 exp { -i(r•/2) ind [r•c •(a•)]} 

(127) 

i.e., the index of the Jacobian matrix II 
(the number of negative eigenvalues) equals the 
Morse index. Consequently, at a regular point the 
canonical operator returns the GO field (27)' 

off^ h(a•) = eV*{x)A(a•) = u(a•) (128) 

Similarly, it can be shown that 

eiS{•')h(rc{ a(V))I J(2/V ) I a/2 - eV'V{s')B(v) = v(V ) (129) 

where 

B(V ) = 5•- •/2(V/vo)b(vo) (130) 

and 

b(vo) = h(r• •(Vo))J•/2(2o/Vo) = a(#(•o))J•/2(•o/Vo) (131) 

is the GO field in the mixed space Y. In particular, 
the operator •(•, D•), defined by the Fourier trans- 
form property 

•(v, D,)= •(V/a•)o •(a•, D•)o •(a•/V ) (132) 

and the initial conditions (124) and (131) define the 
continuation problem in Y corresponding to the one 
in X. The projection on Y of the phase space trajec- 
tories gives the rays in Y, and because the principal 
symbols of the operators • and • are identical, those 
rays have the velocity field 

d 

d-• (•' z)= • = (Pc(V, •,)- Px(V, •,)) (133) 
Thus 

div f = 0• '[Pc(V, •,)] + 0e. [-Px(V, (134) 
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and •P = •(I), so that 

d 
(135) 

Furthermore, the projections of the dispersion rela- 
tion and the amplitude transport equation are 

p(3•, •,) = 0 (eikonal) (136) 
d 1 
-- B +- (div •/•)B 0 (transport) (137) 
dr 2 

Consequently, 

•(g,, D•)v(g,) = eV'V('){p(g,, Ud•)B(g,) 
•B(v)+•(div•)B(v ) +O(v-2) =0 (138) 

Since it also satisfies the initial conditions, v(•) is the 
GO field in Y. Hence, at a singular point, the canoni- 
cal operator returns the Fourier transform of the 
hybrid space GO field 

•A h(•)= •(•/•)[v(•)] = •(•) (139) 

Note that the field a(•) is shown immediately with 
(132) and (138) to be an asymptotic solution of (1)' 

•(•, •).(•) = y(•/v)[•(v, 0.)v(v)] • 0 (140) 

4.3. The asymptotic Fourier transform 50 

The Fourier transform 50c/x) takes the function 
f= erdA, defined over X, to the function f, defined 
over the dual space K' 

f(•c) = .,•(•:/a:)[f(a:)] = c f e4•(•)-•'•A(a:) dX (141) 
Assume that (for a given •c) the phase [(I)(•)- •c. •] 
has an isolated nondegenerate stationary point •s = 
s(•) (a point •s is a stationary point with respect to • 
of the function (I)(•) - •c-• if, for a given •c, (I)•(•s) = 
•c; it is also nondegenerate if the Hessian of (I) at •s is 

Hess q)(%) = det (•, •(I))(•:) :• 0 

Therefore, in the vicinity of •c the function s = (I)j •: 
•c•-} a•s. The stationary phase approximation off has 
the form 

f(•:) • e•"e(")B(•:) + e •"e(") • v-.•B.•(•:) (142) 
j=l 

where the phase tp is the Legendre transform of (I), 

•P(tc) = (l)(s(tc)) - to. s(tc) (143) 

and, for instance, the amplitude 

BOc)= A(sOc)) (dX/dK) •/2 (144) 

so that 

B • dK = A2 dX (144') 

The higher-order amplitudes are given, for example, 
in Ziolkowski and Deschamps [1984a]. Note that 
(144') represents a zeroth-order approximation of 
Parseval's theorem. When there are no stationary 
points within the support of A, f is asymptotically 
null' f(•) • 0. When there are several roots, each one 
contributes to f an asymptotic expansion through the 
same process as when there is only one stationary 
point. This, of course, assumes the critical points are 
isolated. If any of the stationary points were "near" 
to one another, the above process would be inad- 
equate and a uniform expansion would be necessary. 

