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Scattering from Cavity-Backed  Apertures: The 
Generalized  Dual  Series  Solution of the 

Concentrically  Loaded E-Pol Slit 
Cylinder  Problem 

RICHARD W. ZIOLKOWSKI AND J. BRIAN GRANT 

Abstract-The generalized dual series solution to the scattering of an 
E-polarized (E-pol) plane wave from  an  infinite circular cylinder having 
?n infinite axial slot and enclosing  an  infinite concentric impedance 
cylinder is presented. This solufion explicitly exhibits the correct edge 
behavior, and it  can handle cylinders that are either electrically small or 
large without special considerations.  The  angle of incidence is arbitrary. 
A variety of current, field, and cross-section results are presented. These 
are compared with the corresponding If-pol problem results to establish 
the polarization dependencies of the aperture coupling. It is also shown 
that effects corresponding to the presence of the interior cavity dominate 
dl of the scattering data. In particnlar, the bistatic cross sections in either 
case and the current induced along  an interior wire  in the E-pol case 
exhibit new resonance features that fire due  to the cavity-backed nature of 
the aperture. 

B 
I. INTRODUCTION 

ECAUSE  THEY  DESCRIBE coupling via apertures into 
enclosed regions and scattering from reflector structures 

having  edges  and nontrivial geometries, the importance  of 
canonical electromagnetic cavity-backed aperture problems 
cannot  be overstated. They  provide  a  fundamental  means 
with  which basic aperture coupling  and reflector physics  can 
be studied in detail; they  can be used to construct and/or 
validate approximate  models or general engineering analysis 
and  design “rules of  thumb”  that  can  be applied to more 
general apertures and scattering objects; and  they  aid  in  the 
development  of  improved  numerical  techniques especially 
near the edges  of the apertures or reflectors where  discontinui- 
ties appear  and  where those methods  may  encounter difficul- 
ties. Moreover, accurate canonical solutions of this type 
provide standards to which general numerical  code results can 
be  compared. 

In this paper, we construct the generalized dual series 
solution to the scattering of  an  E-polarized  plane  wave  from an 
infinite circular cylinder having an infinite axial slot  and 
enclosing an infinite concentric impedance cylinder. The 
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generalized dual series (GDS) approach was introduced in [l] 
to solve mixed boundary  problems .of the electromagnetic 
aperture coupling type and  was applied directly in 121 and [3] 
to the corresponding  empty  and concentrically loaded H- 
polarized slit cylinder problems. The empty  E-pol slit cylinder 
problem  has  received  some attention in the literature with 
various techniques. It was investigated with an integral 
equation  approach  by  Senior 141 and with. approximate 
analytical approaches  by  Libelo  and  his  coworkers (see for 
instance [5]). Shestopalov  and his coworkers  in  %e Soviet 
Union  have  examined this problem  with  limiting cases of its 
dual series solution (see for instance [6]); Warne has con- 
structed a  uniform  approximation  of its dual series solution 
valid for small apertures [7]. This . paper represents an 
extension  of the results reported in [8]. 

As will be shown in Section II, the GDS approach is 
systematic. One first constructs the modal  expansions  of the 
fields in the interior and  in the exteiior regions. Then the 
electromagnetic boundary  conditions: Et, = 0 over the metal 
and Hm continuous  in the aperture, are enforced. This leads to 
a dual series problem for the modal coefficients. For a two- 
dimensional scattering problem  of this type, the resultant dual 
series problem is solved  by  transforming it into an equivalent 
Riemann-Hilbert  problem.  The solution to a  Riemann-Hilbert 
problem  of  complex variable theory . i s  well  known [9] and for 
these aperture coupling  problems, returns a n ’  infinite linear 
system  of equations for the modal coefficients. A rigorous 
truncation  procedure for this system  was  developed  in [2]. The 
resulting finite system can be solved for the solution coeffi- 
cients with a variety of techniques such as Gauss elimination. 

In principle the currents, fields, etc. can  be  generated  from 
the original expansions  with these solution coefficients. 
However,  because  we are dealing with  modal expansions, 
purely  numerical  summations do not  faithfully  reproduce the 
singularities present in the currents and in the fields. As 
discussed  in  Section III, the asymptotic  behavior  of the 
solution coefficients can be identified and is used to produce 
analytically summed series that recover the singular behavior 
of those physical quantities near the edge  of the aperture. Thus 
by “preconditioning” the current and field sums  with these 
analytical components, the remaining sums are well-behaved 
and  may  be  handled  numerically  without difficulty. 
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As such, the GDS approach  allows  one to obtain essentially 
analytical solutions to a large family  of canonical aperture 
coupling  problems. By a variation of  a single parameter, the 
impedance,  the slit cylinder can  be  empty or made to enclose a 
perfectly  conducting or lossy wire. The  computer is utilized 
only in the final stages of the solution proeess to generate the 
special functions, to perform the matrix inversion and to 
calculate the numerical sums. The GDS solution inherently 
contains the behavior  near the rim of the aperture required by 
Meixner's  edge conditions, and it can  handle slit cylinders that 
are either electrically s m a l l  or large without  additional  special 
considerations. The angle of incidence is arbitrary. Typical E- 
pol current, field, and cross-section results will be described in 
detail in Section IV. These  will  be  compared  with the 
corresponding H-pol results to examine the polarization 
dependencies  of the aperture coupling  and the scattering data. 
It will be  shown  that effects corresponding to the presence of 
the interior cavity dominate all of the results. In particular, we 
will  demonstrate  that the bistatic cross sections in either case 
and the current induced  along an interior wire  in the E-pol case 
exhibit new resonance features that are due to the cavity- 
backed nature of the aperture. 

