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Hertzian potentials are commonly used to describe the scattering of electromagnetic waves in three
dimensions. However, when apertures are present in the scattering object, mixed boundary conditions
arise and the TE and TM modes of the scattered field become coupled. Numerous attempts to
decouple these TE and TM modes have led to solutions of Maxwell's equations which fail to satisfy
Meixner's edge conditions. It has been found that by introducing additional gauge potentials which are
homogeneous solutions of the boundary condition equations, a pseudodecoupling of the TE and T™
modes can be achieved while still satisfying Meixner's edge conditions.

INTRODUCTION

The number of electromagnetic boundary value
problems that can be solved exactly in three dimen-
sions is rather small. This is especially true for scat~
tering objects having apertures. The desire and the
need for solutions to these canonical problems, how-
ever, are very strong from both theoretical and prac-
tical points of view.

In free space the electromagnetic field is derivable
from two scalar functions ¥ and @ and some speci-
fied direction in the form of Hertzian potentials
[ Nisbet, 1955]. This potential formulation has led to
essentially analytical solutions of (wo canonical
problems which bound the possible scattering geom-
etries involving apertures. For extended bodies, the
general solution for plane wave scattering from a
circular hole in an infinite, perfectly conducting
ground plane was given by Meixner [1948] and im-
proved versions were reported by Meixner and Andre-
jewski 19507 and by Nomura and Katsura [1955].
For finite objects, the general solution to the problem
of plane wave scattering from a circular aperture in a
perfectly conducting spherical shell was constructed
recently by Ziolkowski and Johnson [1987]. Incorrect
solutions to the former problem [Mdglich, 1927,
Meixner, 1946] and to the normal incidence version
of the latter [Radin and Shestopalov, 1974; Vin-
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ogradov et al., 1981; Casey, 1981] had appeared prior
to these results. The common flaw in all of those
earlier works was the assumption that the treatments
of ® and ¥ could be decoupled as is possible for the
corresponding closed scattering object problems. As
a result, their solutions do not satisfy Meixner’s edge
conditions [Jones, 1964]. On the other hand, the
common thread in Meixner [1948], Meixner and An-
drejewski 19501, Nomura and Katsura [1955], and
Ziolkowski and Johnson [1987] that leads to correct
solutions is the recognition that a pseudodecoupling
of the potentials ® and ¥ is possible with the intro-
duction of additional gauge potentials which, in ess-
ence, account for the presence of the aperture. These
gauge potentials provide the degrees of freedom
needed to construct fields that satisfy Meixner’s edge
conditions. Although an incorrect solution was ob-
tained in [Vinogradov and Shestopalov, 1977] an
analogous type of decoupling was also utilized by
Vinogradov and Shestopalov for the normal inci-
dence case of the open spherical shell problem. We
speculate that this pseudodecoupling principle, which
will be described in detail below, is a basic one and
could lead to the solutions of several other electro-
magnetic canonical scattering problems involving ap-
ertures.

DEBYE POTENTIALS

When the Hertz vectors are assumed to be the two
radial vectors ®r and ¥r, where r = r#, the functions
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& and ¥ are known as Debye potentials. In any
free-space domain endowed with spherical coordi-
nates (r, 8, ¢) they have, depending on the desired

polarization, the modal expansion forms
& —sin m¢
B ¢ s e 1
O, 6, ) mgo AT }{cos mé } m
i cos m¢
lP‘(r’ e’ ¢) = megoqlm(r’ 9){sin m¢’} (2)

where the azimuthal components

o, g 5 m
(\pm)(r, &) = E,m (bmn)z”(kr)P" (cos 6) 3
The terms P ™ are the associated Legendre functions
of degree n and order —m. We have chosen this con-
vention rather than the proportional, standard
choice of positive order, P;}™, because it is compat-
ible with the nonvanishing, singular functions P, ",
0 < r < m, that we will introduce below. In contrast,
P™ =0 for 0 < n < m. These expansions anticipate,
of course, that we will be dealing with circular aper-
tures in the following problems which are centered
about the 6 = 0 axis. If, for instance, we are interest-
ed in scattering from an open spherical shell of radius
a that is either empty or encloses a smaller concentric
interior spherical body, the radial function z, (k) rep-
resents a spherical Hankel function of the first kind
h(kr) of order n for r>a and either a spherical
Bessel function j(kr) or linear combinations of j (kr)
and h(kr) for r < a. An e”™* time dependence is as-
sumed and suppressed throughout. The free-space
admittance Y, = (g/p)'/2.
Debye potentials satisfy Helmholtz's equation