We define the asymptotic Fourier transform (AFT) 
of range zero ($o(•/•)) as the operator obtained by 
truncating the asymptotic series (142) to the term 
independent of v, i.e., as the operator taking a func- 
tion of the form f= e•*A over X to the function 
F = e•VB over K, its phase ß and amplitude B being 
defined by (143) and (144), respectively' 

Yo(•/•)' f(•) = e•*(•)A(•)• F(e) 

= e4*(:(•))-•':(•A(s(•)) (dX/dK) •/2 (145) 

Similarly, with •(•/•) we construct the AFT •o(•/•) 
so that 

ß o(•/•)' G(•) = e•*(•)b(•)•q(•) = e*(•)a(•) (146) 

where ½ = •a½, hence 

and 

or 

½(•) = ½(.(•)) + •. 

a(ac) = b(o'(ac)) (dK/dX) :/2 

(147) 

(148) 

% = a(a•) being the root of the stationary point con- 
dition ½•(•Cs) = -w. The (partial) AFT's S'o(3da:) and 
5o(w/3•) are defined analogously--the coordinates 
unchanged in going from X to Y act as parameters. 

The AFT 5o is a local operator and satisfies 
properties similar to those satisfied by the exact 
transform 5. For instance, as shown in Ziolkowski 

a 2 dX = b 2 dK (148') 
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and Deschamps [1984a], 

•0 - 7-• • (149) 

Since if' = •a-•, hence a = s-•, this result is easily 
confirmed by using (145) and (146). Similar consider- 
ations are possible for higher-order terms; the defini- 
tion of the AFT of range m and its properties are 
given in Ziolkowski and Deschamps [1984a]. Its ap- 
plications in geometrical optics are discussed in Ziolk- 
owski and Deschamps [1984b]; they also were report- 
ed in Ziolkowski and Deschamps [1980], and Ziolk- 
owski [1980]. Of particular interest is the proof that 
the GO solutions along the rays of corresponding 
continuation problems in two hybrid spaces are re- 
lated by the AFT. This means 

v(v) - .,•0(V/a•)[u(a•)] (150) 

Consequently, Maslov's solution to the continuation 
of a field through a caustic region has the alternate 
compact representation' 

u(a•) (151 a) 
if a• is away from any caustic 

"(•) = {•(•/V)O •o(V/•)}[u(•)] (•5•b) 
if a• is near a caustic 

which was first introduced by Ziolkowski and Des- 
champs [ 1980]. The AFT operator Wo effectively can- 
cels the singularities in the GO field u(a•). Clearly, if a• 
is sufficiently far from a caustic, the operator W can 
be replaced with Wo in (15lb), and (149) returns 
(151a) immediately, i.e., away from a caustic, (15lb) 
reduces to the GO field u(a•). 

4.4. Uniform asymptotics 

All of the above representations of the field at a 
point x near a caustic share a common "oscillatory 
integral" form [Hb'rmander, 1971; Duistermiiat, 
1974]: 

•(x, z) = f e•r(•'•;")g(•, z) d• (152) 
Away from a caustic, the stationary phase approxi- 
mation of this integral recovers the GO field. How- 
ever, that approximation breaks down near a caustic 
because the stationary points of F (with respect to •) 
coalesce, i.e., are degenerate there. The caustic points 
are the singular points of the stationary phase map- 
ping a. Equivalently, the stationary point set of F 
(those x, z, • such that F• = 0) generates the LSM A, 

and the degenerate critical point set of F coincides 
with the singular set 5;. 

Uniform asymptotic approximations to the oscil- 
latory integral (152)can be obtained. The general 
representation (152) is transformed to a canonical in- 
tegral corresponding to the specific type of degener- 
ate critical point, hence caustic, involved. Each caus- 
tic can be characterized as an elementary caustic or a 
combination of elementary caustics. Uniform ex- 
pansions of the corresponding canonical integrals are 
known. For instance, the Airy function is character- 
istic of the fold caustic that occurs in the LLP. Simi- 

larly, the parabolic cylinder function correctly de- 
scribes the field behavior near the cusp point of the 
caustic in the HMP. The fold and cusp caustics are 
the only elementary caustics in two dimensions; any 
other two-dimensional caustic can be decomposed 
into fold and cusp components. The general scheme 
that describes the correspondence between caustics, 
singularities of mappings, their unfoldings, oscillatory 
integrals, and their resultant uniform expansions has 
been discussed, for instance, by Arnol'd [1968, 1972, 
1974] and by Duistermiiat [1974]. These concepts 
also are central to catastrophe theory [Poston and 
Stewart, 1978], a subject beyond the scope of this 
paper. 