II. GENERAJJZED DUAL SERIES SOLUTION 
A .  Problem  Geometry 

The  E-pol  problem configuration is shown  in Fig. l(a). A 
cylindrical coordinate system (r, 4, z )  is erected at the 
common centers of  the slit and  impedance cylinders with the z- 
axis along their axes. The radius of the impedance cylinder is 
a; the slit cylinder radius is b. The extent of the metal  is  taken 
to be the interval [e, 2.rr - e] ,  the aperture is [ - 8, e]. The 
plane  wave is incident from the angle 4inc. 
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B. Modal Expansions of the Fields 
Fig. 1. (a)  Configuration of the  scattering of an E-pol  plane  wave  from an 

infinite  cylinder  having  an infinite axial slot and enclosing  a  concentric 
impedance surface. (b) Configuration  for  the  comparisons of the E-pol and Fourier  mode  decompositions  of the incident and scattered H-pol problem results. 

fields are readily constructed. For an  E-polarized incident 
plane  wave of amplitude Eo the electric field is along  the  axes 
of the cylinders and  has the expansion for r > b 

Ejloc=ejkrcos(+-+inc)- jImIJlml(kr)ejm(+-+inc). 
m 

m= - m  

(la) 

An ejor time  dependence  is  assumed  and  supressed through- 
out.  The resulting magnetic  field  components for r > b have 
the form 

be 

I m= - m  

The  corresponding scattered field expansions are assumed to where Yo is the free space  admittance (Yo20 = 1)  and  where 
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H, represents the Hankel function of  order m and  of the C. Equivalent Dual Series Problem and Its Solution 
second  kind. The  dual series problem  is constructed by enforcing the 

The  number  of coefficients is reduced  by  applying the remaining electromagnetic boundary conditions: E y  = 0 over 
impedance  boundary  condition  on the inner cylinder and by the  metal  and H y  continuous  in the aperture. With  (6) 
enforcing E, to be  continuous across the outer cylinder r = b. evaluated at r = b and  with the Wronskian relation 
The  impedance  boundary condition 

2.i 
EY(a, 4 )  = ZH?(a, 4)  Jlml(kb)N,',,(kb)-JkI(kb)HlmI(kb)= -- T kb 

produces the coefficient relation 

C m  = fllml (ka)Bm 
where 

where 

Combining these relations, the total field expressions in terms 
of  the unknown coefficients B, become  finally 

EY=Eo ejmQB,aIml(kr), (a<r<b)  (6a) 
01 

m =  - m  

The  dual series system  defined  by  (7a)  and  (7b)  has  a  form 
slightly different from the ones treated in 121 and  in [3]. 
However,  with  a redefinition of terms, one  can  put the present 
system  into the desired form. In particular, let 

bm=Bmalml(kb) (84 

and 

m 

HY=  - jYoEo   e jm@B,a~l (kr ) ,   ( a<r<b)  m = - m  

m= - m  This dual series system can now be solved  with the approach 
(6c) developed  in [l] . 

H y =  - jYoEo eJm+ 
m We  proceed  by introducing the functions X ,  so that 

m= - m  

+jlmle-jm+i"C for m=O 
Iml(1 +xm), for m#O. (1 0) 
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finite kb: limm-+m X, - O(lrnl-2). Thus r, - I r n l  for kb 
1 or for m -+ 03. 

The dual series equations are then rewritten as 

m 

m = - m  

+ ( f ,  - In I xflbfl)ejfl@, (I 6 I c 0). (1 1b) 
f l # O  

The  terms proportional to X ,  have  been  moved to the right- 
hand side because for large rn they are of  order 1 rn I -2  smaller 
than  the  corresponding  terms  remaining  on  the  left-hand side of 
(1 lb). We  have, therefore, isolated the large rn pieces  on the 
left-hand side of the dual series equations (1 1). These  terms 
are responsible for the edge behavior. The  terms proportional 
to X, are now treated as forcing terms  and are negligible  when 
(kb/rn)2 is  small or when kb 4 1 and m is large. Since  in the 
quasistatic limit r, in (9) reduces to I r n  I plus a piece that  is 
effectively  included  with f as a forcing term, we  denote (1 1) 
the “static” dual series problem.  Note  that  this identification 
is  exact  when a = 0. Thus the solution of the “static” dual 
series system  (1  1)  will contain all of the information  about the 
edge  behavior of the “nonstatic” or dynamic  problem.  This 
attribute of  the static problem is generally recognized. The 
“static” dual series system  (1  1)  with the right-hand side 
treated as a general forcing function  can  be  solved  exactly by 
converting it to a Riemann-Hilbert  problem. 

The  Riemann-Hilbert  problem  is a classical problem  in 
complex variable theory. It concerns the construction of the 
analytic function x whose limits x+ and x -  from the inside and 
the outside of a closed curve satisfy the transition condition x-  
= gx+ + h on  an  open  segment  of  that curve. 

Recall  that (7a) and (7b)  are, respectively, associated with 
the field components E, and H+. Therefore, they  behave, 
respectively, like (e - 4)+ and (e - 4)- ‘ I 2  near  the  edge 
of the aperture. Consequently, (9a) and (9b), hence  (1 la) and 
(1 1 b), inherit this behavior. The additional term I rn I in (1 lb) 
is responsible for this difference. To make  both series 
equations express the same singular behavior, (lla) is 
differentiated with respect to 6. Introducing the Coefficients x, 
= rnb, (note that it is assumed  that x0 = 0) and  the functions 

x+(z)= X m Z m  
m>O 

mcO m>O 

the dual series (1 1) can  then  be  written  simply as 

This system represents the equivalent Riemann-Hilbert  prob- 
lem. Equation (12a) reflects the continuity  of the electric field 
across the metal; (12b), the transition condition  the  magnetic 
field  must  satisfy across the aperture to compensate for the 
absense  of  any current there. A Riemann-Hilbert  problem  of 
this form  has  both a bounded  and  an  unbounded solution that 
are intrinsically endowed  with  a  square root behavior  near 4 
= 8. [9, sec. 42, pp.  420-4281.  Recognizing  that  our 
procedure has embedded a square root singularity into (12), 
we  select the unbounded solution. The GDS solution we obtain 
then inherently contains the edge  behavior required by 
Meixner’s conditions. 

Introducing the coefficients 

the Riemann-Hilbert  problem  solution is [l] 

fl= - m  

where ( r n  = 0, t 1 , t 2, * -) and P,  denotes the Legendre 
polynomial  of  order rn. Unless  otherwise indicated,. the 
argument  of  any  Legendre  polynomial is cos 8. These 
coefficient relations must  be  completed  with the auxiliary 
condition 

which is obtained from (1 la) with 6 = n; it is introduced to 
account for the constant eliminated in the differentiation that 
led from (1 la)  to (1 2a). This constraint leads to the coefficient 
expression 

where 

The coefficients V;, Wo, W”, and S are all  simply 
combinations  of  Legendre’s  polynomials P, (cos 0) and are 
given  in  Appendix LI. Equations  (13a)  and  (13b)  uniquely 
define the “static” solution  modal coefficients. 

The relations defining the nonstatic solution coefficients are 
obtained  from the static system  by reintroducing the explicit 
expressions for the terms F, which contain the  unknown 
coefficients x,. This yields an infinite linear system  of 
equations: 
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where (m = 0, f 1 , & 2, e), which  uniquely  defines  the 
. desired  modal  coefficients. 

