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A geometrical optics method for solving wave propagation in dispersive weakly nonlinear, weakly inhomogeneous 
media is applied to plasmas. In the case that the dispersion is comparable to the nonlinearity, the method yields the 
expected soliton solutions. For strong dispersion, it is found that the amplitude has the same form as in the linear case 
except that it is multiplied by a slow varying sinusoidal part. 

1. Introduction 

The problem of wave propagat ion in nonlinear media is of long and continuing interest. For intense 
beams various nonlinear phenomena  such as self-focusing [1] can occur. In plasmas intense electro- 
magnetic  waves can drive the system nonlinear and can cause, among several effects, the parametr ic  
interaction between the various modes [2], or the formation of solitons [3]. For fusion devices, the 
electric field strength needed to reach the threshold for parametr ic  interaction is on the order  of a few 
tens of kilovolts per  meter  [4]. Such field strength is typical for heating plasmas to fusion temperatures .  
Thresholds for soliton formation are also attainable. Therefore ,  in order to understand the heating of a 
plasma with microwaves,  it is essential to study nonlinear wave propagat ion in plasmas. 

In this paper  we apply a geometrical optics method to the propagat ion of waves in a weakly 
nonlinear,  weakly inhomogeneous,  and dispersive plasma medium. We concentrate here on single wave 
propagat ion.  We have previously treated the problem of the propagat ion of a Gaussian beam in a 
nondispersive nonlinear medium [5]. Our  approach makes use of a perturbat ion method devised by 
C h o q u e t - B r u h a t  [6,7]. The solution is expressed as an asymptotic expansion in terms of a small 
pa ramete r  6 which is also a measure of the period of the wave. The problem is then reduced to a set of 
decoupled equations that describes the rays and the amplitude of the wave. For weak dispersion, the 
zeroth order  equation yields nondispersive linear rays. The amplitude, however,  is described by a 
nonlinear equation that admits soliton solutions. For strong dispersion, the zeroth order equation 
provides the dispersion relation. The first order equation provides an amplitude that consists of a part  
that is similar to the linear solution, multiplied by a slow varying sinusoidal part.  Other  methods such as 
Whi tham's  variational technique require two coupled equations for the phase and the amplitude [8]. 

The  plan of the paper  is as follows: In section 2 we will derive the ray and transport  equation for the 
weakly dispersive case, where the dispersion and the nonlinearity are comparable ,  and show that it 
produces the well-known soliton solutions. We confine our analysis to scalar variables in one spatial 
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dimension. In section 3 we will derive the ray and transport equation for the strongly dispersive case, 
where the dispersion is much greater than the nonlinearity. The analysis for section 3 is generalized to 
vector fields in multidimensions. We summarize our results in section 4. 

2. Case of weak dispersion 

The geometrical optics method is now applied to the weak dispersion case where the dispersive and 
nonlinear terms are assumed to be of the same order. We consider here the case of ion acoustic wave 
propagating in an inhomogeneous unmagnetized plasma medium. The dispersion is characterized by 
assuming that the square of the Debye length is of the order 63. The ion distribution function f is 
expressed as 

f = fo(X, t, v) + "~,~ 6n f , ( x ,  t, ¢ / &  v ) ,  (1) 
n=l 

where f0 is the background distribution function and ~b is a phase function. The ion distribution function 
satisfies the Vlasov equation: 

e ( O x q ~ ) O v f = O  (2) O, f  + v O~f - rn---~i 

where q~ is the electrostatic potential and is expressed as 

= crP,,(x, t) + ~_~ 6"crP,(x, t, dp /6 ) .  (3) 
tl:l 

The ion density n i is related to f by 

n i = J f dv,  (4) 

The zeroth order (background) distribution function and potential satisfy the zeroth order  Vlasov and 

Poisson equation: 

O, f  o + v Oxf  o - e (OxClgo) Ovfo = O, (5) 
mi 

O~@o = e (no~ _ n o ) ,  (6) 
•o 

where no¢ and n o are the background electron and ion density, respectively, and mi is the ion mass. We 
assume that the electron density is described by the Boltzmann distribution: 

( eqb e2¢~ 2 ) 
n e : n o e x p ( e C P / K T )  = n o 1 + ~ + 2(KT)~ + "-" , (7) 

where T is the electron temperature.  
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We now use eqs. (1) and (3) in eq. (2). The operators O, and 0 x are replaced by 0, + 8 -l(0,~b) 00 and 
O x + 8 -l(0x~b ) 00, respectively, where 0 = ~b/8 is a rapidly varying phase function. 