These results can be interpreted in another way. If 
the structure of the caustic is known, one can choose 
locally the canonical integral form of (152). The solu- 
tion can be generated by matching the asymptotic 
expansion of the integral away from the caustic to its 
GO values. This is the essence of the "Relevant 

Function Method" advocated by Ludwig [1966] and 
Kravtsov [1964a, b]. In comparison, the Maslov 
method has the advantage that the solution is gener- 
ated in an integral form that is valid in any region of 
the caustic and that can be transformed locally into 
this relevant function form. 

4.5. Linear layer problem 

According to Appendix A, the GO field along each 
of the parabolic rays in the linear layer problem has 
the form 

u(x, z) = exp {v[(I)c(X) - (2/3oO•3(z)]}(•o/•(z)) •/2 (153) 

where the phase at the caustic z - •e = •o2/0• is 

(I)c(X) = •o x + (2/300•0 • (154) 

Since two rays intersect each point in the lit region, 
the total GO field is 

-(•) = eV*-(x)I •0/• I •/2 + eV*+(x)e-i•/21•o/• I •/2 (155) 
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where the phases 

•ñ(cc) = •c(X) + (2•a/2/3)(.o•e -- 2) 3/2 (156) 

and the term 

I•l = I•lX/21•- zl x/2 (157) 

The second term represents the field along the ray 
descending from the caustic and contains the (n/2) 
phase shift characteristic of the passage through a 
fold caustic. 

The solutions to Hamilton's equations in Appen- 
dix A indicate that the hybrid space Y with coordi- 
nates (x, 0 is free of caustics. In fact, the rays in Y 

{•=Xo+ •o• (158) = •o - (•/2)• 

as shown in Figure 11, are all parallel. The relation- 
ship of these rays to those in X and to the phase 
space trajectories is illustrated in Figure 12. The 
hybrid space differential operator 

-•-(3•, D,)= •(•,/a•)o •'(a•, D•)o •-(a•/3• ) 

= « [D. = - --(1 -- (:)} (iS9) 

yields the GO equations 

•2 _ •t•c -- (1 - •2) = 0 (½ikonal) (160a) 
d 1 
-- B + •,, B = 0 (transport) (160b) 

Thus the hybrid space GO field is 

vt•,) = ½xp [v[O•(x)- •( + •s/3•]}(-2•o/•) TM (161) 

Fig. 11. The hybrid space rays in the linear layer problem. 

Phase space Z -œ-- trajectory 

x 

Fig. 12. The hybrid space rays in the homogeneous medium 
problem. 

Consequently, the field near the caustic is 

(162) 

where the Airy function 

Ai(w) = • ½xp [i(wt - t3/3)] dt/2n (163) 
The Airy function behavior characteristic of a fold 
caustic has been obtained simply and naturally with 
Maslov's method. Note that the k 1/6 dependence, 
also characteristic of the increased field intensity near 
a fold caustic, has been obtained naturally too. 

The satisfaction of (150) is readily verified. The 
root z = s,,(0 of •z(x, s,,(0) = • is z = (•o • - •2)/•. 
Thus the transformations of the phase 

•x, s•,(O) - •' s,,(O = •(Xo) 

+ •o(X - Xo) + (2/3•)(•g - •) - •(•o 2 - •2)/• 

= •o x - • + •3/3• = •P(x, 0 (164a) 

and the amplitude 

s(O) (az/ao = 

: (--2•o/•) TM = B(x, 0 (164b) 

yield 

•-o(3•/a•)[u(a•)] = v(•,) (164c) 

Clearly, the representation {-•(w/3•)o •o(3dw)}u(w) 
also reduces to (162). 
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2 

1 

X 

•3 0 '•2 '•1 o• X 0 

Fig. 13. Ray system generated by the initial phase •b(Xo) = -Xo•/2b and its envelope•a cusp caustic. 