D. Numerical Implementation 
' The solution  system  (15) is an  infinite  set of equations of  the 

form: 

n= - m  n= --m 

Because  its  operator form is y + Ly = G,  where y is a 
vector  representing  the  infinitely many &owns, this infinite 
linear system  can  be  interpreted  from a Hilbert space  point  of 
view  as a Fredholm  equation of the second  kind [ 101. It  can be 
treated  in  several  ways. The approach  developed by Johnson 
and  Ziolkowski [2] is systematic  and  has  proved to be very 
efficient.  Because Amn andf, rapidly  approach zero for large 
values  of n,  truncation of A,, for In I greater than  some  value 
N can  be justified rigorously. Typically, reasonable  conver- 
gence  is  achieved  with N - 10kb. This truncation  eliminates 
x, in the  sums for In1 > N. Solving  by  Gauss  elimination (or 
some similar technique) the r e m d g  2N + 1 by 2N + 1 
square  system  of linear equations: 

N N 

n= -N n= -N 

where 

and  where m = - N ,   - N  + 1 ,  - - m y  + N  yields  good 
numerical  approximations  for  the  coefficients bo, x* 1 ,  - * , 
x k N .  Additional  coefficients x, for M 2 lml > N are easily 
and  accurately  generated  directly from (16a). As N ap- 
proaches infinity, this approximate  scheme  becomes  exact. 

m. CALCULATION OF THE OBSERVABLES 
The electric and  magnetic  fields everywhere, the currents 

induced  on  the slit cylinder  and on an interior conducting 
cylinder, and  the  bistatic cross sections may be readily 
computed  from  their  modal  expansions  once  the  solution 
coefficients bo and b, = x,/m (m # 0) are known. 
However, alternate expressions are particularly  useful  in 
increasing  the  rate of convergence of the current and  field 
sums and  in  studying  their  behavior nek the  edge of the 
aperture. They are described  below.  They are constructed by 
introducing an asymptotic  (large m) form of the  solution 
coefficients X m  : 

f m = K l P r n + K 2 P m + l  (17) 

and a slight  variation of it: 

for m>O, m # l ,  2  (17') 

where the terms 

To obtain (13 ,  for instance, we  have  taken  in the truncated 
form  of  (13a)  an  asymptotic form of the coefficients Vi: 

1 c=i [ p n + 1 ~ m - ~ n p m + 1 1  

so that 

The  need for two  asymptotic forms of the  solution  coefficients 
arises from a basic difference between the current (on the  slit 
cylinder)  and H+ sums and the Ez and H, sums which reflects 
the difference  in the behavior  between  these  terms near the 
edge of the aperture. 

A ,  Slit Cylinder Current Sums 
The current on the slit cylinder is simply the difference 

between the scattered  magnetic fields on its interior and 
exterior. Explicitly, it is axially directed  and is defined by 

J,=fb,(kb,   0)-4<(kbY 0) 

where the sum 

This sum is  preconditioned by introducing the asymptotic 
forms of the  solution  coefficients x, and  of  the  coefficients rm 
given  by (13, A?,, and Iml, respectively: 
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where  the  asymptotic  sum 

- (K, i- K2 COS e) (22') 

is obtained  in  a straightforward manner. It contains the square 
root singularity of the current near the edge of the aperture; 
i.e., for 4 - 0 - E which  gives  cos $3 - cos 0 + E sin 0, the 
term 

[2(cos $3 - cos e)] - 'I2- E - 112. 

The first sum in (19), f($3), converges  rapidly  because (1/ 
Hlml(kb)) - Iml-Iml as Iml + 00. The second sum in (21) 
also converges  rapidly numerically. Both of  those sums are 
truncated for Iml > M .  

B. Electric and  Magnetic  Field Sums 
The elcctric and  magnetic field sums are preconditioned in a 

similar manner.  The resultant expressions for the  components 
of the total  (incident + scattered) fields in  terms of the dual 
series solution coefficients are 

-sgn (m) 5 (-) ] r Iml 

kr b 

where sgn (m) = + 1 for m > 0, - 1 for m < 0. As shown  in 
Appendix IV, identifying the quantities 

A +  = A&+ 

so that I A, I < 1 and ] A -  I < 1 and introducing the terms: 

1 
L(A)= (25) 

J 1 - 2 x  COS e+x2 ' 
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Note  that for r = b the factors X+ = ei+ and X- = e-j4 so 
that  near the edge of the aperture where q5 - 8 - E ,  the  field 
terms 

(1-2A+ cos 8 + X 2 , ) - 1 / 2  

(1 - 2 ~ -  cos e+xy/2  
= e-i+/2[2(ms 6 - COS e)] - 112 1/2 

= e+W2[2(cos 6 - cos e)] - 112 - E - 1/2. 

This demonstrates  that  the square root singularitis of the 
transverse  field  components Hr and Hd near  the aperture edge 
have  been  isolated  in  the S, and S, expressions,  hence, are 
treated  analytically.  The  summations  in  (23a)-(23c) are 
handled  numerically  without  difficulty  and  converge  rapidly. 

C. Current on an Interior  Wire 
A basic  quantity of great interest  in  electromagnetic  pulse 
(Em) studies  and  in  other aperture coupling  applications is 
the total current induced  on an interior wire. It is a measure  of 
how  well a particular field that  has  penetrated  into the interior 
of an  object  through  an aperture has  coupled to an  interior 
load. For the present  two-dimensional  configuration the total 
current per  unit  length  along the wire is defined by the  integral 
relation: 

I,=a S z r  H+(a, 9) d$. 
0 

Because  (6c) for H+ is in the form of a Fourier expansion, this 
expression  reduces  to  one  which  depends  only  on  the  solution 
coefficient bo: 

D. Bistatic Cross Section 
A basic  quantity of great interest  in  scattering  studies  is the 

bistatic cross section. It allows  one to sample  the  magnitude of 
the scattered  far-field  pattern at any desired  look  angle. For an 
E-polarized  scattering  problem  in  two  dimensions it is defined 
as 

With the r > b expression in (2)  and  (5a)  and (8a) this simply 

becomes 

(28) 

N. NUMERICAL RESULTS 

Typical  results  generated  by the E-pol generalized  dual 
series  solution are given  below  and are compared  with  those 
generated by the corresponding H-pol solution.  These will 
include currents induced  on the slit cylinder  and  on  an interior 
wire, electric fields, and cross sections.  The E-pol results are 
all  calculated  with the expressions  derived in Section III. The 
corresponding H-pol results  utilize  analogous relations, most 
of which are derived in [2] and [3]. The electric field  results 
are all presented as contour  plots  of ~ E t o ~ ~ / ~ E h c ( r  = 0)l. To 
make  the E- and H-pol comparisons  more effective, our E-pol 
field  plots  will be referenced to the configuration  natural for 
the H-pol case. This H-pol geometry  is  given in Fig. le) and 
simply  has  the  slit  cylinder  rotated  by 180" with  respect to the 
one  shown in Fig. l(a). All  angles  will  now  be referred to this 
geometry so that, for example, a plane  wave  incident  from 
180.0" (0.0") sees (does  not see) the aperture. The angle $hc 

is denoted by $o on  all of the plots.  Half of the angular extent 
of  the aperture is denoted  by  the  angle 8,. All of these  results 
will  be  used to illustrate some general characteristics of the 
coupling  physics  and  of  scattering  from  cavity-backed  aper- 
tures  that our studies of these  canonical  problems  have 
revealed. 