Equating terms of order 8° in the Vlasov equation, one obtains: 

- t o  Oof  1 + kv  OoA - e k(Oocp, )0vf~ = 0 ,  
ttli 

(8) 

where we define to = - O f f  and k = 0x0. The first order distribution function is then given by 

e k(0o~l) Ov f  o 
O°L - m i kv  - w (9) 

We now apply the operator a 0 to the Poisson equation and equate the terms of order 8 2. We obtain 
the following equation: 

1 e ( O o ~ )  f O v f  o 
a~ e 0oq~ , = , (10) m i (V Z w i k )  dv  0 

w h e r e  / ~ 2  e = eoKT/e2no  is the square of the Debye length, and where we use A~e = ~(83). This 
equation has nontrivial solutions iff 

1 e f O~f o 
2 hDe m i V -- oJ/k dv = 0  (11) 

This equation is the eikonal equation that describes the rays along which the amplitude propagates. 
For cold ions with a drift velocity V, the background ion distribution function can be expressed as 

fo = no(X, t) 8 (v  - V ( x ,  t)) , (12) 

In this case the eikonal equation gives 

~ / k  = c s + V ( x , t ) ,  (13) 

d & / d s  = 0 ,  (14) 

d t / d s  = 1, (15) 

d x / d s  = c S + V ( x ,  t ) ,  (16) 

where s is an arclength along the ray, and c s = ( K T / m i )  1/2 is the ion sound speed. 
Equating terms of order 8 in the Vlasov equation, one obtains the following expression for Oof2: 

1 ( e e(Oxda) e 
Oef2 = 8"k---t v w)  \ 8 ' f l  + v Ox f  1 - - -  (OxcI),) Ov f  o - -  (OecI)l) Ov f  , - - -  (Oe~2) 8 v f  o 

m i m i  m i  

_ e (OxOo) Or fl  ) = O. (17) 
mi / 
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We apply the operator  0 0 to the corresponding Poisson and use the expressions for f~ and f2 given in 
equations (9) and (17) respectively, to obtain 

k 2 O2(/D l -- _ _  e~ e2 [ f f ( 
KTAD e ~1 0301~1 ~- eomi~-- ~ (3 fl),) (V k) 2 dv + ¢, 1 3~f, v -  w / k  Ot v - w / k /  dV 

V O v f  o V 
+ ( 0 ~ , , ) f  d r +  (/~1 f v - -  gO/~ Ox ( V  Ovf(} ~ Our) - w / k / d v  - (0.,:@1) f ( v  - - ~ k )  

e(OxCb) ( O o ~ ' , ) * , f  ' ( O ;o e f 1 
m~-- v o)lk O, - v - Z / k / d v -  - -  (0~¢ , ) (00¢ , )  - mi  v - w / k  

dv 

x oo( Oofo v Zw-/k)dv], (18) 

where the terms containing @2 vanish by virtue of the eikonal equation. Note that for a homogeneous 
medium this equation reduces to the K d V  equation obtained by the reductive perturbation method 
[9,10]. 

We examine the case of an ion distribution function of the form given in eq. (12). Performing the 
integration in eq. (18) is straightforward. We illustrate here the integration of the fifth term on the right 
hand side of eq. (18): 

Ox v - w / k J  dv = (Oxno) (v - w / k )  2 

f O,(6[v - V(x,  t)]) dv 
o 

+ n° Ox(w/k) (v - w / k )  3 

f - n o ( G V )  (v - ~o/k) 2 02"(6[v - V(x,  t ) ] )dv  

-3n0(0xV)(cs + v) (0x,,,,)(Cs + v) v(oxno) 
= 4 - 3 3 (19) 

C~ C~ C s 

Note that since c s is constant, eq. (13) provides O,:(w/k)= OxV. Eq. (18) then reduces to 