A+ ={A+k}¥=0

and generate the electromagnetic fields

E = —curl(@®r) — (icwe) " eurl curl(¥r)
H = +curl{(¥r) — (iwp)™ *curl curl(®r)

The potential @ represents the modes TE with re-
spect to #{TE,); ¥ represents the modes TM with
respect to r(TM,). For scattering problems the poten-
tials are decomposed into incident and scattered
components in the interior and the exterior of the
scattering object:

¢,=d)}nc+¢.}
=+ ¥
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where j = 1 for the interior domain; j =2 for the
exterior. The incident field is included in both regions

for convenience which means o, =afe  and

bine = bie .. The scattered field coefficients aj ,,, and
b* _ are chosen to contain the desired solution coef-

mn
ﬁi:ients A,, and B, and appropriate terms that
make E,,;, continuous across the boundary. For ex-
ample, when describing the scattering of a plane
wave from an empty open spherical shell of radius g,

the choice of

(a') kr)_( Auhll)
bl 0 "B, ak,[kahntka)])"’( hoor<a

(a!i mn Amnjn(ka)
' )z,,(kr) = ( . )h,,(kr) r>a
sl.mn Bm.n aka[ka.’n(ka)]

makes E,,, continuous across the boundary r = a.

OPEN SPHERE PROEBLEM

First consider plane wave scattering from a closed
sphere of radius a. The electromagnetic boundary
conditions E,_(* = a, 8, ¢) = 0 require

{sin 90,08,(¥, )] — m(ikr®,)}(r = @, ) = O
{m[8,r'¥, )] — sin 08,(ikr®,)}r = a, §) = 0

Since these equations are defined over the entire 8
interval [0, 7], orthogonality of the functions P ™
and 3,P, ™ allows separation of the TE, and TM,
modal treatments. In particular, (4) is satisfied if the
azimuthal components of the Debye potentials satisfy
the boundary conditions:

O Yr=a6=0
[0 )] =a,8=0

4)

(5)

On the other hand, if there is a circular hole present
in the spherical shell, {(4) holds only over the metal
{{r, 8, ®)|r = a, 0 € [0, 8,), ¢ € [0, 2x]}, and must be
supplemented by the additional boundary conditions
H,,, continuous over the aperture {(r, 8, ¢)|r =g,
0 € (84, 7], ¢ € [0, 2]}, which requires

{sin 08,[8,(r®,)] — mitkr¥,)}iziz =0

) _ ) )
fm{o,(r®, )] — sin 68 (ikr¥ J}12ir =0

The completely decoupled equations in (5) no longer
specify the solution properly because the TE, and
TM, modes are now coupled by the hole. We are
then faced with a complex mixed boundary value
problem defined by the coupled pair of dual series
equations arising from the open sphere electro-
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Fig. 1. The gauge potentials are defined over two regions.
Region I is the cone whose apex coincides with the origin and
whose intersection with the sphere r = a is the rim of the circular
aperture of the open spherical shell. Region I is the complement of
Region 1L

magnetic boundary conditions: (4} over the metal
and (4) over the aperture.

This difficulty can be circumvented by introducing
additional potentials ®¢ and W (with azimuthal ex-
pansions of the form (1) and (2), ®,, and ¥, being
replaced respectively with ®¢ and &) that are ho-
mogeneous solutions to the open sphere boundary
condition equations (4) and (4). These potentials ac-
count for the presence of the hole and enable one to
construct fields that satisfy Meixner’s edge con-
ditions. Their introduction also allows us to maintain
the conventional TE, and TM, representations and
permits a separate treatment of the TE, and TM,
potentials in analogy with the closed sphere problem.
However, in contrast to that analysis, the open
sphere potentials remain coupled by the expansion
coefficients of ®° and W€ Thus we achieve only a
*pseudodecoupling” of the dual series equations for
the TE, and TM, potentials. Failure to account for
this coupling results in currents and fields that do not
have the correct singular behavior near the edge of
the aperture.