The  real  and  imaginary parts and the magnitude of the  axial 
current - J, induced  on  an  empty slit cylinder of radius 1.0 X 
with 0 = go", or equivalently, 8, = 90" by an E-pol plane 
wave  incident  at 180" and  at 90" are shown,  respectively,  in 
Figs.  2(a)  and 2@). These  plots can be  compared  directly to , 
the corresponding H-polarized results  given  by  [2, figs. 3 and 
41. In contrast to the square root to zero behavior of the H-pol 
currents, the E-pol currents display the square  root  singularity 
near the edge of the aperture required by Meixner's  edge 
conditions. The number of peaks  in the magnitude of the 
current in the normal  incidence  case (Fig. 2(a))  closely 
corresponds  to  the  length of the cylinder's perimeter  which is 
3.14 A. The current in Fig. 2(b) is skewed  toward the lit region 
as one  might  expect for this nonnormal  incidence  case. 

The utility of these canonical  solutions for studying the 
near-fields of a cylindrical reflector antenna  with  varying sized 
blockages is illustrated  with Fig. 3. The E-pol electric fields 
E" = E, are shown for a 1.0 X semicylinder (e, = 90") 
reflector at normal  incidence (9'" = 180"), (a)  without any 
blockage  and  with wire blockages of radii (b) 0.1 X, (c) 0.3 X, 
and  (d) 0.5 X. Focusing is apparent  in Fig. 3(a). Noticable 
perturbations from Fig.  3(a) are found  in the field  patterns  on 
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Fig. 2. The GDS solution produces  the  required  square  root  singularities of the  slit  cylinder  current  near  the  edge of the  aperture as 
shown by the real and imaginary parts  and  the  magnitude of J, induced  on an empty slit cylinder, b = 1.0 h and 8, = go", by an 
E-pol plane  wave  incident  from (a) 180" and (b) 90". 

the source side of  the  blockages  while  well-defined  modal 
patterns become established in  the  waveguide  channel  formed 
between the wires  and the reflector in Figs. 3(b)-3(d).  The 
transitions from the three well-defined  field peaks in Figs. 3(b) 
and 3(c) to the"'banana"  mode  in Fig. 3(d) is  accompanied  by 
a significant enhancement  of the local field strengths. Notice 
that there is a close correspondence  between  the  location  of the 
field  maximums  near the reflector in Fig. 3(a) and  the current 
peaks  in Fig. 2(a). 

Fig. 4 represents a quasistatic E-pol coupling  example  in 
which  a slit cylinder of radius b = 0.1 h is  (a)  empty  and (b) is 
loaded  with an interior wire of radius a = 0.1 b. The plane 
wave  is  normally  incident  and  28, = 28.6'.  The penetration 
is minimal as expected. Moreover, there is  very little 
difference between  the  empty, Fig. 4(a), and  the  loaded 

cylinder, Fig. 4(b), cases. On the other hand, the correspond- 
ing large kb case, where b/h = 10.0 or kb = 62.8, is shown 
in Fig. 5. It demonstrates  that the penetration level into the 
interior of the slit cylinder can be quite high. There is 
approximately  only  a  three-fold  enhancement  of the field  in  the 
empty cylinder case, Fig. 5(a), and  a  twenty-two  fold 
enhancement  in the loaded cylinder case, Fig. 5(b). The 
locations of the maximum  field values in the loaded cylinder 
case lie on the shadow  boundary  of the wire at the points (x, y )  
= (0.1, t 0.1). This is due to the form  of the particular 
pattern that is established in the interior of the cylinder. Note 
that the geometrical optics shadow boundary of the  slit 
cylinder, where the field ratio is 0.5, is  readily  apparent in 
both figures. 

One  of the important features of coupling  through  a cavity- 



.. . . 

5 12 IEEE  TRANSACTIONS ON  ANTENNAS AND PROPAGATION, VOL. AP-35, NO. 5 ,  MAY 1987 

i 
0 smtova 

1.89 
1.49 

?.I 
1.M 

2.5s 

3 . s  
3 . a  

1.m 

3.19 

Fig. 3. The GDS solution can be used to study  the effects of blockage  near  a reflector as  shown  by  contour  plots of the electric field 
generated  by  an E-pol plane  wave  incident  from 180" upon a slit  cylinder, b = 1.0 A and e,, = 90.0", when  (a)  it i s  empty  and 
when  it encloses a wire of radius (b) 0.1 A, (c) 0.3 X, and (d) 0.5 A. 

backed aperture that has  been verified with  the E- and H-pol 
dual series solutions is that the field patterns in the interior of 
the open  cavity are closely related to those of  the  natural 
modes  of  the  corresponding  closed cavity. Consider Fig. 6. 
An E-pol plane  wave is normally  incident  from 180" on  a slit 
cylinder of radius b = 1.0 m  having  a 2" aperture (€lap = 
1 .O"). The wavelen-gh  of the incident field  is  chosen to match 
that of one  of the TM circular waveguide  modes [l 1 , p. 2051. 
In Figs. 6(a), 6(b), 6(c), and 6(d) the wavelength is, 
respectively, 1.138 m, 1.640 rn, 0.7465 m, and 1.2235 rn 
corresponding to the TMm. TMI1, TM22r and TMzl waveguide 
modes. The recovery of the field patterns characteristic of 

those  waveguide  modes is unmistakable. The interesting point 
is that these modal features persist even for relatively large 
apertures. Moreover, the coupling  of the field into the interior 
of the cylinder is large and occurs despite the aperture being 
small and/or  nonresonant (i.e., the length of the aperture is  not 
an integer multiple of a  half-wavelength). In Fig. 7 the 
aperture of the cylinder with b = 1 .O m has  been increased to 
28.6" (eap = 14.3"). This particular choice  of 8, makes the 
aperture a  half-wavelength  long  when h = 1.0 m. Fig. 7(a) 
shows the empty cylinder results for A = 1.183 m. The 
corresponding  loaded cylinder case is given in Fig. 7(b). Both 
figures indicate a significant amount  of  coupling into the 
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Fig. 4. The efficacy of the GDS approach in quasistatic cases is illustrated 
with contour  plots of the electric field generated by an E-pol plane  wave 
incident from 180" upon  a slit cylinder, b = 0.1 Xand28, = 28.6", when 
(a) it is empty,  and (b) it encloses a  wire with a = 0.01 X. 