3 2 (OtnO) 3(OtV  ) 
k CsADe O3o ¢I91- e(Ox(°) ci)10O@l _ 23tq)l _ 2 cI) 1 - -  C])l - C,~ Oxq51-  2 V  OxCI) 1 

• Csmi n o c s 

3(OxV)(c s + V)  (Oxno) (Oxno) 
- q~ ( G  + V)Cl)l VcI)~ - c~ O~q)j 

Cs r/O r/o 

3e(O~&) 3e 
- -  (/)1 O 0 ~ l  - -  - -  (03xt~ )O) l~ ) l  - ( 2 0 )  

Csmi Csm i 

Using the zero and first moment equations (continuity and momentum balance equations) obtained 
from the Vlasov equation that describes the background state [11], and defining 4~ = KTv~/eG,  one can 
after some manipulation reduce eq. (20) to 

O,v, + (c~ + v )  Gv ,  + (o#~)vl Gv ,  + ~ (q  + v )  - -  (Oxno) 1 (O,no) 
v l +  

n o 2 n o 
Vl + ( O x V ) v  I + k 3  3 OoV l = O, 

(2J) 
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2 where a = C~2~D~/2. Higher order equations can be obtained by carrying on similarly. It is straight- 
forward to show that for a t ime-independent medium this result is similar to that obtained by Kuehl 
[12]. Kuehl includes the effect of ionization in his derivation. This can also be readily done in the 
analysis above. For ionization by thermal electrons, the transport equation for a time independent  
medium will be the same as eq. (21). The background state should, however, be determined by 

including the ionization. 
The eikonal equation shows that a~ = at + (c~ + V)  a,. Therefore  the transport equation (21) can be 

expressed along a ray as 

(0s-0) 
a~v, + (axe)v, aoV, + k~a aov~ + - 5 ~ n o  v~ + (axV)v! = O. (22) 

This amplitude transport equation represents a family of KdV-like equations that correspond to each 
ray. The value of ax(b along the ray can be determined by noting from the eikonal equation that 
d(Oxc~)/dt = -(axd~)OxV. We will now discuss various special solutions to this equation. 

In the case of constant drift velocity, eq. (22) becomes 

asv, + (0x¢)v, oov, + k3~ ~ (Osno) O°u1 + - - ~ o  vl = O. (23) 

Generally,  the solution of this equation can be expressed as 

v, = g(4~'/& s, ~) G(s, ~) , (24) 

where £ is a parameter  that characterizes a given ray, and ~b' is the nonlinear phase that can depend on 
4~, s, and £. We first examine the case of a homogeneous medium where a is constant and the term 
containing (asno)/n o vanishes. We also assume zero drift velocity. The nonlinear phase can be 
expressed as 

~ ' =  ~ - -  ~Clt .  ( 2 5 )  

The term 6clt, where c 1 is a constant, is a first order correction to the linear phase. The solution is 
expressed as 

vl = g(4~'/6 ) ,  (26) 

where g is a function that describes the wave form. Eq. (23) then gives 

p3 
-Cl  Oo,g + (Ox~b)g Oo,g + k3a 0 og = 0 ,  (27) 

where 0 ' =  4~'/6. This equation can be integrated with respect to 0' yielding 

2 
g 2 

Oo,g - c l g  + (Oxcb) -~ + k3a =- 0 (28) 

where we set the integration constant to be zero. Multiplying eq. (28) by 00, g and then integrating with 
respect to 0', one obtains 
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k 3  g2 g3 
2 (O°'g)2 = c l  T --  ( 0 x 4 9 )  6 ' (29) 

where again we set the integration constant to be zero. Eq. (29) can then be solved implicitly in the 
form 

f d g / c \ i /2 
o,, (30) 

where c 2 = (0x49) /3c  l. We choose here the phase initial condition that yields 49 = x - cJ .  This choice 
obviously satisfies the eikonal equation. In this case k = 6-1. After  some standard manipulations,  eq. 
(30) yields 

/ / 8 C  \l/2 t~Clt)) . g = 3 c l s e c h 2 ~ l ~ )  ( X - C s t -  (31) 

Expressing c S + 6C l as v o, one obtains the solution 

6 v , = 3 ( v o - c ~ ) s e c h 2 ( ( v ° - c s ] l / 2 ( X - V o t )  ) (32) 
\ \  4a  / 

The  above equation is the well-known solution to the KdV equation [13]. 

