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n-SERIES PROBLEMS AND THE COUPLING OF
ELECTROMAGNETIC WAVES TO APERTURES:

A RIEMANN-HILBERT APPROACH*

RICHARD W. ZIOLKOWSKI

Abstract. An effective approach to the solution of a large class of mixed boundary value problems (those
reducible to an n-series problem) is developed. The method is based on the deduction of the equivalent
Riemann-Hilbert problem and its solution. This generalized n-series approach leads to analytical descrip-
tions of the coupling of electromagnetic waves through apertures in canonical structures into open or
enclosed regions. In particular, it is applied to the canonical problem of plane wave coupling to an infinite
circular cylinder with multiple infinite axial slots. Numerical results for currents induced by an H-polarized
plane wave on a circular cylinder with a single slit are given.

1. Introduction. Mixed boundary value problems occur in many areas of physics and
engineering. A particular class, the electromagnetic and acoustic coupling problems as
they apply to an enclosed region, an external source and a coupling aperture, are of
major importance, both theoretically and from a practical point of view. Nonetheless,
the separable geometries in which one might expect to obtain an analytic solution have
not been amenable to treatment until recently, and purely numerical techniques present
difficulties largely due to the edge at the rim. Moreover, approximate solutions, such as
the one developed by Bethe [1], are limited in their range of applicability.

Techniques borrowed from the analysis of the Riemann-Hilbert problem of com-
plex variable theory and recent developments [2]-[5] in the theory and applications of
dual series equations have made it possible to obtain analytical solutions to families of
canonical problems descriptive of electromagnetic and acoustic coupling via apertures
into enclosed and open regions. Examples of the canonical problems amenable to
solution by these techniques include a plane wave incident (with an arbitrary angle of
incidence) on a perfectly conducting diffraction grating, on a perfectly conducting
circular cylinder with an infinite axial slot, and on a perfectly conducting spherical shell
with a circular aperture. They all involve a scattering body with a single aperture (the
unit cell of the grating corresponds to the slitted cylinder). Canonical problems involv-
ing structures with (n-1)-apertures (n>__2) require the solution of n-series problems.
For instance, the coupling to a cylinder with two axial slots is described by a triple
series equations problem.

These coupling problems constitute only a small subset of a large class of mixed
boundary value problems that can be reduced to equivalent n-series problems. Standard
techniques available from potential theory, such as the ones described in connection
with the dual and triple series equations in [6], are cumbersome and are tailored to
specific problems. On the other hand, the Riemann-Hilbert problem techniques pro-
vide a unified, systematic approach to these equations. The resultant general n-series
approach is applicable to all separable geometries. Therefore, it represents a generaliza-
tion of the Wiener-Hopf method.
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It has been brought to the author’s attention recently that the Riemann-Hilbert
problem techniques have actually been applied in this manner to the dual series
equations problems of the diffraction grating [7] and the slitted cylinder [8]. Nonethe-
less, the parallel approach to the general classes of n-series problems that will be
discussed in this paper does not appear to have been reported. Several of the notations
in this paper were chosen to resemble those employed in [7] for convenient reference.

The connections between the Riemann-Hilbert problem, n-series problems and
the electromagnetic coupling through an aperture will be made in this paper. In
particular, in 2 the solution of a general class of n-series problems is developed with
Riemann-Hilbert problem techniques. A brief review of the Riemann-Hilbert problem
itself is included in the appendix for completeness. The application of the resultant
generalized n-series approach to the electromagnetic aperture coupling problem is
discussed in 3. Analytic solutions for the coupling of E-polarized and H-polarized
plane waves to a perfectly conducting infinite circular cylinder with multiple infinite
axial slots are derived. Typical numerical results for the currents induced by an
H-polarized plane wave on a circular cylinder with a single axial slit are described.
Various comments concerning the main aspects, of the generalized n-series approach are
given in 4.

2. The Riemann-Hilbert approach to n-series problems. As shown in [6], there are
many generic problems of the dual and triple series equations type. Only the n-series
canonical problems encompassing those related to the slitted cylinder examples to be
discussed below will be considered. They are sufficient to illustrate the proposed
Riemann-Hilbert approach. The solutions to other genetic classes of problems can be
inferred from these results.

The Riemann-Hilbert problem, as described in the appendix, is concerned with
finding the analytic function that satisfies a prescribed transition condition across an
open or a closed curve. Let the unit circle S be divided into two sets, F and L, the
closure of I" being the complement of L in S1, and let each of these sets consist of
(n-l), n>__2, open nonintersecting segments: F={F,...,Fn_} and L=
{ Lx,-..,Ln_}. Also let I(I’)= { I(F1),-.-,I(F_x)} and I(L)= { I(L),...,I(Ln_x)}
be the angular decomposition of the interval [0,2r] corresponding to those sets. In
particular, set

(2.1a) Fy= {ei’lckI(F)=(O2y_2,O2y_) } (j= 1,...,n- 1),

(2.1b) Lj=(ei*lI(Lj)=(O2j_x,Og_j)} (j= 1,...,n-l).

