
SIAM J. APPL. MATH.
Vol. 51, No. 6, pp. 1556-1567, December 1991

1991 Society for Industrial and Applied Mathematics
005

A SOLUTION TO THE SCATI’ERING OF ELECTROMAGNETIC WAVES
FROM A DIELECTRIC SEMI-CYLINDER*

A. K. GAUTESEN?, R. W. ZIOLKOWSKI, AND R. R. McLEOD

Abstract. The problem of scattering of electromagnetic waves from an arbitrary, infinite dielectric
semi-cylinder is treated analytically through a combined dual series and integral equation formulation. It
is demonstrated that the numerical implementation of this treatment satisfies the reciprocity relation as well
as the electromagnetic boundary conditions. Numerical results are also provided to illustrate the fields
generated in the vicinity of the semi-cylinder directly and in the far-field indirectly through the use of radar
cross sections.
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1. Introduction. The class of electromagnetic scattering problems dealing with
dielectrics that have known solutions is rather limited. Most general textbooks treat
scattering from a dielectric cylinder and a dielectric sphere as the basic cases. However,
with the current interest in low observable technology, the need for canonical problems
dealing with dielectrics in the presence of edges has increased dramatically.

We study the problem of scattering of electromagnetic waves from an infinite
dielectric semi-cylinder. This problem deals with a scattering object that intrinsically
has edges which become expressed physically as singularities in the transverse field
components. Canonical problems of this type are quite important for studying the
basic scattering physics and for acting as benchmarks for approximate and numerical
methods, especially those dealing with edge conditions. Moreover, because the electro-
magnetic boundary conditions are satisfied for arbitrary dielectric parameters across
the various dielectric regions (dielectric semi-cylinder, complementary semi-cylinder,
and exterior to either semi-cylinder), we can use this problem to study the transition
from a complete dielectric cylinder to the present semi-cylinder case. This will provide
valuable information to those dealing with object identification problems.

We begin our analysis from a potential formulation point of view. We assume
that the incident field orginates from a magnetic line source parallel to the axis of the
semi-cylinder so that the electromagnetic field problem reduces to a two-dimensional
one dealing only with the Hz, Er, and Eo field components and a point source. We
also assume the source is time-harmonic so that the problem further reduces to a
Helmholtz equation for the potential u representing the Hz field component, plus its
boundary conditions. The problem is then divided into a symmetric problem and an
antisymmetric problem by placing another source with the appropriate sign at the
location of the image about the axis of symmetry of the applied source. In this work
we consider only the symmetric problem. When the applied source is located on the
axis of symmetry, the problem reduces to a symmetric one. The numerical results
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presented are for this restricted case. The antisymmetric problem can be dealt with by
a method similar to the one used for the symmetric problem. The source is also assumed
to lie outside the cylinder which contains the dielectric half-cylinder.

Space is divided into three regions: the region occupied by the dielectric half-
cylinder, the complementary half-cylinder, and the remaining exterior region. In the
first two regions, the fields are expanded in a series of functions which satisfy the
appropriate Helmholtz equation and the boundary conditions on the plane wall of the
dielectric half-cylinder (see (2.9) and (2.10) below). In the last region the field is
expanded in a series of functions which satisfy the appropriate Helmholtz equation
and the radiation bundary condition at infinity (see (2.11) below). The remaining
boundary conditions on the cylindrical boundary lead to a dual series equation set
(see (2.20) and (2.21) below). They contain two sets of unknown coefficients, {a} and
{b}.

The complexity of the dual series equation set makes a completely analytical
solution unlikely. Thus some numerical analysis is required. If we simply truncate
these series, the resulting set of equations has a poorly conditioned matrix, which
makes its solution problematic. It is suspected that this is caused by the singularities
at the dielectric corners. The left sides of (2.20) and (2.21) are the dual series equation
set corresponding to the static problem. The static problem is, of course, governed by
Laplace’s equation (instead of Helmholtz’s equation) and the same boundary condi-
tions on the dielectric half-cylinder. The static semi-cylinder problem also is apparently
unsolved. Its solution is found here, and it gives the correct singularities at the corners
(see, e.g., [3]-[5]).

Operating on the dual series equation set (2.20) and (2.21) with the inverse of the
static problem leads to the dual series equation set (4.1) and (4.2). It is this system of
equations that is numerically analyzed. The matrix Mo of this system of equations
numerically appears to behave like the Kronecker delta for values of its indices
sufficiently large, i.e., Mo. ,---, for > N and j > N. Thus the system of equations is
truncated and the resulting set of equations is inverted. As a test of the accuracy of
this approximation, the principle of reciprocity is used. This principle states that the
field u of the field point r due to a source at the source point ro is the same as the
field u at the field point ro due to a source at the source point r. When the source and
the receiver are interchanged, the matrix Mo of the system changes. However, the
resulting fields will be shown numerically to satisfy the principle of reciprocity.