interior. The  TMoz pattern persists in Fig. 7(a). The  presence 
of the interior wire in Fig. 7(b) has  driven the pattern into a 
coax  TMZ1  form  and the location of the maximum field 
strength out of the cylinder to a point directly in front of the 
aperture. Increasing the aperture extent further to 90" results 
in the patterns shown  in Fig. 8. Although  they are beginning to 
degrade slightly, the TMm and the coax TMZ1 patterns are still 
dominant  in Figs. 8(a) and 8(b), respectively. A difference 
between Figs. 7(b) and 8(b) that is particularly noticeable is 
the region of  maximum field strength, which  has been 
translated to an interior point directly in front of the wire. 

The closed waveguide patterns also persist as the angle of 

:ontour3 
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1.81 
1.21 
1.51 
1.81 
2.11 
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Fig. 5. The efficacy of the GDS approach  when  the  scatterer is many 

wavelengths  in size is illustrated with  contour  plots of the  electric field 
generated by an E-pol plane  wave  incident  from 180" upon a  slit  cylinder, b 
= 10.0 X and 20, = 28.6", when  (a) it is empty, and (b) it encloses a  wire 
with a = 1.0 X. 

incidence is varied. The  major effect is  a general decrease  in 
the interior field strengths. This is illustrated in Fig. 9. The E- 
pol  plane  wave is incident from 180" in Fig. 9(a); 135" in Fig. 
9(b). The slit cylinder again  has an aperture of 28.6" (€& = 
14.3"). The  TM31  mode  is  excited  in  both cases. The 
maximum field amplitude  in Fig. 9(a) is 1.5 times  the  one  in 
Fig. 9(b). 

As the radius of the interior wire is increased, the standard 
waveguide  modes are no longer appropriate and  new  modal 
patterns develop. This  is illustrated in Fig. 10 for an  E-pol 
plane  wave  with X = 1 .O m  that is incident  upon  a cylinder of 
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radius b = 1 .O m enclosing an interior wire  of radius a = 0.5 
m.  It is incident from 180" in Fig. lO(a); 135" in Fig. lo@). 
The  "banana"  mode pattern met  in Fig. 3(d) for the open 
reflector structure is again  formed  in this cavity-backed 
aperture case  but  with  a  very substantial increase in its 
maximum directly behind the wire. There is about  a  twelve- 
fold  enhancement  of the field in the normally  incident case, 
Fig. 1O(a),  which decreases to only  a fourfold enhancement  in 
the not  normally incident case, Fig. lo@). 

A large increase in the radius of the interior wire  can 
actually result in the exclusion of the field from the interior 
cavity. This is illustrated in Fig. 11. An E-pol  plane  wave  is 
normally  incident from 180.0"  with h = 1.183 m- upon  a slit 
cylinder of radius b = 1.0 m  having  a  28.6" (0, = 14.3") 
aperture. In Fig. 7(a), which is repeated  in Fig. 1 l(a), the slit 

cylinder encloses a  wire of radius a = 0.1 m. The field has 
penetrated into the interior and  has excited the coax TM2, 
mode. In contrast, the  wire radius is a = 0.5 m  in Fig. l l@) 
and  the  field  has  not penetrated deeply into the interior. 
However, the field  maximum  now OCCLUS just behind the 
aperture and represents an enhancement  of 4.05 rather than 
2.35. Fig. 1 l(b) shows that the incident field has  a  wavelength 
that  is  below  cut-off for the wirelslit cylinder waveguide, 
hence,  does  not penetrate into the interior cavity. 

To view the effects of polarization on these coupling results, 
consider Figs. 12-15. In Figs. 12  and 13 a  plane  wave  is 
incident from 180"  on  a slit with b = 1 .O X and 8, = 45". 
The  E-pol cases are illustrated in Figs. 12(a)  and 13(a); the H- 
pol cases in Figs. 12@)  and 13(b). The slit cylinder is  empty 
for Figs. 12(a)  and  12(b); it encloses a  wire of radius a = 0.1 
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Fig. 7. The persistence  of the cavity  modes  when the aperture is  large is Fig. 8. The persistence  of the cavity modes when the aperture is very large is 

shown by contour plots of the electric field  generated by an E-pol plane shown by contour plots of the electric field  generated  by an E-pol plane 
wave  with X = 1 .I38 m  incident  from 180" upon  a  slit cylinder, b = 1 .O rn wave  with X = 1.138  m  incident  from 180" upon  a  slit cylinder, b = 1.0 m 
and 28,, = 28.6", when  (a)  it is empty,  and (b) it  encloses  a wire with a = and 28,, = ! N o ,  when (a) it  is  empty,  and (b) it  encloses  a  wire  with a = 
0.1 m. 0.1 m. 

X in Figs. 13(a) and 13(b). The substantial differences between 
the  empty  and  loaded cylinder cases and  between  the  two 
polarizations are interesting. The  location  of  the  hot  spot  in 
Fig. 12(a) suggests that the mechanism for hot-spot  formation 
in the  E-pol case is a focusing effect from  the  metallic 
surfaces. Similarly the  wire  in Fig. 13(a) acts like a reflector 
and causes the hot-spot to be  located directly in  front  of it. On 
the other hand,  a strong standing wave pattern is generated in 
the H-pol case as illustrated in Figs. 12(b) and 13(b). In 
particular, the  field  amplitudes exterior to the cylinder are not 
small.  Moreover,  the  hottest  spot  appears in  the aperture 