We now examine eq. (23) in the case of a spatially and temporally inhomogeneous medium. The 
1 / 2  solution can be expressed as v I = u / n  o , where u satisfies the equation 

1 

no 

where we assume a phase initial condition that yields 49 = x - ( c  S + V ) t .  For sufficiently small 
(a ,no/no)O,  an approximate  solution to eq. (23) can be obtained. We employ the following change of 
variables: 

P = i /'/O1/4 ds' , 
0 

(34) 

1 / 4 ~  
K = n o •. (35) 

Equat ion (33) then yields: 

3 Opu l + u l OKu 1+ 6 - 3 a  l O2u 1 = 0 ,  (36) 

where % = a / n  o. This equation is similar to the KdV equation that describes a homogeneous  medium. 
It  is then straightforward to obtain the following solution: 

s 

c f )] 6v  1 = 3~ ~75 sech2 n~/40 -- 6C no 1/4 ds  , 
no 

0 

(37) 
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where C is a constant. The integral in eq. (37) is carried along the ray. The ray can be characterized by 
= x - (cs + V ) t  = constant. This solution is similar to that obtained by Nishikawa and Kaw [14] for a 

spatially inhomogeneous medium. The dependence of their solution on time can be understood by 
noting that the solution is along a given ray. It should be mentioned,  however,  that in a time- 
independent  medium,  the background state cannot be achieved without the inclusion of non-uniform 
drift and ionization [12]. We do not have to account for this in our case since we are dealing with a 
medium which is both spatially and temporally inhomogeneous.  Additionally, we note that a solution 
similar to that of Gell and Gombero f f  [15] can be obtained in the case of an inhomogeneity that is of 
the order  of 8. In this case the term containing (O~no/no) in eq. (23) vanishes and the solution can be 
readily obtained. 

A hypothetical  case of eq. (23) that can be readily solved by the geometrical optics method is the case 
of a driftless plasma in which the inhomogeneity is a function of x - Cst. This may be achieved with the 
proper  ionization. Suppose that the phase at t = 0 is given by F(x).  Again, the solution to eq. (24) can 
be expressed as v 1 = U/HIo/2 where u satisfies 

( a x 6 )  3 OsU + ~ U OoU + k3ot OoU = 0.  (38) 
l'l o 

Since ~ = x - c J  is constant along a given ray, this equation can be solved in a manner  similar to the 
case of a homogeneous  medium. The solution yields 

2(1 ) u =3(OcF)2h (~ )no  1/2 sech ~ [~b-  6noa(OcF)3ht] , (39) 

where h ( ~ )  is a function that is constant along the ray and can be determined f rom the initial 
conditions. 

For  a t ime-independent  velocity, the solution to the transport  equation (22) can be expressed as: 

U 

O1 - -  1 / 2 z  n o tc  S + v) (40)  

where u satisfies the equation: 

(axe) 
OsU + ~ UOoU+ k3ot O ~ u = O .  

no 
(41) 

An approximate  solution to this equation can be obtained in a manner  similar to the method 
described for eq. (33). 

It is important  to note here that the solutions obtained above are not valid for times of order 6 -1. To 
extend the validity of the method,  one has to assume that the ion distribution function f and the 
electrostatic potential  q~ are of the form 

f = f o ( X ,  t, v) + L 6~f~(x, t, 4)/6, X ,  T, v ) ,  
n = l  

(42) 

q' = go(X, t) + ~ a",t,.(x, t, 4,/8, x ,  T) ,  
n = l  

(43) 
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where X = ax and T = at are slow scale variables and ~b is a function of x, t, X, and T. In this case, eq. 
(41), for example, will give 

1 
g,u + (Orcb) OoU + ~ (Oxqb)u Oou + a k  3 O2u = O. (44) 

12 0 

If we assume that the parameters are dependent on the slow-scale variable X, then this equation can 
be solved in a manner similar to that of Ko and Kuehl [16] or that of Grimshaw [17]. 