4.6. Homogeneous medium problem 

According to Appendix A, the GO field along a 
ray in the homogeneous medium problem has the 
form 

u(•) = exp [v(r - Xo•/2b)][b • b e _ Xo 2 1 TM -- Xo 2 -- br' a(xo) (165) 

The ray system and its envelope (the cusp caustic) are 
illustrated in detail in Figure 13. The region enclosed 
by the support of the initial field ([ x01 -< •), the caus- 
tic, and the line segments from the endpoints (+ •, 0) 
to the caustic points (+Xc, Zc) where Xc = q-o•3/b 2 
and zc = b(1- (o•/b)2) 3/2 is denoted region I. The 
subset of region I bounded by the caustic and the 
rays with direction cosines • = +•/b intersecting at 
(0, z'), z' = (b 2 - •2)•/2, is denoted region I'. In region 
I, for 0 < z < z c there is only one ray through each 
point. In contrast there are two rays through each 
point in region I with z > z' but not in region I', and 
there are three rays through each point in region I'. 
As shown, the point P in region I' is the intersection 
point of rays 1, 2, and 3. The wave vector (•, •) of 
each of these rays is also indicated. Notice that both 
rays 1 and 3 have already encountered the caustic; 
ray 2 has not. If P were near the positive x fold 

portion of the caustic, rays 1 and 2 would nearly 
coincide. At most, one real ray reaches any point in 
region II, the complement of region I. The rays with 
• = + •/b are the shadow boundaries in region II. 

The corresponding level curves of A in the (x, •) 
plane at constant z values are shown in Figure 14. 
The intersection of the x = constant planes with 
those level curves also are given; they will be called 
"projection lines" for short. Since z = •, these level 
curves represent the curves At = H•A0 ß The z = 0 
curve in Figure 14a is A0. The projection lines indi- 
cate that every point of A0 is regular over X and the 
hybrid space Y with coordinates (•, z). The curves in 
Figures 14b, c, and d are representative of the level 
curves for 0 < z < Zc, Zc < z < z', and z' < z < b, re- 
spectively. The projection lines in Figure 14b show 
that there is only one ray through a point in the 
corresponding portion of region I. In Figure 14c the 
projection lines indicate, for example, that two rays 
intersect at point P. Furthermore, the p•,ojection line 
through the caustic point C intersects A at the corre- 
sponding singular point. The connection with Fig- 
ures 9 and 10 is immediate. The projection lines in 
Figure 14d indicate the intersection of three rays 
through a point in region I' and the passage of only 
one ray through a point in region II. Note that the 
coincidence of the two rays at the caustic is clearly 
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z=0 
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Zc•Z•Z' 

PC 

z=b 

x 

O•z•z c 
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z'•z•b 

1 

D 

z•b 

Fig. 14. Level curves of the Lagrangian A - {x + b• - [•/•(•)]z}. 

indicated by Figures 14c and d. The curve in Figure 
14e represents the level curve through the cusp point 
(0, b). A comparison with Figure 14d indicates the 
occurrence of the coincidence of three rays at the 
cusp point. Every other point is regular over X. 
Figure 14f shows that only one ray reaches a point 
in region II. Note that in each figure every point of A 
is regular with respect to Y. Also note that in each 
figure the endpoints of the level curves, which lie on 
the rays with • = o•/b and • = -o•/b, are labeled by 1 
and 2, respectively. 

According to Appendix A, the rays in the hybrid 

space Y are defined as 

{•=•0 (166) •(•): 

This means, as shown in Figure 15, that the rays in Y 
are parallel. The relationship of these rays to those in 
X and to the phase space trajectories is illustrated in 
Figure 9. The hybrid space differential operator 

•(V, D•,) = «{D• 2 - (1 -- •2)} (167) 

yields the GO equations 

(eikonal) (168a) 
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Since there are no caustics in Y, the approximate 
solution has everywhere the representation 

.(•v) = •(•/•)[v(•)] = e f d• e•[e•C(ø•v(•, 0)] 
(171a) 

where 

F(w, •)= (b•2/2) + •(•)z + •x (17lb) 

and 

o • g(•) = (2r•b/k)l/2a(- b•) (171c) 

Fig. 15. Relationships between the phase space trajectories and 
the rays in X and Y. 