Homogeneous solutions of the open sphere bound-
ary condition equations are readily constructed.
They are used to define the auxiliary potentials @°
and W€ either in the interior or the exterior region.
Additionally, they must be discontinuous in 8 to cir-
cumvent the singularities at # =0, n. Because the
associated Legendre functions satisfy

LyP7™= —n(n+ 1) sin® P, ™
where the operator
L, = sin 83, sin 88, — m?
homogeneous solutions of the form

Bo(r, 0, ) = —iG (kr)

_ ‘f: {—sin md)} ikao,, P3™ (region I}
meoo LCOS M (—&,/ika)Pg™  (region II}
hylr, 0, @) = +iY, G (kv)
i {cos mqb} B.Po™ (region 1)
o lsinme ) B, P;m {region I}
are allowed if
B, = tka o,
- (6
&, =ika B,

As shown in Figure 1, region II denotes the cone {(r,
9, ¢)|6 € [6,, =]} and region I denotes its comple-
ment. The function G,(kr) = *"~9/kr. For simplicity
we have chosen G (kr) to be the fundamental solution
associated with the operator {67 + k*} times a fixed
phase factor so that it equals a convenient real con-
stant, 1/ka, at r = a. The dual associated Legendre
functions

B ™cos ) = (~1)"*"P ™cos (x — 0))
In particular,

(=1

m!

Py ™cos 0) = tan™ 3

Note that our sign convention differs from the one
used by Gradshteyn and Ryzhik [1965, p. 1008] by a
factor of (— 1)™.

The constraint conditions (6) ensure that the po-
tentials hy and hy satisfy the open sphere boundary
condition equations and that the combined fields
they generate are null. This allows considerable flexi-
bility in defining the auxiliary potentials ®¢ and ¥¢.
To be in close analogy with the closed sphere case,
we set

O =h, Wi=h
over the exterior region (* > a) and
=¥ =0
over the interior region (r < a).

Of special interest is the fact that the constraint
condition (6) ensures that no field contributions arise
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from the combination of the potentials ¥ and ¥¢.
This means that ®° and ¥ are actually (dis-
continuous) gauge potentials and that their inclusion
in the analysis simply represents a gauge transforma-
tion. Physically, they represent a discontinuous, non-
radiating distribution of radial electric and magnetic
dipoles that compensate for the discontinuity intro-
duced when the circular hole was cut in the spherical
shell.

Notice that we could equally as well have chosen
to define ®% and ¥ nonzero only over the interior
region even though it contains the location (r = 0) of
their sources. This is again due to the fact that the
combination of these gauge potentials does not gen-
erate any fields. The fields produced by either kg or
hy are singularity-free (divergence-free) because their
fields have no radial components and

Ahg =4 hy=0

where
1 . . 2
AJ_ = m [sm 668 sIn 96@ + a¢.]

The gauge transformation

(200 (3) +(se)

could then be interpreted as one of the third kind in
the presence of boundaries according to Nisbet’s ho-
mogeneous medium definition [Nisber, 1955]; ie,
the actual sources of the fields are not modified by
the change in the potentials even though the poten-
tials’ sources are. We also could have constructed
slight variants of ®¢ and W€ in both regions. Dual
series equations identical to the ones given below can
be obtained from any of these choices.

The TE, and TM, dual series systems can now be
“decoupled” with these auxiliary gauge potentials.
Explicitly, one obtains over the metal a modified ver-
sion of the closed sphere conditions

[1(®,, + ©))(a, ) = 0
{8,[r(¥,, + ¥%)1}a, 6) =0
and additionally over the aperture
{2.[r@,)3Ha+, 6) — {4,[r(@,)]}a~. 6)
= —{o,[r (@ }a+, 6)
(¥, a+, ) — [+{¥,))a~, 6)
= —[r(¥)Na+, 0)

and therefore, the TE, dual series
b (a, 0)=a P;™ &e[0, 8y
{8,Ir(® ) Ha+, 8) — {8,[r@,)]}(a—, 6)
= (~& fika)F;™  Be(f,, 7]
and the TM, dual series
{0.[r(¥,}a, 6) = B, P5™
¥, (a+, 8) — ¥ (a—, 0) = (B,/ika) Py

General TE,, A, and a,_,, and TM,, B,, and §,.,
solution coefficients that guarantee satisfaction of
Meixner’s edge conditions are then constructed from
these dual series systems [Ziolkowski and Johnson,
1987, sect. 4]. Uniqueness of the results is accom-
plished by recoupling these solutions through the
constraint relations (6). The errors of Radin and
Shestopalov [1974], Vinogradov et al. [1981], and
Casey [1981] resulted from solving these dual series
systems but with vanishing right-hand sides; i.e., with
the assumption of a complete decoupling (&, = f,, =
&, = f,, = 0), which leads to ficlds which do not sat-
isfy the correct edge conditions.