3. Case of strong dispersion 

The geometrical optics method is now applied to the strong dispersion case. We assume here that the 
dispersion is much larger than the nonlinearity. We begin with Maxwell's equations in an inhomoge- 

neous nonlinear medium 

T x B = IXj + 10,E + ix,, OtOnl , (45) 
C 

V x E = - O , B ,  (46) 

where j represents the total linear current. By "linear current" we mean that part of the current that is 
proportional to the electric field. The nonlinear displacement D,j represents that part of the displace- 
ment that depends on higher powers of the electric field. The total linear current is given by 

J=J~+Jm , 

where j~ represents the electric current, Jm the magnetic current. Note that for an anisotropic 
background distribution function the magnetic current must be included [16]. In a general nonstation- 
ary, inhomogeneous,  spatially and temporally dispersive medium, the electric and magnetic current are 

given by 

j~(x , t )=f  d3x' j d t 'o- , (x-x ' , t - t ' , l (x+x' ) ,½( t+t ' ) ) 'E(x' , t ' ) ,  
- z c  

(47) 

jm(X,t)=fd3x'  /dt 'O-m(X-X', t - t ' ,½(x+x') ,½(t+t ')) 'B(x' , t ' ) ,  (48) 

where ~ and o- m represent the electric and magnetic conductivity tensor respectively. Note that the 
central-averaged representation of the current is used. This is a particular choice; other representations 
are possible and have been discussed in the literature [18,19]. 

We make here the same assumptions that are pertinent to linear geometrical optics in plasmas. In 
addition, the nonlinear term is assumed to be of the order 6. We model the nonlinearity to be of the 

form: 
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Dnl, i o~ (E* . E ) E  i , 

where E* is the complex conjugate of E. We assume here single mode interaction and a nonlinearity 
which is intensity-dependent or pondermotive-like in nature. We assume that since the dispersion is 
strong compared to the nonlinearity, a sinusoidal form of the field may be retained. The electric and 
magnetic fields are expressed as asymptotic expansions in terms of 6 which also measures the period of 
the wave: 

E(x ,  t) = [ao(X , t) + ~a l (x ,  t)] exp(iO) + G(62) , (49) 

B(x ,  t) = [bo(x , t) + 6b~(x, t)] exp(iO) + 0 (62 ) ,  (50) 

where 0 is a fast varying phase function. 
! t Defining X = x - x ,  and T = t - t ,  one can express the linear electric current as: 

jo(x,t)= d3X f drOre(X,r,x-½X, t - l r ) .E(x -X , t  - 7"). 
0 

(51) 

The magnetic current can be expressed similarly. The electric field at the point (x', t ')  is now expanded 
in a Taylor 's  series around the point (x, t): 

E(x ' ,  t ' )  = [a(x, t) - (dxff)X i - (d,a) T + ½ia(Oxikj)X~X j - ia(dx w ) X , T -  ½ia(O,w) T 2] 

x exp[i0(x, t)] e x p [ - i ( k .  X -  ,o7")1 + . . - ,  (52) 

where `0 = - 0 , 0  and k =~r0. The expansion for Or around the point (x, t) is given by 

or(X, T , x -  ½X, t -  ½T)=  or(X, T , x ,  t ) -  l (dxf f )X i - ½(dtor)T+ . "  . (53) 

Using eq. (52) and eq. (53) in eq. (51) and performing the integral, one obtains the following equation 
for the zeroth order linear electric current: 

~ A  Jo = ore  ( k ,  (.o, x ,  t ) -  ao ,  (54) 

where ~A is the anti-Hermitian part of the Fourier transform of Ore" The Fourier transform of cr e is given 
by 

~e(k, ~o x, t ) :  f d3X f ~r(X, T; x, t)exp[-i(k" X -  ~oT)] . 
0 

(55) 

We assume that the dissipation of the wave is small. In particular, the dissipative part of the 
~ H  conductivity tensor is represented by the Hermitian part of ~'e and is assumed to be small: o- e / 

~A 6(8 ) .  Or e 

Similarly, the zeroth order linear magnetic field is given by 
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J o  m ~ A = O'r." b 0 , (56) 

where  ~A O" m represents  the Hermit ian part  of  the Fourier  t ransform of  the magnet ic  conductivi ty.  