Consider first the basic n-series problem (n >_ 2):

(2.2a) E ameimq’=O, epI(L),
m

m=

(2.2b) emlmlameim’t’=lao+f(ep), q,i(r).

Depending on the specific problem, em=Sgn(m) or em=[sgn(m)] 2-- +1, where it is
assumed that

(2.3) sgn(m) ( -1+ 1
for m<0.frm>=0,
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It can be reduced to a Riemann-Hilbert problem as follows. Differentiating (2.2) with
respect to and substituting x,= mam(m:kO) in both (2.2a) and (2.2b), one obtains the
modified n-series problem

(2.4a)
(2.4b)

., xmeim’t’= O, rb
_
I(L )

m4O

E e,,,x,,,lm---!ei’’=ao+f(q) qI(F).

The symbol E,,,0 indicates the sum over all terms from m= -o to m= + oo except
the term with m 0. Now, introduce the functions

(2.5a) x + (g) E XmZm,
m>0

(2.5b) x_(z)=- E x,,,z"
m<0

which are assumed to be analytic, respectively, on the interior and the exterior of the
unit circle S1. The n-series equations (2.4) can then be rewritten as

(2.6a) [ x+(A)-x_(h) =0,

(2.6b) x+(v)-r(’,l)x_(v)=F(v),

where

(2.7) r(ei*) { + 11 forfr e,,em=Sgn(m)’=+ 1,

and

(2.8) F(e"t’)=1ao+f(tk), I(r).

Equation (2.6a) means that x /(z) and x_(z) coincide on L, i.e., they continue analyti-
cally across L and thus become the same analytic function,

x(z)---[x+(z)’ Izl<a,
(2.9)

x_(z), Izl> 1.

Similarly, the functions x +(V) and x_(v) in (2.6b) represent, respectively, the limiting
values on I" from the interior and the exterior of S of the same analytic function (2.9);
hence (2.6b) describes a discontinuity in that function across the open curve F.

It is assumed that the solution x(z) has singularities of order + 1/2 at each of the
endpoints aj=exp(iO2j_2) flj=exp(iO2j_l) of Fj(j=I,.- .,n--1) and is zero at infin-
ity. This properly models the behavior of the solution in the electromagnetics case near
the edges of the aperture and at infinity. Moreover, for the moment, let the transition
function F be a least H/51der continuous on S1. As indicated in [9], the Riemann-Hil-
bert problem techniques can actually handle solutions with other singularities, e.g., any
of those whose order lies in the interval (0,1), with a nonzero behavior at infinity and
with a transition function satisfying a relaxed continuity condition.

Rewriting (2.6b) as the transition condition

(2.10) x+(’r) T(y)x_(’)+F(’),
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an inhomogeneous Riemann-Hilbert problem with discontinuous coefficients on an
open curve is realized. The factors T and F are called, respectively, the coefficient and
the free term of this Riemann-Hilbert problem. Its solution, x(z), is developed in [9,
Chapter VI, 42]. This problem is first reduced to one with discontinuous coefficients
on the dosed curve S by setting

(2.11) To(.) { T(’)+I for "Lfr
F,

and

for I’,(2.12) F(’)--
0 for ’L,

so that (2.10) becomes

(2.13) x + (’) To()x_()+Fo(), fS.
Next the problem is reduced to one with continuous coefficients by introducing the
characteristic function [1/G(z)] of the problem, i.e., the function that has the same
singular behavior as x(z) at the endpoints (aj, flj) of the segments Fj(j= 1,...,n-1),
and which makes the product xG nonsingular at those points, and satisfies the homoge-
neous Riemann-Hilbert problem

(2.14a) 1/G+(’) To()/G_(), S,
Note that (2.14a) also means

(2.14b) To()=G_()/G+(), S.
Thus, mulitplying (2.13) by G+(’) and defining the functions

(2.15) (z) =x(z)G(z),
(2.16) (z ) G+ ( z ) Fo( z ),

one obtains

(2.17) @ + (g’) @_ (’) + t’(’), ’S
This represents the transition condition of a Riemann-Hilbert problem with continu-
ous coefficients on a closed curve. Its solution is simply [9, pp. 96-99]

1 fs (,)dv+p. :z(z )(2.18) (I)(z)=,
where P,_ 2(z) is a polynoal of degree (n- 2) in z"

(2.19) e,_2(z)=co+cxzX + +c,_2z"-2.