region  of  the cylinder rather than  in its interior as  in  the  E-pol 
case. This  is  due to the direct excitation by  the  plane  wave  of 
the  edge singularity of the scattered electric field  in  the H-pol 
case. Furthermore, as shown  in Fig. 13(b), the  presence  of the 
wire in the H-pol case causes a strong localization  of the field 
near it. The wire radius has  been increased to a = 0.5 X in 
Fig. 14. In contrast to the E-pol case  in Fig. 9(a), which  is 
reproduced as Fig. 14(a), the H-pol case in Fig. 14(b) again 
shows the hot-spot  forming  in  the aperture region. Moreover, 
the  maximum  hot spot amplitude in the H-pol case is 
approximately five times smaller than in the E-pol case. Fig. 
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Fig. 9. The  excitation of cavity modes for nonnormal incidence  is  illustrated Fig. 10. The  excitation of a  "banana"  mode is demons&ted  with  contour 
by contour  plots of the electric  field  generated by E-pol plane  waves with X plots of the  electric field generated  by E-pol plane  waves  with X = 1 .O m 
= 1.0 m incident from (a) 180" and @) 135" upon an  empty slit  cylinder, b incident  from (a) 180' and (b) 135" upon a slit cylinder, b = 1.0 m 
= 1.0 m and 28,, = 28.6". and 20, = 28.6", which encloses a wire with (I = 0.5 m. 

15 illustrates the closed  waveguide  mode  formation  in both the 
E-pol and the H-pol cases. The wave is incident  from  180" 
and  the  angular  extent of the aperture is 2 a (e,, = 1.0 ") . Fig. 
15(a)  reproduces  the TMm results of Fig. 6(a); Fig. 15@) 
illustrates the H-pol wave  generating the TGl waveguide 
mode.  Again the hot-spot  maximum  is  approximately  five 
times  lower in the H-pol case.  On the other  hand,  the H-pol 
plane  wave  generates  enhanced  field  amplitudes in the exterior 
of  the  slit  cylinder as well as in its interior. 

The E-pol slit cylinder  solution also allows one to study  the 
current I, on the interior  conductor as a  function of frequency 
for all of the  input  parameters:  angle of incidence, aperture 

size, wire size, and  wire impedance. Figs. 16-18 represent 
one  such  parameter study. They  show the log of the magnitude 
of the current (23) plotted  against the log of the  frequency for 
various configurations.  The slit cylinder  radius b = .1 .d m, the 
wire  radius a = 0.1 m, and  the E-pol plane  wave is incident 
from 180". In Fig.  16  the slit cylinder  has 8, = 1 " . In Fig. 
16(a)  the  wire is taken to be  perfectly  conducting; in Fig. 16@) 
it  has a complex  impedance Z = (lOO.0,lOO.O). These 
frequency scans are taken  from 100 MHz to  1 GHz. The peaks 
in  both figures directly  correspond to the naturd resonances of 
the  closed  coaxial  guide.  The  effect of the  complex  impedance 
is  seen to be  1)  an  upshift  in the resonance  locations,  and 2) a 
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Fig, 13. Polarization effects on the  aperture  coupling  are  illustrated with 

contour plots of the electric field generated by (a) E- and (b) H-pol plane 
waves  incident from 180" upon a slit cylinder, b = 1 .O X and 20, = No, 
which encloses a  wire with Q = 0.1 X. 

penetrates  more  readily  into  the interior of the cavity. The 
resonant peaks have become  substantially  detuned  while  the 
antiresonance structures become  broader  with  more  pro- 
nounced minimums. 

Sample  cross-section  results are presented in Figs. 19-22. 
In Figs.  19  and 20 kb scans of the  radar (RCS) and  forward 
(FCS) cross sections are given for a plane  wave  incident  from 
180.0" on a slit cylinder  with a radius of b = 1 .O m and a 10" 
aperture (e, = 5.0"). The RCS is defined by the  angles (& 
= 180.0", 9 = 180.0"); the FCS by (& = 180.0", q5 = 
0.0"). The  cylinder  is  empty in Fig. 19; it  is  loaded  with a 
perfectly  conducting  wire of radius (z = 0.3 m in Fig.  20. 

Fig. 14. Polarization effects on the  aperture  coupling  are  illustrated  with 
contour  plots of the  electric field generated by (a) E- and (b) H-pol plane 
waves  incident from 180" upon a slit cylinder, b = 1 .O X and 28, = No, 
which encloses a wire with Q = 0.5 X. 

Figs.  19(a)  and  20(a) are the E-pol results,  Figs. 19(b) and 
20(b) the H-pol results. The slit cylinder  cases are represented 
by solid lines; the  asterisks  in  each  figure  represent the 
corresponding  closed  cylinder cross sections. 

It is seen in Figs. 19 and  20 that except for the  presence of 
resonance features, the E-pol RCS  and the H-pol FCS  closely 
follow  the  corresponding  closed  cylinder results. Note  that 
although  they are barely  discernible in the E-pol RCS, 
resonance  features are present  at  locations  corresponding  to 
those in the  FCS. In contrast, the E-pol FCS and the H-pol 
RCS deviate  from  the  corresponding  closed  cylinder  results. 
Except for the  low  frequency  peaks  in  the H-pol cases, the 
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Fig. 15.  Coupling to the natural  modes of the open  cavity  formed  by an 

empty slit cylinder, b = 1 .O m  and 28,, = 2", is  obtained  with E- and H- 
pol  plane  waves at particular  wavelengths.  (a) The TM, circular waveguide 
mode is excited  by an E-pol plane  wave  incident from 180" with X = 1.138 
m. (b) The T b I  circular waveguide  mode  is  excited by an H-pol plane 
wave  incident  from 180" with X = 1.640  m. 

locations of  the  resonance features in  the cross sections depend 
intimately  on the location of the resonances  of the interior 
cavity. In particular, for the E-pol case in Fig. 19(a) the peaks 
of  the  FCS  occur at kb values  of 2.39,  3.82, 5.12, 5.51, and 
6.37 which  correspond to the TMol, TMll, TM21, TM12, and 
TM31  waveguide  modes.  These  mode  assignments  were  made 
by  plotting the field patterns at those kb values  and  comparing 
them  with  the  ones  given  in [l 1,  p. 2071. These  slit cylinder 
resonances  occur at kb values  which are slightly  lower  than 
those  of  the closed cylinder: 2.41, 3.83, 5.14,5.52, and 6.38. 
For the corresponding H-pol case the  peaks  of  the  RCS  occur 

s 5 19 

at kb values  of 0.37, 1.96, 3.15,  3.85,  4.29,  5.33, and 5.44 
and, excepting the low-frequency  peak at kb = 0.37, 
correspond to the TEI1, T h l ,   T h 1 ,  TE31,  TE12, and TE41 
waveguide modes. The TEn1 mode locations are slightly 
higher  than those of the closed cylinder: 1.84, 3.05, 3.83, 
4.20, and 5.32; while  the TElz mode  location  has  remained the 
same as the closed cylinder's: 5.33. Thus the sequence of 
appearance  of the modal patterns has also changed  in the open 
cylinder case. 