The  following equat ions  are obta ined  by equat ing terms of  order  6 -~ in Maxwell 's  equat ions:  

k x a o - w b  o = Or (57) 

o9 i ~A ~A 
k x b 0 + -5 a0 = - /xo[°'e " a0 + O ' m "  b0]  • ( 5 8 )  

c 

Solving for  b o in eq. (57) one  obtains 

k x a o 
b 0 - (59) 

£0  

Eq. (58) then reduces to 

k × a o w = --1/d~O Ore ao + O'm . k x \ ~ - / +  ~5 ao (60) 

This equat ion  can be written in the form 

N " "  a 0 = 0 ,  ( 6 1 )  

where  N u is a Hermi t ian  tensor  and is expressed explicitly as 

2 
H 9 t.,O - ~ A  

N #  = ( k"r~ij - k i k  j - ~ (Sir - lla, oa~Oij ) /oa  , (62) 

~A represents  the total ant i -Hermit ian conductivity:  where  crij 

A 
~ A  ~ A  O"  m X k 

O" = O "  e - t - - -  
¢.0 

Eq.  (61) has a nontrivial solution for a o if 

N =  d e t N  n = 0 .  (63) 

This equat ion  is the same as the dispersion relation of  linear geometr ical  optics. It provides  the al lowed 

values of  (k, w) at each point  (x, t). Since k and o) are first derivatives of  the linear phase,  it is a first 
o rder  partial differential equat ion.  The  solution curves of  the first o rder  equat ions  set de te rmined  by 
the variat ion of  N with respect  to the phase space coordinates  (x, t, k, w) describe the rays: 

d x i / d r  = O k N  ( 6 4 )  

d t /  d.c = - O  , oN  , (65) 

dki/d~- = - a ~ N ,  (66) 
i 
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do~/d~- = O,N. (67) 

The linear phase function 0 is then given by 

dx d,) 
O(r)=O(O)+ k . ~ - w  d r  d r .  (68) 

1) 

The following identities are now used to determine the first order current: 

i~rk e x p ( - i k .  X) = X e x p ( - i k .  X ) ,  - i0~ exp(i~o T)  = T exp(ico T ) .  

The first order terms in eq. (51) then yield an expression for the first order linear electric current: 

1 v ~ A A (69) J,e = ~ H .  ao + (0,o A). d,ao _ ~d~(0 O" e )° a 0 + c r  • a 1 . 

where we use the four-vector notation 

d~ = (d x, d~,), 

a ° = ( a , ,  

Similarly, the first order magnetic current is given by 

~ H  ~ A  
Jlm ---- q0rm" b0 + (0"jAm)" dubo - ½dv(0"JA) " bo + °'e ° bl • (70) 

The nonlinear term is given by 

D n l .  i = ei]r(2)t-* . t u  o a o ) a  i , (71) 

where ~-~2) represent the Fourier transform of a nonlinear dielectric tensor. 
Equating terms of order ~° in Maxwell's equations, we obtain 

ik  × a 1 - i~ob 1 = - V  x b o -  d ,b  o , ( 7 2 )  

io~ 1 ~o 
ik  x bl  + ~ a~ = - V  x b o + - -  d ,a  o + / % J l  - i --7 (a~"  a o ) ~  (2)" a o , ( 7 3 )  

C C C 

where Jl represents the total first order current: j l  = J l e  + J i m "  The electric and magnetic current are 
given in eq. (69) and in eq. (70) respectively. Using eq. (72) to solve for hi, one obtains 

i 
b 1 = - -  ( V x a  o + d , b  o + i k x a l ) .  ( 7 4 )  

(.O 

This expression for b 1 is now substituted, along with the expression for b o in eq. (59), into eq. (73), the 
following equation is obtained: 
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k 
x V × a 0 + i k  × a 1 + d , [  T - ~  a I / -~oo 'c  aj  /x0o" m \ ~ - - /  