Consequently, the desired solution of (2.13) is defined as

1 1 frG+(*)F(*)d* 1+ e.
The procedure to obtain the characteristic function or equivalently the function G

is given in [9, 42]. It depends on the index of the coefficient To(), the index of the
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problem. It is readily shown that the index is (n- 1) for the present problem and that

(2.21)
for e,, sgn(m),

for

The results for the Em + 1 case are presented explicitly in [9, [}42.2]. For that case the
branches of G will be chosen so that as z,F from the interior of SX: G(z) G+(),
and from its exterior: G(z)G_(’)= -G+(’). This choice satisfies the restriction of
(2.14b) to F:

(2.22) G_ ( ) T(" )G+ ( " ) r
The polynomial term, P,-2(z), in (2.18) and (2.20) is introduced to account for the

assumed behavior of x at infinity. In particular, as 121--, (2.21) yields

(2.23) IG(z)l--Izl-1.
Therefore, in that limit the magnitude of the solution

(2.24) Ix( )l-IP"-2(z)l Ic._21
,0

IG(z)I Izl

as desired.
The solution (2.20) provides a means to generate another relation between the

limiting values x/ and x_ on F. Let

1 fr G+ ( , )F( , ) d,(2.25)

where Pf means to take the Cauchy principal value of the integral. The
Plemelj-Sokhotskii formulas [see (A.3) in the appendix] together with (2.20) and (2.22)
give

(2.26) x+(7)+r(7)x_(7)=2[f()+P,_2()]/G+(), v r.
The coefficients x,,(m 4: 0) and the constants ao, Co,...,c,_ 2 can now be obtained as
follows.

First consider the ease in which m sgn(m). Combining (2.5), (2.6) and (2.12), one
obtains for all " e* $!:

(2.27) x+(ei’t’)-x_(ei*) _, xmei"’t’=Fo(eiq’).
m=b O

Fourier inversion of this expression gives the terms
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If the solution (2.20) is desired, the constants c0,.-.,c,_ 2 are then obtained from a
system of (n- 1) equations:

(2.29a) , I-r[xe’V=2[2(e’V)+_P,_2(e’V)/G+(e’V)] (j=l,. -,n- 1),
rnO

derived by evaluating the relation (2.26) at the midpoints

1
(2.29b) ’j=’(O2j_ + 02j_2)

of the intervals I(Fj)(j 1,..-,n- 1).
On the other hand, for the case in which era= + 1 the combination of (2.5), (2.6a)

and (2.26) yields for all ’ e i* S1"

(2.30) x+(ei)-x_(ei) , xmeim*=2g(ei)[f(ei)+P_2(ei)],
mO

where,

’) for ’F,
(2.31) g(’)=

0 for ’L.

Defining the terms

1 /" G (’)dz(2.32a) o(’) =-PJr +

G ()f(z)d
(2.32b) V(’) i-"PJr

+

(2.32c)

(2.32d)

(2.32e)

1 foZ,v ,, 1 fFo(eiq’)e-imq’ddpUm " ( e ) g( ei’t’ ) e imq’ ddp "-’ G+ ( eiq, )
1 fo2 i i,t, l frV(ei)e-imdqVm=’ V(e )g(e )e imq’d,=- G+(eiq,)

1 fo2 g( i,t, 1 fre-im d R rn e ) e imq’ddp
G+ ( e , )

Fourier inversion of (2.30) yields a linear system of equations for the coefficients a0 and
xm(m O) of the form:

(2.33a) Xm liaoVm + Vm + 2 cRm_ (m 0),

(2.33b) 0 liaovo + Vo + 2 _, cR_ (m 0).
0

This system is completed by the (n- 1) relations

(2.34a) ao E Xm"

rn
m :b O

(/--1,...,n-l)



364 RICHARD W. ZIOLKOWSKI

obtained from (2.2a) by setting equal to kt, the midpoint of the interval I(Lt)"
1(2.34b) 1/= "" (02/_ +02/)

With (2.33a) this constraint system becomes

n-2

(2.35) ao t2aow + W + 2 ., cjS/
j=0

(l=l,...,n-1),

where

(2.36a) wt= E --ei"’*’,
m

m*0

(2.36b) Wt ,. Vmeim’l’,,
mmO

(2.36c) S/ ., Rm-J i.,,,
mmO

Note that the introduction of the (n-1) constraint relations (2.29) and (2.34) is
necessitated by the appearance of the n- 1 constants Co,..., cn_ 2 in the Riemann-Hil-
bert solution (2.20). They have, however, a direct effect only on the solution of the
n-series problem (2.2) with e== + 1. Furthermore, the choice of those particular rela-
tions is somewhat arbitrary. Their evaluation at any one point in each of the intervals
I(Fj) and I(Lj)(j= 1,...,n-1) instead of the angles j and 6j(j= 1,...,n-1) would
equally suffice. Nonetheless, the midpoint rule is systematic and computationally con-
venient.