d 1 
B + - Wzz B = 0 (transport) (168b) 

dr 2 

Thus the hybrid space GO field 

v(•, z) = eV'V(•'Z)B(•, z) = e•(e%(•, 0) (168c) 

consists of a phase propagation term exp (v•z) and 
the initial field 

v(•, o)= V(•o, o) = yo(•o/Xo)[U(Xo, 0)] 

= eV•'•2/2e-i'•/2b•/2a(-b•) = eV•'(øB(•, O) 
(168d) 

Equation (150) is verified readily. Because • is a 
constant, the root Sz(•) of the stationary phase rela- 
tion (I),,(Sz(•), z) = • coincides with its value at z = 0: 
Sz(•) = So(•) = - b•. Moreover, 

dx 

d• 
-- (g/• 3) -- b (169) 

Therefore, the transformations of the phase 

o(s•(4), •)- 4x = [½(-b•)- •Xo] + •(•)z -- a'(•, z) 

and the amplitude 

,4(s•(•), •)(ax/a•) 

= a(-b•)[1 - (z/b•3)] - 1/2[(z/•3) - b] 1/2 

= e-i'•/2bl/2a(-b•) = B(•, O) -- B(•, z) 

yield 

or equivalently 

v(•, z) = yo(•/x)[u(x, z)] 

(170a) 

(170b) 

(170c) 

It is readily seen that the stationary points of F gen- 
erate A, 

{(x, z, •)1 rgx, z, •) = b• + x -(•/Oz 

= •,(x, z, •)= 0} -- A (172) 

and the degenerate stationary points coincide with 5;. 

{(X, Z, •)1 F{{(X, Z, •) = b -- z/• 3 = 7{(x, z, •) = 0} • Z 

(173) 

Note that at the cusp point (0, b) one has Fe - Fee = 
Feee(0, b, •) = 0, where Feee(x, z, •) = -3•z/• •. 

Away from the caustic, the stationary phase ap- 
proximation of the integral (171a) recovers the GO 
field. For instance, in region I' the GO field at the 
intersection of rays 1, 2, and 3 is 

3 

u(x) = • exp [vF(x, •j) + ir•/2]g(•)F•l/2(az, •) (174) 

where •j = •o•/b so that 

r(•, •) = (b•]/2) + •z + •x 

- (-x(•j/2b) + •jz + •j(x - Xo) (175a) 

= ½(xo) + r j 

and 

ei,V2g(•)F•a/2(w, •) = ba/2a(xoj)(b _ z/•j3.)-1/2 

b2 _ x20j 11/2 = a(Xo) b2 _ Xo2j_ br j 
The divergence factor 

b b 2 _ X2oi ]1/2 b 2 - x•j - br• 

v(g) = Jo(3,/•)[u(w)] (170d) .exp (-iOt/2)e) (176a) 
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where 

0 j=2 ej = (176b) 
1 /=1,3 

The additional phase factor e -i('•/2) for rays 1 and 3 
indicates they have passed through the caustic as 
shown in Figure 13. This also is confirmed with the 
index calculation by using Figure 14d. 

Near the caustic, the integral (171a) precisely de- 
fines the approximate solution and could be calcu- 
lated analytically or numerically. Its uniform ex- 
pansion, however, is usually adequate. Near the fold 
part of the caustic (away from the cusp point), only 
two stationary points coalesce as indicated above. 
Consider the case where rays 1 and 2 are nearly coin- 
cident. The integral (171a) is transformed into the 
canonical form 

l(x, v)= • E(r/) exp [vF(•c, r/)] dr/ (177) 
where the phase 

F(x, r/) = Po + P•r/- r/3/3 (178a) 

the parameters 

/90 -- [F(a•, •) q- ['(w, •2)]/2 (178b) 

• = {(3/4)[F(•, •1)- F(•, •2)]} •/2 (•78c) 

and where the amplitude 

E(r/) = 6g(•(r/))J(•/r/) (179) 

Using the results in Duistermiiat [1974], the leading 
term of the asymptotic expansion of (177) is 

io(w, v) = (2•tb)•/2k•/6e_i•/4eVt, o [ 2 ]1/3 - Fm(•, •oo)' 
ß a(xoo)•i(k 2/3 p) (180) 

where •oo =(• + •2)/2= -(Xo• + Xo2)/2b= -Xoo/b. 
The Airy function and k •/6 dependence appear as 
expected. Accounting for the contribution from the 
field along ray 3, the field near the positive x fold of 
the caustic in region I' is 

a(•) = U(Xo3, •3)+ Io(•, v) (181) 