CO C 

= - V x  k x a °  +--d,a{}+p.{} ( 0 ~ r e ) ' d . a  0 2 d , . ( 0 ~ r c ) ' a ,  
k t o  C 

M ~ A  - 4 d . ( o " ~ a )  • d,, - -  + ore • a, ,  + Orm ° + (O O'm)'d. t - co \ co ~J 

to - (75) - i ~ ( a ; ' a { , ) e { 2 ) ' a o .  
C 

In a manner  similar to the linear case [18], eq. (75) can be transformed into the following equation: 

co ~H (76) i N H ' a l  ( a " N H ) ' d , a o - i  -5 ( a ; ' a o ) e { 2 ) ' a , ,  + td , . (O"NH)'a , ,  + Ix,, ¢r "% ' 
C 

where ~H is the total Hermitian part of the conductivity tensor: 

O" : O" e + Or  m X 

We now project  eq. (76) onto L, where L is the left null unit vector o f eq .  (61). We can express a{~ as 

a,, = g(x.  t) R .  (77) 

where R is the corresponding right null unit vector. We also make use of the following equation that is 

is obtained from the linear eikonal eq. (61): 

I q  Lt • R = N R  . ( 7 8 )  

where the proper  sets of (to, k) are used. Applying the operator  L .  0" to this equation, one obtains 

L .  (o"NH) "R = O"N, (79) 

which means that the term L" (0~'NH) ° R d  is a derivative along the ray. In addition, one can write 

L . ( O " N " ) . d , , R  + ½L. d,,(0"N H) .R  : d [ L  " ( O " N ) ' R ] .  (8o) 

Eq. (76) will then yield the following transport  equation: 

to . ~ ( 2 )  ½ d u ( O ~ N ) 3  + . R ) = 0 .  d , g  - i ~ ge(L • R ) g  + g(L. ~H 
C 

(81) 

Eq. (81) is a first order quasilinear differential equation that describes the evolution of the zeroth 
order  amplitude. In the linear case the second term of eq. (81) is zero and the linear solution is 

g = f(x,  O, (82) 

where the function f ( x ,  t) describes the evolution of the amplitude along the rays due to the 



I. Dajani et al. / Geometrical optics in plasmas 249 

inhomogeneity of the medium, and to changes in the ray geometry. It is given by 

r 

0 

(83) 

where Q is expressed explicitly as 

~N ~ "  Q :  ½d,,(O ) + L .  . R .  (84) 

In contrast, when the nonlinearity is present, a solution of eq. (81) is given by 

g = f(x,  t) exp(i/3), (85) 

where f is given in eq. (83) and/3 is given by 

f w ~2) (86) : ~ gZ(L. .R)  d-c. 
{} 

Therefore, the amplitude consists of a slow varying sinusodal part. In the case that the dielectric tensor 
has an imaginary part, damping may occur. 

It should be noted here that in the case of a wave packet with most of its energy concentrated initially 
close to some wavevector k, with higher order dispersive effects retained, terms of the form 
(d2w/dki dki) Ox, Oxig can be obtained. A special case of the transport equation obtained will then be 

the nonlinear Schr6dinger equation. 
For the problem in which the nonlinearity is of the form: 

D,,. i = fd3x ,  f d t , - < 2 ) ~  " e i j k  rqr~ k , (87) 

the procedure discussed above is still applicable to a first order approximation. In this case a nonlinear 

phase 0' is obtained: 

7 

O' = 0 + J dz (w/c2)Li(gl~k) R~Rk )g exp(i0 ' ) .  (88) 
0 

4. Conclusion 

We have applied geometrical optics to wave propagation in a weakly inhomogeneous, weakly 
nonlinear, and dispersive medium. We have shown that for weak dispersion (dispersion that is 
comparable to the nonlinearity), defined by the ordering A~e ~ 0'(63), the zeroth order rays are linear 
and nondispersive. The wave form, however, is different than that of the linear case. It obeys a KdV 
-like transport equation. We provided special solutions to this equation. For strong dispersion, the 
zeroth order rays are dispersive. The amplitude may has the same form as in the linear case except that 
it is multiplied by a slow varying sinusoidal part. 
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