8 € [0, 8,)
6 & (6,, 7]

PERFORATED SCREEN PROBLEM

The solutions of the circular hole/ground-plane
problem [Meixner, 1948; Meixner and Andrejewski,
1950; Nomura and Katsura, 1955] can also be refor-
mulated in terms of this pseudodecoupling ansatz.
Consider first plane wave scattering from an infinite
ground plane (z = 0 or § = n/2). The electromagnetic
boundary conditions E,,(z = 0) = 0 require

cos P82 + K2} p'P)
— sin ¢p~ 1 {ikY, %0, + 3,0,(6¥)} = 0

sin ¢{0Z + K*}p¥) @
+ cos ¢pp~ HikY, p®0,® + 6,6,(p¥)} =0

where r = p when z = 0. They are satisfied if the po-
tentials comply with the boundary conditions:

Yo, 0 =n/2)=0

2. Pp, 8 =m/2)=0
On the other hand, when there is a circular hole of
radius a present centered at the origin, (7) holds only
over the metal (r = p > a, z = 0) and must be supple-
mented by additional equations generated from the
boundary conditions; i.e., as in the open sphere case,
with H,,, continuous over the aperture (r =p <a,

@
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(r, 0,9 )

Fig. 2. The scattering of a plane wave from a perfectly conduc-
ting circular disc is described by this configuration.

z = 0). Equation {8) no longer specifies the solution
properly because the TE, and TM, modes are now
coupled by the hole.

Meixner. [1948] constructed a solution of this
problem by solving the complementary disc problem
and then invoking Babinet’s principle. The problem
configuration is shown in Figure 2. Because of the
geometry, the conditions for the continuity of E,,
across z = 0 and H,,, in the aperture can be satisfied
simply by a proper choice of expansion functions.
Meixner accomplished this with a transformation of
the expansion (3) to one in terms of oblate spheroidal
coordinates and their associated wave functions. The
unknown expansion coefficients were then deter-
mined by satisfying (7) over the disc (p <a and
z = 0). However, if (8) is applied directly as was done
by Méglich [1927] and Meixner [1946], one is led to
fields which do not satisfy the correct edge conditions
[ Meixner, 1948].

As above, homogeneous solutions of the boundary
condition equations must be introduced. In particu-
lar, gauge potentials ®% and W€ are constructed from
linear combinations of hg, hy, and their complex
conjugates (with 8, = /2) in the regions z > 0 and
z < 0 so that over the disc they satisfy (7):

wa(p, 0=2, ¢) = —%, Y [&RGke) + f,GChlkp)]

m= =0

- exp (im¢) = — Y, Ulkp, &)
G _r
p3,® (p, 6= x qb)

=~ 5 {ml,Gykp) - B, G5lko)1}

- exp (im@) = +pVikp, ¢)

where G¥(kp) is the complex conjugate of Gykp).
Notice that these gauge potentials have singularities
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at p =0. The presence of these singularities has
caused some confusion as to the validity of Meixner’s
solution. However, as in the open sphere case, the
fields generated by these gauge potentials are
divergence-free, hence, singularity-free. This result
was noted by Bouwkamp [1954, p. 85]: “... the
Debye potentials are highly singular at the origin of
coordinates. These singularities, however, do not lead
to singularities in the field vectors themselves.” Meix-
ner’s results [Meixner, 1948] demonstrate that one
can then construct a solution to the disc, hence, to
the complementary circular hole problem by re-
quiring that over the disc:

¥+ ¥, 6 =n/2)=0
8(® + %, 0=m/2)=0

Uniqueness of the solution is then assured by adjust-
ing all of the &, and f,,, hence, the solution coef-
ficients A4,,, and B,, to produce the proper edge be-
havior of the fields; ie, to guarantee satisfaction of
Meixner’s edge conditions [Meixner, 1948; Jones,
1964, sect. 9.2]. Therefore, although the solution co-
efficients A4,,, and B, are still coupled through the
constants &_ and f§,, the treatments of the TE, and
TM, potentials have, in essence, been decoupled as
for the closed ground plane problem. Note that
Meixner actually treated the potentials by setting

() ()=o) (52)

so that (9) is replaced with

)

(#7 + P, 6 = /2) = 0
807 + OY)p, § = =/2) =0

)

and
¥*(p, 8§ = nf2) = Ulkp, ¢)
2. 9*(p, 0 = =/2) = V{kp, ¢)

¢

The computational difficulties associated with Meix-
ner’s results [Meixner, 1948] actually stimulated the
discovery of the much simpler solutions of Meixner
and Andrejewski [1950] and Nomura and Katsura
[1955] based upon a Hertzian potential formulation
with expansions in terms of cylindrical wavefunc-
tions. It is rather straightforward to show that these
results also conform to our “pseudodecoupling”
point of view.
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