Finally, near the cusp point, all three stationary 
points coalesce, i.e., F• = F• = F• = 0 there. The 
integral (171a) is transformed into the canonical form 
(177), but now with the phase 

F(•, r/)= Po + P•r/+ «P2 r/2 q- ¬r/4 (182a) 

Accounting for the symmetry about the z axis, p• = 

0, Po = F(x, 0), and 

/9 2 = 2[I-'(:z:, 0)- I-'(:z:, •1)] 1/2 (182b) 

so that 

t,o - t,22/8 = [r(•, o) + r(•, •)]/2 (• 82c) 

The leading term of the asymptotic expansion along 
the z axis is then 

•(0, z) = e-'•/S(b/2)•/2k TM exp [v(p• - p•/8)] 

a(O)•_ •/2(e-•/•(k/2)•/2p2) (183) 
-• r(0, z, 0) 

where the parabolic cylinder function (Re • > O) 

2eX:/• •o © - (w + t:):/2 • _ •(w) = F(g) t2• - • e dt (184) 
Note that the field is described by the parabolic cyl- 
inder function and shows a k TM increase in mag- 
nitude. Both properties are characteristic o[ the be- 
havior of a field near a cusp point. 

5. SUMMARY 

The GO method provides a simple and physically 
appealing solution of a continuation problem. It gen- 
erates an asymptotic approximation based on local 
properties of the system, hence its attractiveness. 
However, it fails near a caustic. 

The GO approach has a phase space repre- 
sentation. The principal symbol of the differential op- 
erator of the problem is a function over the phase 
space M. Its kernel, the hypersurface • in M, defines 
the dispersion relation. The principal symbol also 
acts as the Hamiltonian for the phase space trajec- 
tories. The (Hamilton)flow associated with the veloc- 
ity field of those trajectories is symplectic, volume 
preserving, incompressible, and it lies in •. The 
phase space continuation is based over that flow. 

The phase of the initial field picks out a particular 
set of the phase space trajectories, those with initial 
points in the submanifold Ao generated by ½. The 
union of those trajectories is a Lagrangian submani- 
fold of M(LSM) A. Not every point of A is regular 
with respect to the original problem space X. The 
projection to X of these singular points coincides 
with the caustic. On the other hand there is at least 

one hybrid space Y over which a singular point is 
regular. The LSM A can be generated with a set of 
phase functions defined over the hybrid spaces. Two 
phase functions that generate overlapping subsets of 
A are related by a Legendre transformation over the 



1022 ZIOLKOWSKI AND DESCHAMPS' ASYMPTOTIC FIELDS NEAR A CAUSTIC 

overlap region. Furthermore, an index defined by the 
intersection number of a trajectory with the singular 
set Z of A describes the (•r/2) phase shifts associated 
with the continuation past a caustic. 

The phase space GO amplitude satisfies a trans- 
port equation along the trajectories composing A. Its 
initial conditions are generated from a half-density 
transformation of the initial amplitude. The half- 
density transformation rule also connects the ampli- 
tude on A with those in the hybrid spaces X and Y. 
In contrast with the rays in any hybrid space the 
trajectories in phase space never form a caustic, 
hence the amplitude transport on A is defined glo- 
bally. 

Maslov's canonical operator defines the approxi- 
mate solution to a problem by transforming the 
phase space GO solution to X. Over regular points 
of A it projects that GO field directly to X; over 
singular points it Fourier transforms to X the projec- 
tion of that GO field on a hybrid space Y. The 
former recovers the GO field u(•) in X. The latter 
returns an integral expression from which uniform 
expansions can be derived. 

It was shown that the projection of the phase 
space GO field on Y coincides with the hybrid space 
GO field v(•). Thus Maslov's expression for the field 
near a caustic can be represented as 
Moreover, the GO solution in Y is related to the GO 
solution in X by the asymptotic Fourier transform 
(of range zero) .70; hence the caustic region solution 
also can be represented directly in terms of the GO 
field in X as {.½(az/•)O`7o(•/az)}u(az). Maslov's 
method and these representations were illustrated 
with two examples' plane wave continuation through 
a fold caustic in a linear layer medium and continu- 
ation through a cusp caustic in a homogeneous 
medium of a field with an initial quadratic phase. 