These general results are considerably simplified if the forcing function f has the
Fourier expansion:

(2.37) f(

Defining the additional coefficient

(2.38) Om=’ff dpe -im’t’

the solution system (2.28) becomes

(2.39a) ma,,=t2aoQo+ ., fQ_,,,

(2.39b) a0=- Y’ LQ_,,/IQo.

Similarly, defining the coefficients

(2.40a) V,, ( e i’t’ )
"r-- ei

fo
2 l fr, Vn ( e ’t’ ) e ’f’ ddP1 ’V,, (ei’) g(e i’t’) e-ira,d

G+ (ei)
(2.40b) V,, ----
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eimk
(2.40c) I,V"= Y’. V

the solution system (2.33) and (2.35) becomes

Note that (2.41b) and (2.41c) can be solved simultaneously to obtain the n constants ao,

Co,. .,c,_ 2 and then the values a,,(mO) follow immediately from (2.41a) or (2.41a),
(2.41b) and (2.41c) can be solved simultaneously as an entire system. However, because
(2.41b) and (2.41c) are decoupled from (2.41a), the former would be numerically
superior to the latter.

The solution to the basic n-series problem

(2.42a) ., bmeim’t’=h(k), keI(L),

(2.42b) E .,,,b,,Imleim’t’=O, kI(F),

which is complementary to the one defined by (2.2), follows in an analogous manner.
Let

(2.43a) y + (Z) bmgm,
m=0

(2.43b) Y- (g) E embmgin.
m<0

Integrating (2.42b) and setting

(2.44) b0= E e,,,I-l-b,,,e’’’v’ (1= 1,...,n- 1).
m0

Equations (2.42) can then be rewritten as

(2.45a) y + ( X )- T( X ) y_ ( h ) h ( , ),
(2.45b) Y + (3’) -Y- (3’) 0, 3’ .F.

The (n- 1) relations (2.44) are analogous to the constraint system (2.34). Moreover, the
system (2.45) has the same form as (2.6) except that the line of discontinuity is now L
rather than F. Consequently, the characteristic function G(z) of the corresponding
Riemann-Hilbert problem is (2.21) with aj and flj, the endpoints of the arcs F.,
replaced with t= exp(iO2_l) and fl= exp(iO2j), the endpoints of the complementary
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arcs Lj. However, since S is a closed curve, 02(n_1)0 Therefore, 0---G. Assuming
the forcing function h has the Fourier expansion

(2.46) h(ff)= E h,ei"’t’,

the preceding Riemann-Hilbert techniques then yield for the em=sgn(m) case the
solution coefficients

1 f? imq(2.47a) bm () e d E hnOm_ n (all m),

where

(2.47b)

and for the era= + 1 case the solution system

where

(2.49a)

(2.49b)

(2.49c)

(2.49d)

(2.49e)

1 fL e-imcdqRm’-’’ G+ ( ei )

E im’tV,e
mqO

/--" E hm jelm’"
m*O

Note that the solution of the general n-series problem

(2.50a) E

(2.50b) E
m --o0

Cmeim= h ( dp ), I( L ),

emcmlm leim*=ao+f( ),

can now be obtained. Solving independently the problems defined by (2.2) and (2.42),
the solution of (2.50) follows immediately by setting c, a + bm.
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More complicated n-series systems of the form

(2.51a)
m

(2.51b)

ameimq’= 0, I(L),

emamlm Irmem’= li,ao +f( ),

and

(2.52a) E b,,,ei"’=h(q), q.I(L),

(2.52b) E e,,,b,,,lml’r,,,e’m’t’=O, qI(F)
m --oO

are encountered in mixed boundary value problems such as those describing aperture
coupling. Assuming that the coefficient function r,,, has the decomposition

(2.53) rm= 1 +X,,,

where the function X,, satisfies the limiting condition

(2.54) lim X-o( 1 )
these n-series problems can be reduced to the basic problems (2.2) and (2.42) by
treating the X,, dependent terms as forcing functions. In particular, define the functions
)7 /(z) and )7_(z) by (2.43a) and (2.43b) respectively, with b,, replaced by the modified
coefficient

(2.55) =bm’rm,

and define the modified forcing functions

(2.56a) (ei’t’) lao + Y’ ,,e i’’t’

and

(2.57a) /]r(ei*)= Y’. /,ei",

where the Fourier coefficients

(2.56b)

and

(2.57b) & h,, + b,,x,, h,, + 1 +-’--’.
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Systems (2.51) and (2.52) can then be replaced by the equations

(2.58a) x+ (,)-x_ (,)=0, , L,

(2.58b) x + ( 3’ ) T( 3’ ) x ( 3" ) le( 3" )

and

(2.59a) )7+ (X) T(X))7_ (X) =/]r()), ,L,
(2.59b) .9+(3,)-)7_(3,)=0, 3,F.