In 2 the problem is formulated and a dual series equation set is obtained. In 3
the dual series equation set corresponding to the static problem is solved by making
the direct transposition from the dual series problem to an equivalent integral equation
(see (3.8) below) whose solution is known from [1]. The static solution is used in 4.
to obtain an equivalent dual series equation set ((4.1) and (4.2) below) whose properties
are better suited for numerical implementation. A similar approach has been used in
[2] for a different problem. It is shown that the reciprocity relation (interchange of
source and receiver) is satisfied by the numerical solution. Examples ofthe field patterns
induced near the dielectric semi-cylinder and the resulting bistatic radar cross sections
are also given to demonstrate the efficacy of the solution.

2. Formulation. We consider the steady state problem of the scattering of waves
emanating from a point source by a dielectric half-cylinder. See Fig. 1. We normalize
the coordinates by the radius a of the half-cylinder. Space is divided into three regions:
the region 1, which is the dielectric half-cylinder (r< 1, Iol [7r/2, r]); the region 2,
which is the complementary empty half-cylinder (r<l, 0[-7r/2, 7r/2]); and the
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FIG. 1. Geometry of the semi-cylinder scattering problem. Space is divided into three regions, each with
its own physical characteristics. The source is assumed exterior to the cylinder radius.

region 3, which excludes those cylinders (r > 1, 0 [-r, 7r]). The fields, electric permit-
tivity, and magnetic permeability are labeled, respectively, ui, ei, and/xi; 1, 2, 3,
with the understanding that e2 e3 and

We divide the problem into a symmetric problem (denoted by a superscript +)
and an antisymmetric problem (denoted by a superscript -). Then the fields u shown
in Fig. 1 are related to u: by

(:2.1) u u? + uT,

where

(2.2) u:(r, O)= uT(r, -0).

The governing differential equations and boundary conditions are

(2.3) Au 2+ku =0, i=1,2, r<l,

(2.4) au3 +ku3 -[8(r-ro)6(r-r)], r>l, ro> 1,

(2.5) u r, =u r, 0<r<l,

(2.6) OoU r, OoU r, O< r < l,

(2.7) u(1, 0): H(-0)u(1, O)+H(O-)u(1, 0), 0< 0<

where k (eio)l/m/(ac) is the dimensionless wave number, e/e is the ratio of
the dielectric constants, H(0) is the Heaviside function, and r (to, -0o) is the image
of the source point ro=(ro, 0o). Also is the circular frequency (an e+ time
dependence is assumed throughout), o is the dielectric permeability of free space,
and c is the speed of light.
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In the following, we only consider the symmetric problem and, for simplification
of notation, we drop the superscript + on u- everywhere.

We now take

(2.9)
Ul=Tr(3r/+l)l/-Y=o l+6.o(l+r/ b.v.(r,O, kl)

4r/
r(+3)1/2.=o

y a.w.(r, O,

(2.10)

4rt y +1 -’) b.v.(r, O, k2)u2 1 6.o(1 + r/7r(3r/+ 1) 1/2
=o 2

r(r + 3) 1/2 .=o a.w.(r, O, k2),

(2.11) u3 (2-6.o) cosnO C.H.(k2r)+-J.(kzr)H.(k2ro)cosnOo r<ro,
n=O

where 6o denotes the Kronecker delta function; H,, the outgoing Hankel function of
order n; J,, the Bessel function of the first kind of order n, and

(2.12) v.(r, O, k)= Y /3.(k)(-1)"+"J2(,.+.)(kr) cos (2(m + n)O)
m=O

(2.13) w.(r, O, k)= a,,(k)(-1)"+"J2m+.)+l(kr) cos ((2m+2n+ 1)0),
m=O

(2.14a) .(k) () 2n 2( n + m)(2n + m -1)

(2.14b) /3o(k) 1,

(2.15) ()2"+l (2n+ l)(2n+ m)
ce(k)

m!

For r > ro, u3 is given by (2.11), with r and ro interchanged in the second term under
the summation.