The representation of a field near a caustic gener- 
ated with Maslov's method has some drawbacks 

aside from its mathematical complexity. The solution 
is not defined over the shadow region because the 
LSM A is not' real rays reach only lit region points. 
Expressions for higher-order asymptotic terms are 
not available. Contributions to the approximate re- 
sults from points on the boundaries of the problem 
are not taken into account. However, extensions of 
the alternate hybrid space representations overcome 
these deficiencies. In particular, higher-order terms 
can be incorporated into the caustic region solution 
simply as {$(•/•,)ø`Tm(•,/•)}U(x), and the resultant 
expressions can be continued analytically into the 
shadow region (the stationary points become (com- 
plex) saddle points corresponding to complex rays). 

This hybrid space approach was developed in Ziolk- 
owski [1980]; a paper summarizing those results is 
currently in preparation. Nonetheless, Maslov's ap- 
proach provides a systematic method for obtaining 
approximate solutions that incorporates a great deal 
of physical insight into the GO continuation process. 

APPENDIX A. GEOMETRICAL OPTICS FIELDS IN 

THE LINEAR LAYER (LLP) AND THE HOMOGENEOUS 
MEDIUM (HMP) PROBLEMS 

Dispersion relation 

«[•2 + •2 _ (1 - crz)] - 0 (LLP) 

«[•2 + •2_ 1]- 0 (HMP) 

Hamilton's equations 

d,(x, z, •, •) = (•, •, 0, -or/2) (LLP) 

d,(x, z, •, •) = (•, •, 0, 0) (HMP) 

Ray equations 

(x,z,•,•)= Xo+•Z,•oZ--• •o,•o-- (LLP) 
(x, z, •, •) = (Xo + •, •r, •o, •o) (HMP) 

Phase continuation 

*(•) = ½(Xo) + •{1 -(•/2)[Co - (•/6)]} 
([[P) 

= •o x + (2/3•)[• • •g - •z] 3/2 

The upper (lower) sign is associated with a ray 
ascending toward (descending from) the caustic. 

•) = ½(Xo) + ß = -(xg/2b) + [(x - Xo) 2 + z2] •/2 

Jacobian 

J(Xo, 'r) = •(1 q- (P2 Z) q- (•2(p2/•o)Z 

= • = •o - (•/2) 

J(Xo, r) = •[1 + (r•p2/•2)] = (•/b)[b - (•/•2)] 

The factor •b2 = 8•2o •b = d•o/dxo. 
Amplitude 

,t(Xo, •) = [1 - (•/2•o)•]- •/• = (•o/0 •/• 

A(Xo ' •) = bl/2[b __ (Z/•2)]- 1/2a(Xo ) 

(HMP) 

(LLP) 

(HMP) 

(LLP) 

(HMP) 

APPENDIX B. GEOMETRICAL OPTICS SOLUTION TO 

A GENERAL PROBLEM 

Consider the continuation problem defined by the 
differential equation (1) and the initial conditions (5). 
The operator •(w, D x) is assumed to be a linear 
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partial differential operator with smooth coefficients, 
a well-defined ordering of its operations, and the 
asymptotic characterization represented by (34): 

e-W'•(x, D•)e •'"'• -- p(x, •c) q- v- •p•(x, •c) q- O(v -2) 

(A1) 

It is readily shown that [Ziolkowski, 1980; Leray, 
1972] 

•(x, D.)[e•*{*)A(x)] = e•*{X){p(x, Ic)A(sc) 

+ v-•[p•(x, O.). A.(x) + c(x, O.)A(x)] + O(v-2)) (A2) 
where 

N 

c(•, %)= p•(•, %) + « y• p•,(•, %)%•, 
j,l=l 

= Co(•, %) + «•. [p•(•, %)] 
(A3) 

Co(•C, s:)= p•(x, s:)- « • p.•,(x, s:) (A4) 
j=l 

The reason for this appendix is to have the reader 
recognize that the term Co(z, to) is present in the gen- 
eral case. It vanishes identically in the LLP and the 
HMP. This term is well defined over the phase space 
and is called the subprincipal symbol of the operator 
•a(•c, Dx). 