The associated constraint relations in the e-m -I- 1 case are (2.34) and (2.44), the latter
having each b replaced with/rn. The Riemann-Hilbert technique can now be applied
to (2.58) and (2.59). The solutions for the e.m= sgn(m) cases"

(2.60)

(2.61)

Xm liaoQo + f.Q,,,_,,- I-nnl xnXnQm-n
ao L-[x,,x,,Q-,,- E f.Q-,, liQo

n--- -- n- --oo

n=-o n=-o 1--’n

(m 4= 0),

(m=0),

(all rn),

and for the e,, + 1 cases"

(2.62)

x,,, liaoVrn + E f,V="-
oo n-- 2

E LXnXnVmn+2 E cjRrn-j
n= -oo j=O

0 liaoVo + _, fnV-
tm n-- 2

I-Ix,,x,,V+2cjR-j
n= -oo j--O

0 (1 + 5Wt) ao + E f.Wt"- E
n= -oo n= -o j=O

(m =/= 0),

(m=0),

(2.63)

b.x.Vg ,,-2

sgn(m)& E h,,Vrn" + E 7-- + 2 E cj_j
n----- -m n---- --o j=0

bo~ E h,,Wt" + E 7(_-- + 2 E cj3/
n=-o n=-m j=0

(all rn),

(l=l,..-,n-1)

follow immediately from (2.39), (2.41), (2.47) and (2.48).
Note that all of these solution systems have the general form

(2.64) Urn Y’. Amnun.+ Orn, rn O, _+ 1, _+ 2,--.

where the matrix Arn, and the vector v are known quantities. This infinite system of
equations represents a Fredholm equation of the second kind and may be treated with
a variety of methods. The technique utilized in the slitted cylinder examples will be
described in the next section. It also should be noted that the assumption (2.54) is made
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because it causes, for example, the combination x,xn to behave as ann -, e>0, as
n---, , thereby insuring the convergence of the associated sums in (2.60) and (2.62). If
desired, this condition could be relaxed. It suffices for the slitted cylinder examples.

Finally, as a further generalization of the above results, consider, for instance, the
n-series problem

(2.65)

., ajej(rk)=O, kI(L),

Z ajOj(,)=f(,),
j-- -

where the functions {e,,(q),m=0,1,..-} form an orthonormal basis of the Hilbert
space .,eg_ ([0, 2r ]). Since this system is constructed from the mixed boundary conditions,
the functions {,,(q,)} must be linear combinations of the basis functions {e,,(q)}.
Moreover, because the set {ei"SS, m=O, +__ 1,-..} is also a basis of e2([0,2r]), each
function e,(q); hence, each m(q) can be expanded in terms of those basis functions.
In particular, set

Thus, defining

(2.67) Xm= ,, U,,aj,

the n-series system (2.65) becomes, for example,

(2.68a) ., Xmeimq=O,

(2.68b1 E
m --0

XmSgn(m ) eimq’= F( dp ),

kI(L),

,l,I(V),

where the Fourier coefficients of the forcing function F are

(2.69) F, =f, + [sgn(n)-(n)]x,.

The solution to the system (2.68) follows immediately from the preceding results.

3. Electromagnetic coupling to a slitted cylinder. A variety of problems including
those describing the coupling of electromagnetic waves to an enclosed region can be
reduced to an n-series problem. For instance, if the shape of the scattering body
coincides with a constant coordinate surface in one of the coordinate systems for which
the vector ,field equations are separable, the incident and scattered fields are first
expanded in terms of the corresponding eigenfunctions. The n-series equations are then
realized by enforcing on that surface the boundary conditions for the tangential electric
and magnetic fields over the aperture and on the perfect conductor.
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In particular, consider the electromagnetic coupling of a plane wave to a thin
infinite perfectly conducting circular cylinder with (n-1) infinite axial slots. The
magnetic field vector of the plane wave is taken to be parallel to the axis of the
cylinder. This H-polarized plane wave is assumed normally incident on the cylinder;
hence, the problem is two-dimensional. A cylindrical coordinate system (p,4),z) is
centered on the axis of the cylinder; the z-axis coincides with the cylinder’s axis. The
angle of incidence, q)in, of the plane wave is arbitrary. The radius of the cylinder is a.
The angular extent of the metallic portions of the cylinder coincides with the interval
I(F), the apertures with I(L). This geometry is illustrated in Fig. 1 for a cylinder with a
single axial slot (n=2). The currents induced by the plane wave on the metallic
portions of the cylinder are desired. This problem is reduced to an n-series problem as
follows.