The H-pol low  frequency  resonance  has  been  explained in 
terms  of  an equivalent LC circuit by Warne [7]. The aperture 
causes  a  break  in the'(transverse) current on  the outer, open 
cylinder which results in  an equivalent capacitance and 
inductance. As  seen in the H-pol RCS  and  FCS curves, the slit 
cylinder strongly radiates at this  low  frequency  resonance.  The 
resonance  peaks  in the cross sections that are connected to the 
cavity  resonances are indicative of a reradiation phenomena 
that  is  associated  with the cavity-backed nature of the aperture. 
The currents induced  on the slit cylinder and  consequently the 
scattered fields experience  a  ?r-phase shift as kb passes 
through  one  of these cavity-backed aperture (CBA) reso- 
nances.  Thus a scattered field  is created that  at different look 
angles either constructively or destructively interferes with the 
incident field. This results, for instance, in the distinctive 
antiresonance features present in the E-pol  FCS  and  the H-pol 
RCS.  Consider  one of these H-pol RCS antiresonances and the 
associated  FCS  resonance feature in Fig. 190). The  enhance- 
ment  of the field in the backscattered direction is  followed  by  a 
corresponding  decrease  in  the  forward scattered signal as one 
approaches a CBA resonance location from  the  low kb side. 
As kb passes through  such  a  CBA  resonance value, there is a 
dramatic  decrease  in the RCS  level  followed  by  an increase in 
unison  of  both the FCS  and  RCS levels as kb increases further. 
The  reason that the E-pol RCS  response is so low in 
comparison to the H-pol response  is attributed to the current 
patterns on the slit cylinder. As kb approaches  any  of  the TEnI 
H-pol CBA resonances, the current peaks nearest the aperture 
edges  diminish in size while  those  away  from  the aperture 
increase. The  FCS  shows  a  null  while  the  RCS  has a peak. In 
contrast, the current near the edge  of the aperture is also 
enhanced at the TElz CBA  resonance  and  one sees mirror- 
imaged antiresonances in the RCS  and  FCS responses. 
Analogously the E-pol slit cylinder current always  has  an 
infinity at the aperture edge. When  an E-pol CBA resonance is 
encountered, there are small RCS  but large FCS responses. 
Thus we find that  the current behavior  near the aperture edge 
governs  the  FCS response; its behavior  away  from  the 
aperture is responsible for the RCS response. 

The  resonance locations in a closed coax  waveguide are 
shified from those  in  an  empty guide. For instance, one 
observes  the  sequence in  which  resonances  appear to be 
altered and a disappearance  of  some  resonances in a fvted kb 
interval. One  would  then  expect a similar movement  in the 
resonance features in the cross sections. These effects are 
demonstrated in Fig. 20. For  the E-pol case the  peaks  of  the 
FCS are now at kb values of4.41,4.69,5.46, and 6.48. These 
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Fig. 16. Cavity-backed  aperture  resonance effects are illustrated with  frequency scans of the  current Z, induced on a wire  with (I = 
0.1 m in the  interior of a slit cylinder, b = 1 .O m and 29, = 2", by  an E-pol plane  wave  incident from 180' when (a) the wire is 
perfectly  conducting,  and (b) the wire has a  complex  impedance Z = (lOO.0,lOO.O). 

CBA resonances  correspond to the TMol,  TMII,  TM2,, and 
TM31 waveguide  modes of the coax  configuration.  The 
location of the resonances are all at higher kb values. The 
resonance feature corresponding to the TM12 mode  present  in 
Fig.  19(a)  is  absent  here  because  it has migrated  to a kb value 
greater than 7.0. For the corresponding H-pol case  the 
resonance peaks of the RCS now occur at kb values  of 0.39, 
1.71, 3.06, 4.27,  5.17, and 5.41. The CBA resonances 
correspond to the T E l l ,  TEx, TE3],  T&, and TE4] coax 
modes.  The  location  of the TEll CBA resonance is at a lower 
kb value  while  the  other  ones are all  at  higher kb values.  The 

resonance feature corresponding to the TElz mode  present in 
Fig. 19@) is absent  here because it has  migrated to a kb value 
greater than 6.0. Note  that the mode  number  assignments  were 
made by comparing  the  field  patterns at the CBA resonances to 
those of the  closed  waveguide  given in [12,  pp.  77-79]. 

The  presence of these  resonance features in the monostatic 
cross sections even for normal  incidence  away from the 
aperture is illustrated with Fig. 21. The  H-pol RCS and FCS 
curves are given for the  same  geometry as in Fig.  19  except 
that  the  field is now incident from 0.0 O .  The peaks of the RCS 
resonance  features are much  smaller  and the general  response 
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Fig. 17. Frequency scans of the  current  induced on a  perfectly  conducting  wire  with a = 0.1 m in  the  interior of a slit cylinder, b = 
1.0 m, by an E-poi plane  wave  incident  from 180", when 28, is  varied  from  (a) 2" to (b) 10" illustrate  the effects an increased 
aperture size has on  the I, CBA resonance  features. 

deviates less from the closed cylinder RCS. In contrast, the 
FCS  when the plane  wave sees the aperture (Fig. 19(b)) and 
when it sees the metal (Fig. 21(b)) are identical! Although it is 
not discernable in the Fig. 21(a), there is  a CBA resonance 
feature at kb = 5.33 in the RCS. 