As in the LLP and HMP the eikonal equation is 

p(x, •.) = 0 (AS) 

and the rays are defined by Hamilton's equations 

(A6) 
d•c 

d• - px(a•, 
The phase continuation along a ray that connects 
to a• is governed by the equation 

d dx 
--ß = IC ' • = Ic'p•(x, rb.) (A7a) 
d'r d'r 

which has the solution 

gO(x)-cp(xo)=;•Ic'dvc=;•(Ic'p•)dz 
The transport equation 

p•(x, •I).). A.(x) + c(x, ½I).)A(x)= 0 (A8a) 

is reduced by the ray equations to the ordinary dif- 
ferential equation 

d 
-- A + c(•c, O.)A = 0 (A8b) 
dr 

(A7b) 

Because the Jacobian of the ray coordinates (0•, •) to 
the space coordinates a: satisfies (23), 

d 
[ln J] = c9.. [p•(x, •.)] (A9) 

d•: 

the amplitude j = J•/2A satisfies 

d ,• 
A + Co(x, •.)• = 0 (A 10) d'r 

Consequently, if 

•(x/Xo)=[J(g,z)/J(g,O)]exp[2f•Co(x, gO.)dz] 

the amplitude solution is 

(All) 

A(x) = 9-1/2(x/•co)a(•co) (A12) 

It incorporates the variation caused by the spreading 
of the rays (the usual intensity conservation law) and 
an exponential decay (energy loss) mechanism de- 
fined by the subprincipal symbol. 

Therefore, the GO solution for the general case is 

(A13) 

It defines the continuation of the initial solution 

along the ray connecting •co to •c. 

APPENDIX C. POINT MOTION IN A 

GRAVITATIONAL FIELD 

To emphasize the connection between the trajec- 
tories of mechanics and the rays in optics, we consid- 
er the motion of a point particle of unit mass in a 
uniform gravitational field gœ. The rays in the LLP 
are obtained with g = •/2. 

The trajectory of the particle satisfies Newton's 
law: 

'• = 0 (A14) 
which has the solutions 

z x = Xo + •t = Zo + •o t- «gt 2 

where the momenta 

(•x•z t ( o: 7i' Ji 

(A15) 

(A16) 
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have the initial values 

(•o, •o) = (•(t = 0), •(t = 0)) (A17) 

The energy of the particle 

E = «(•2 + •2) + gz (A18) 

is conserved along its trajectory. 
Equivalently, the equations of motion can be ob- 

tained with Hamiltonian dynamics. The Hamiltonian 
of a particle in the gravitation field qœ is 

a = «(•2 ..[_ •2) ..[_ gz (A19) 
_ 

The particle trajectories satisfy Hamilton's equations: 

0,(x, z, •, •)= (0½H, 0cH, -0•,H, -0•H)= (•, •, 0, -g) 

(A20) 

Since H = E, the Hamiltonian is conserved along the 
trajectories. 

APPENDIX D. AMPLITUDE HALF-DENSITY 
TRANSPORT IN A GENERAL CONTINUATION 

PROBLEM 

Combining the amplitude transport equations (A8) 
and the half-density relation (107) (where the velocity 
field v = p•(x, •x)), one obtains the half-density 
transport equation in X for a general problem: 

œ,,fix + Co(a:, q>•.)fix = 0 (A21) 

Since • is the projection on X of the Hamilton vector 
field •, the corresponding equation on the LSM A 
is the pullback (lift) of (A21) through rr•c' 

œ•r •A + Co(•, •C)•A = 0 (A22) 

where the Lie derivative property 

rr•c(œ,, fix) = œ{a,,,.,o(rr•c fix) = œ• fi^ (A23) 

has been invoked. With the half-density relation 
(111), the half-density transport equation on A for a 
general continuation problem is 

d 
• h + Co(a:, •c)h = 0 (A24) 

It has the solution 

h(H•;•o)=h(/lo)exp[-fdCo(•C,•c)dz] (A25) 
along the phase space trajectory H•2o . The LLP and 
the HMP, as mentioned in Appendix B, are cases in 
which Co(•V, •c)= 0. Equation (A24) yields (113) im- 
mediately for these cases. 
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