For the given polarization Maxwell’s equations decouple and only the E, E and
H components of the field are excited. The components of the field tangential to the
surface of the aperture and the cylinder are of particular importance. They are related
by

(3.1)

where, as throughout this paper, a eJ’t time dependence is assumed.
The incident magnetic field has the Fourier mode expansion:

--Z
--jninc(3.2) HinC=AoeJk’es(’t’-’t’")=Ao ., [jlnljl.l(ko)e ]e

From (3.1) it follows that

(3.3) /;7- inc _jnq,ine

"-’,t, =jZoAo

where J(x)=dJ,,,/dx and Zo=k/oe is the free-space characteristic impedance. The
corresponding Fourier expansions of the scattered fields are"

(3.4c) E,>=jZoAo Z a,4’,,l(ka)Sl’,,l(k))e’* (>a),

E, ,=jZoao E

where H,, is the Hankel function of second kind and order n and H,(x)= dH,,/dx. The
boundary conditions for the tangential electric and magnetic fields at the surface p a
are now enforced to obtain the n-series equations.

Since the total tangential electric field is zero on the metal, the scattered and the
negative of the incident electric fields are equal there:

(3.5) Eq (a, (])) inc-e,
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Substituting (3.4c) or (3.4d) ((3.4c) and (3.4d) guarantee the continuity of the tangential
component of the scattered electric field across the interface 0=a) into (3.5), one
obtains

(3.6) JZo E a,Jl’nl(ka)Hl’,l(ka)eJ’e=-(q), q,I(F).

The dc components of the fields can be extracted from this relation by introducing the
functions K,(x) so that

(3.7a) -jrJs(x)Hs(x)= 1 + Ko(x ) (n 0),
(3.7b) jrx2j(x)H,(x)=n[1 +K,(x)] (n>0)
where K,(0)=-0. As defined, the K,(x)--O(n -2) as n---, oo for any fixed x, and
therefore, satisfy (2.54). Equation (3.6) thus becomes

(3.8t

E lnla[l+Kll(ka)]eJnq’=(ka)2[l+K0(ka)]a0+ Zo
q,I(F).

On the other hand, continuity of n across the apertures and the Wronskian relation-
ship

(3.9)

give

Ji’,,l(ka) Hl.l(ka) -Jl,,I (ka) Hl’,,l(ka)
2j
7rka

(3.10) Y’ a,eJ"*=O, qI(L).

Defining the quantities

(3.11a) Xm=Klml(ka),
(3.1lb) = (ka)2[1 + x0(ka)],

(3.11c) f(q) (ka)2vr
Zo

(3.8) and (3.10) constitute the n-series problem:

ameJm*= o, dp I( L )

alm IZmeJ" a0+f(),

(3.12a) E
m----- -oo

(3.12b) E
m--- 4,I(r).

It is clearly seen that (3.12) coincides with the em= + 1 case of (2.51). Consequently, the
unknown amplitudes am(m=0, + 1,-.. ) are obtained from the solution system (2.62).
The currents induced on the cylinder then follow immediately from (3.4a), (3.4b) and
(3.9) as

2A oo
imq,(3.13) J(a,q)=H<(a,q)-H>(a,q)=jrka E ame

m--- -oo
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The complementary problem, an E-polarized plane wave incident upon a circular
cylinder, the metal and apertures now coinciding with L and I’, respectively, has an
analogous solution. Only the E, I-Io and/-/, components of the field are excited, the
tangential components being related as

-J(3.14) H, -ff
The Fourier expansions of the incident and scattered fields are now"

(3.15a) E-in=A0 E [jlnlJInl(kO)e-Jnq’in] ejn4’,
n

(3.15b) E:>=A0 Y’ c,,Jl,,l(ka)Hl,l(kp)eJ"q’ (p>a),

(3.15c) Ez<=A0 E c,,Jl,,l(kp)Hlnl(ka)eJ"’ (p<a),

(3.15e) n;. -jv0a0 Z

where Yo k/w is the free space adttance. Continuity of H, across the apertures
and the WronsNan relation (3.9)

(3.16) c,e;"*=O, I(r).