Fig. 22 illustrates the effect of  impedance  on the H-pol RCS 
and  FCS responses. The configuration is the same as in Fig. 
20@) except  that  the interior cylinder has  the  complex 
impedance 2 = (100.0,100.0). One finds that the low 
frequency  response is diminished  and the TEol CBA resonance 
has  been  completely  damped out. On the other hand, there is 

an  enhancement  of the responses  due to the TEI T&,, and 
TE4, CBA  resonances despite the load  being lossy. In 
comparison the E-pol CBA resonance features are completely 
damped  out  by the lossy  load  and the cross sections are nearly 
identical to the corresponding closed cylinder case. These 
results are again closely related to the modal structure at the 
CBA resonances. When the wire is perfectly conducting, all of 
the E-pol  and the H-pol T h n  resonance patterns are domi- 
nated  by  maximums near it. These  maximums  and  hence,  the 
interior fields, are radically damped  when  the  wire  is lossy. 
This results in the reduced cross-section responses. In contrast 
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Fig. 18. Frequency  scans of the  current  induced on a perfectly conducting  wire  with 4 = 0.1 m in the interior of a slit cylinder, b = 

1.0 m, by an E-pol plane  wave  incident from 180", when 2e, is varied from (a) 10" to (b) 30" illustrate  the effects an even larger 
aperture size has on the I, CBA resonance features. 

the wire  rests  in a depression of the  other H-pol CBA 
resonance  patterns so that  when  the wire is lossy, it does  not 
significantly alter the structure of the modal patterns. The 
lossy  load does tend to pull  the H-pol current peaks away 
from  the  aperture  and  enhances the peak directly  opposite  the 
aperture  near q5 = 0.0". This explains  the  significant  increases 
in the RCS curves shown in Fig. 22(a). In addition for the TE4, 
case  it  actually  increases the interior field  maximums  by 
enhancing the definition of the basic modal pattern.  The  result 
is an  overall  increase in the current peaks  which  explains  the 
corresponding  enhancement of the associated FCS CBA 
resonance feature in Fig. 22(b). 

These  resonance features are also found in the bistatic cross 
sections  at the same  relative  positions for at all look  angles. 
This is true even for not  normal  incidence. As one  might 
expect, the  shapes  and sizes of the  individual  resonance peaks 
vary  with the angle of incidence and the relative  bistatic look 
angles. 

V. CONCLUSION 
Parameter  studies of the generalized  dual series solutions to 

the  concentrically  loaded E-pol and H-pol slit  cylinder 
canonical  problems are enhancing our understanding  of the 
aperture coupling  process  and are continuing. The examples 
presented  above illustrate how  we  have  used the current and 
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Fig. 19. The  presence of CBA resonance  features in the  exterior  scattering data is demonstrated  with scans (solid lines) in kb of the 
back  (radar)  and  forward  scattered  cross  sections  resulting  from (a) E-pol and @) H-pol plane  waves  incident  from 180" on an 
empty  slit  cylinder, b = 1 .O m  and 20,, = 10". The  corresponding  closed  cylinder  cross  sections  are  represented by the  asteriks. 

field patterns to estimate the  amount  of field penetration into 
the interior cavity for various polarizations, loads, angles of 
incidence, and aperture size. With these results we are trying 
to establish  "engineering"  models  of the aperture coupling 
that  can  be  applied to more general aperture and  cavity  shapes. 

The  presence of the resonance features in the E-pol interior 
wire currents and in the E- and H-pol cross sections are 
extremely interesting. What role, if any, the current reso- 
nances may  play  in EMP damage  mechanisms  is  being 
examined.  The  cross-section  resonances  indicate that for cavity- 
backed  apertures  there ik interior  information  contained  in 

the  exterior  scattering  data. The  dependence  of  the  location  of 
these peaks on  the  interior  structure  and  their  presence  at all look 
angles  may  have  very  important  ramifications  for  object  identifi- 
cation  applications.  These  resonance peaks are also being 
analyzed in  the  cross  sections  resulting  from  plane  wave 
scattering  from  a  slit  cylinder  with  an  offset  interior impe- 
dance surface [ 131, from  an  empty  open spherical shell  with  a 
circular aperture [14], and  from  an  open spherical shell  with  a 
circular aperture enclosing either a concentric metallic or 
dielectric sphere [15]. The results of these investigations  will 
be the topics of several future papers. 
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Fig. 21. The presence of the CBA resonance features in  the exterior 

scattering data even for nonnormal incidence is illustrated with  scans  (solid 
lines) in kb of the back (radar) and forward scattered cross sections 
resulting from an H-pol plane wave incident from 0" on  an  empty slit 
cylinder, b = 1 .O m and 28, = IO". The corresponding closed cylinder 
cross sections are represented by the asteriks. 

APPENDIX I 
LIMITING BEHAVIOR OF DUAL SERIE~ COEFFICIENTS 

In the limits of either  small  argument (z Q 1) or  large  index 
(n + 03) the  series  expansions [16] of the Bessel and  the 
Hankel  functions  and  their  derivatives  yield 
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Fig. 22. The effects of a lossy interior wire has  on the CBA resonance 

features in the exterior scattering data is illustrated with scans in kb of the 
back (radar) and forward scattered cross sections resulting from an H- 
polarized plane wave incident from 180" on a slit cylinder, b = 1 .O m and 
28,, =, IO", which encloses (a) a perfectly conducting wire (solid  lines)  and 
(b) an mpedance surface with 2 = (lOO.O,lOO.O) (asteriks) of radius 0.3 
m. 

Ji-- 1 (5)"' [I-: n - 2  (?)'I 
H,' -n! (')-'""' [I+- n-2  ('>'I . 

2(n - l)! 2 n(n+ 1) 2 

2j7r 2 n(n- 1) 2 

Therefore, in these  limits  one has 
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upper  sign  if Z = 0 
lower  sign if Z#O 

and for m + 00 

xm- [l+& ( 3 2 ] - 1 - 1 - - 2  1 (H) kb 2 

APPENDIX II 
COEFFICIENT DEFINITIONS 

The inversion coefficients v", for m # n are given by the 
expression: 

where 

U,(U) = 0 

V,(u)=u-l 

and 

The  remaining coefficient terms are defined as 

where 

APPENDIX m 
CURRENT SUM FORMULA 

The current sum formula (22 ' )  follows from the summation 
formulas [17] 

2 P, (cos e) sin m9 
m=O 
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of Zm,  these sums have the common  form 
Pm (cos e) cos rnfp 

m=O 

&(x, 9 ) = K 1  2 - +K1 2 - P m   P m +  1 
9 m + l  x: + cos - 12 (cos 4 - cos e)] - 112, (9 < e) m = ~  m =  I 

-sin [2 (cos e-cos 9 ) ] - 1 / 2 ,  ( 9 > 0 )  9 

which lead to the following relations for 4 > 8: A "generic"  sum  is  immediately  recognized  and evaluated. 

m j e - J Y 2  Because the generating function of the Legendre  polynomials 
S+(9) = 2 Pmejm+ = - is 

m=O [2 (cos e -cos 9)] 

In particular, with (22) one  has 

Identifying the quantities 

x+ = Xej+ 

- m 

m=3 m=3 



Similarly, the S, sums 

m= 1 \f / 

are encompassed  by the expression: 
t 141 

m= 1 m= 1 

m=1 m = l  

- ( K 1 + K 2  COS e) -K2hi1(1+h+h-) .  (26~)  
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