Furthermore, satisfaction of the boundary condition E(a,)= -Ein(a,) yields

(3.17a) E c,Jl,l(ka)Hl,l(ka)e’*=(O), ,el(L),

where

(3.17b) (q)= E ,(q’) ej’’t’= E -jl"lJl,,I ( ka) e -J’q;"

However, in contrast to the H-polarized case, the dc components of the field are
properly extracted by introducing the functions ,,(x) so that

(3.18a) [j,n’Jo(x)Ho(x)]-1 =0(x),
(3.18b) [_j,rrJ(x)Hm(x) -1

=m (1 + ,,(x)), m>0,

where m(0)= 0. This choice is made to account for the logarithmic singularity of Ho
near x=O. Furthermore, (2.54) is satisfied since m(X)" O(m-2) as m--, oo. Defining
the coefficients

(3.19a)
(3.19b)
(3.19c)

b CnJinl(ka) Hlnl(ka) n,
?,, (1 + R,,) -= 1 +/1,,I (ka),
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the n-series system defined by (3.16) and (3.17) reduces to the form

(3.20a) E bmejm’=O,

(3.20b) E b,lm Imejm*=bo+f(),
m

kI(L),

i(r),

where

(3.21a)

(3.21b)

Therefore, since this system is of the same type as (3.12), its solution system also
follows from (2.52), and hence has the same form as tb.e one found in the original
H-polarized problem. On the other hand, the currents on the cylinder are now defined
as

2YoA oo

(3.22) J(a,,)=H;>(a,,)-Ht<(a,,)= rka E c,eJ"’.
n

slot.
FIG. 1. Configuration of the scattering of an H-polarized plane wave from a ylinder with an infinite axial

To illustrate the calculation of the induced currents, consider an H-polarized plane
wave coupling to a circular cylinder with a single axial slot. The geometry of this
problem is shown in Fig. 1. Equations (3.12) reduce in this case to the dual series
equations:

(3.23)
ameJm’l’=O, (0,2r-0),

amlm IZmem*= ao+f(d),
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PHI (DEG) PHI (DEG)

3 1oo

-1oo

ID LO iI{)

PHI (DEG) PHI (DE:G)

FIG. 2. Currents calculated by the dual series and the method of moments for an H-polarized
plane wave incident at inc 180 on a cylinder of radius 1.0 X with an aperture angle tg,,--,r-/ 45.

PHI (DEG) PHI (DEG)

If) ID ID

PHI (DEG)

1oo

PHI (DEG)

FIG. 3. Currents calculated by the dual series and the method of moments for an H-polarized
plane wave incident at oinc= 135 on a cylinder of radius 1.0 A with an aperture angle Oap=,r-O=45.
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These dual series equations have the solution system

(3.24)

Xm=mam= o+ ., fV,- E L-[X,,x,,V,+2coRm (m:/:0),

n
E LV E Inl

TXnXnVt + 2c0R0 (m 0),

0 (1 +W)aO+
n--’-ofnWn- n=’-o XnxnWn+2cS (=’n’),

where So S and

(3.25) f -jl"l+l(ka)2.trJ(,,l(ka)e

The coefficients V, Rm, Wn and S are given explicitly in [5]. They are combinations of
Legendre functions and are readily computed. It has been found [5] that truncating fn
and Xn in (3.24) for Inl greater than some large value N and using Gauss elimination to
solve the remaining finite system yields good numerical approximations for the coeffi-
cients c, ao, x +/- 1,’" -,x +/- N. The remaining coefficients, Xm, for N< Iml _M are given by
the expression

N N

(3.26) Xm---- mam=Vmao+ E .fnVmn- E rt la,,x,,V,,7 + 2coRm.
nffi -N nffi -N

As N approaches , this solution scheme becomes exact. The rate of convergence of
the current sum (3.13) is then enhanced by handling the edge behavior analytically. In
particular set

(3.27) ., ameJm’t’= ao+ . Xm- ’m eJm’l’ + E Xm eJm’l’
m-- oo mO m m.O m

where the term "m is a large m approximation of xm. The first sum on the right-hand
side of (3.27) is rapidly converging. The second sum is obtained analytically (see [5] for
the details); it contains the singular component of the current near an edge of the
aperture.

Currents generated with this dual series scheme (solid lines) and with a two-dimen-
sional method of moments code (dotted lines) are shown in Figs. 2 and 3. In Fig. 2, the
angle of incidence qbinc= 180; in Fig. 3, tinc= 135. The radius of the cylinder in terms
of wave length (a/h)= 1.0 and the aperture angle O,u,=,r-0=45 in both cases.
Moreover, the truncation numbers were chosen to be large: N= 25 and M= 190, to
guarantee the accuracy of the dual series results. Note that both figures demonstrate
that the dual series solution readily models the singular behavior of the fields near the
edges of the aperture. Furthermore, as discussed in [5], the dual series solution has
revealed that the moment method solution will properly describe the current (especially
in the shadow region) only if a nonuniform gridding that is finer near aperture edges is
employed. The slight inaccuracy of the moment method solution present in both figures
disappears when finer gridding is utilized.
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4. Comments. The description of coupling to more complex structures such as
slitted parabolic or elliptic cylinders leads to the more general n-series problem (2.65).
As noted in 3, the structure is assumed to lie on a constant coordinate surface, and the
incident and the interior and exterior scattered fields are expanded in the eigenmodes
corresponding to that geometry. For instance, for a two-dimensional elliptic cylinder
the fields would be expanded in terms of modified and periodic Mathieu functions. The
n-series problem follows from enforcing the electromagnetic boundary conditions over
the aperture and the metal.

The terminology "n-series problem" needs to be clarified since it is confusing to
discover that in general one has a system of 2(n- 1) equations for an n-series problem.
For a single slit n 2 and a dual series equation system is obtained which agrees with
the notation. On the other hand, for two slits n 3 and a system of four equations is
obtained in general. However, assuming that the metal-aperture configuration is sym-
metric about the r--0 axis, only a triple series equation system need be treated. These
symmetric problems are the only ones that have been treated in the past, for example,
in [6]. The present approach is not restricted to problems of this type. Nonetheless, the
terminology and the subsequent inconvenient notations were chosen so that they
reduced to the standard ones encountered in dual and triple series problems.

Note that the Riemann-Hilbert results also explicitly contain, in addition to the
correct edge behavior, the multipole behavior of the static solution of infinity. For
instance, for a single slit case the dual series system leads to a solution (2.20) which has
the limit limll_ oo x(z)-Co/Z. (In fact, since one also has from (2.5) that limll_, oo x(z)
x_ 1/z, co x_ in that case.) This indicates that at infinity, the static solution for the

slitted cylinder behaves like a line charge or monopole. Similarly, for a cylinder with 2
slits (2.20) has the limit limlzl_, oo x(z)- Coz-2 + cz-. Thus, the static solution contains
a dipole as well as a monopole component at infinity.

N-series equations and their solution with Riemann-Hilbert techniques provide an
effective approach to a large class of mixed boundary value problems. For instance, this
generalized n-series approach generates analytic descriptions of the coupling of elec-
tromagnetic waves through apertures into open or enclosed regions. This was illustrated
succinctly with the circular cylinder examples. The coupling to a circular cylinder with
two axial slits and to a thin spherical shell with a circular aperture are currently under
investigation with this method. The analytic solutions to such canonical problems are
particularly useful because they are leading to the development of engineering "rules of
thumb" for coupling to more general structures. Furthermore, they establish a standard
to which large numerical coupling codes can be compared.

5. Appendix: the Riemann-Hiibert problem. Suppose that one is given a simple
closed, smooth curve F dividing the complex plane into two open sets, the (bounded)
interior S+ and the exterior S_ and two HOlder continuous functions of position on
that contour, T(y) and F(’), T(/) being nonvanishing. Let x(z) be a sectionally
analytic function, i.e., over the domains S+ and S_ let x(z) equal, respectively, the
analytic functions x +(z) and x_(z). Then the Cauchy integral

1 frF()d(A.1) x(z) =-- ’-z
solves the problem: Find a piecewise analytic function x(z) vanishing at infinity that
satisfies on r the prescribed transition condition

(A.2) x+(’)-x_(7)=F(y), rsr.



RIEMANN-HILBERT APPROACH TO n-SERIES PROBLEMS 377

Note that on F, the function (A.1) is defined as a Cauchy principal value and satisfies a
Hi31der condition of the same type as F and the Plemelj-Sokhotskii conditions:

1F(3, )(A.aa) x+(3,) =x(,)+
1(A.3b) x_(3/l=x(3/)--F(.3/).

Moreover, the additional condition x_(oo)=0 can be modified. For instance, if x(z)
has a pole of order n at z oo, the solution of (A.2) is

1 frF()d+pn(z)(A.4) x(z) - ._-Z---
where Pn(z) is a polynomial of order n in z, Po(z) being a constant.

The Riemann-Hilbert problem is a generalization of this problem. In particular, it
is desired to find the sectionally analytic function x(z) which satisfies on the contour F
either the transition condition

(A.5) (homogeneous problem),

or

(A.6) x+() T(’)x_(/)+F() (inhomogeneous problem).

A further extension of this problem to open curves and discontinuous coefficients is
possible. Note that by generating a solution, y(z), of the homogeneous problem (A.5):

y+(,)=T(/)y_(’),

and defining the functions x/y and xI, Fly+, the inhomogeneous problem (A.6) is
reduced to the problem (A.2):

(A.8)
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