The ui as defined by (2.9)-(2.11) satisfy (2.3) and (2.4). Also, since

(2.16) rv. r,-, k =-(2n + 1)-100W. r,-, k r2n+1,

(2.17) OoV. r,-,k =w. r,,k =o,
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we see that boundary conditions (2.5) and (2.6) are satisfied. Then substituting (2.9)
into the remaining boundary conditions, (2.7) and (2.8), and operating on the result
with g dO cos nO yields

{r CH,(kE)+- J(k_)H,(kro) cos nOo

(2.18) cos (nO)u2(1, O) dO+ cos (nO)u1(1, O) dO,
,I 0 2

n=0, 1,...

k2"rr CnHn(k2)+ Jn(k2)Hn(k2ro) cos nOo
(2.19)

cos (nO)Ou2(1, O) dO+ T
-1

COS (nO)Orttl(1 O) dO,
/2

n=0,1,...,

where the prime denotes the derivative of the function. We eliminate C, from (2.18)
and (2.19), substitute from (2.9), (2.10), (2.12), and (2.13), and perform the 0 integra-
tions to achieve

2 (n+1/2)a,,
(2.20) --h,n. =o(n+’)2-j2+(l+6j)bj=(l+6j)c" j=0,1,...,

---A,, 1/2)2 n
2b,,=d,, j=0,1(2.21) a,

-tr =o (j +

where

(2.22) h

(2.23)

(2.24)

[(3 + r/)(1 + 3r/)] 1/2’

c, (-1)’(1 1/2t,o)(3 r/+ 1)-1/2q2j/’2 +/’a + ,
(-1)’(3 + 2

q2j+ IZI2j+ + 12j+ 4 q- 4,

qo 1/2iTr e --log (1/2k2) Ye 0.577 (Euler’s constant),

1
q, =-, j>0,

J

Hj
Hi(k2)

COS (jOo),

1 + q,k2 I-I(k2) 3’

(3r/+l)rl ..=ob,,J [+16.0(l+rl-1)][fl,"_.(k2)J2(k2)+fl,.(k,)J2j(kl)]l2

A(2-6,o) (m+ n+1/2)a,,
"n’(1- ’q)fofo(m+n+1/2)-j

{(k2)J2m+2n+l(k2)-cc(kl)J2m+2.+l(kl)},
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+ bj + ATr 2 tjo
=o (n +1/2)2_j2

rq2j bn 1+6,o(1+(3+ 1)

kB%.(k)a(k) + .--1 klfljn(kl)aj(kl)]
_Aq2(2- Bo) (m + n +)a.
(1 n .:o :o (m + n +)-j

{ka(k)J+2.+l(k2)- k,a(kl)J+.+(k,)},

2 nb
d d + a .=l(j+- -n

q2j+l Jo a.{kL.k)J+,k) + klL.k)a+kl}

2A -1

(1 n) q+l L
b.[l+k(l+n ).o][j+k]

=o =o (j + )e (m + n)2

{k2(k)J+.(k)- n-lkl2(k,)a+.(k,)},

3 + n)-1 L a.{L.(kgJ+(k)+ n.(kl)J+lk)}
n=O

2n L L
b.[l+(l+n-1).o](j+)

+(1- ) =o =o (j+)-(m+n)

{(k2)J2(m+n)(2)-(kl)J2(m+n)(kl)}.
We now discuss (2.20) and (2.21), which determine a and b.With 9 and_ d

defined by (2.23) and (2.24), we observe that as k and k go to 0, , , and d all
go to 0. Thus the left-hand sides of (2.20) and (2.21) represent the static limit of this
problem. As j goes to infinity, is O(1/j) and the quantities 01 and d are O(1/j)
with respect to the left-hand sides of (2.20) and (2.21). We take advantage of this result
in 4, where we describe our numerical method of solution.

3. Slti t te stifle rMe. In this section we solve the dual series (2.20)
and (2.21) for a and b, treating c and d as known quantities. Also, we discuss the
behavior near the corner. In lieu of the dual series, we consider instead

(3. (+(=0,

(3.2)
-1

[(1-2)l/2A()-A(1-2)l/2B()]

where

(3.3) A(:)
n=O

(3.4) B()= Z (b,-c,,)Tz,,(sc)(1-2)-1/2,
n=0

(3.5) Q()=’rr Z [dnT2n+l()-,Cn+lU2n+l()(1-2)l/2],
n=0
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and Tn and Un denote the Chebyshev polynominals of the first and second kind,
respectively

Operating on (3.1) with

dsc T2()
-1

yields (2.20), and operating on (3.2) with

d(1 )-’/2T2+,()

yields (2.21). Thus, knowing the solution to (3.1) and (3.2), we obtain the solution to
(2.20) and (2.21) from

( /u(,(,(3.6) a

b c + o T2()B() d
--1

(3.7)

c a -o - r(a( .Eliminating B from (3.1) and (3.2) yields the integral equation

A() d_(3.al ()() [(-l/+a(-/] -_
This equation has been studied in detail by Gautesen [1]. We summarize his results
as they apply to this work.

Upon examining (3.5)-(3.7), we see that we are only interested in ceain moments
of the solutions to

(3.9) (LV)() Z2/,(), I1 < 1,

(3.10) (LW)()=(1-2)’/2U2.i+,() ]s[< 1.

They are

(3.11)

(3.12)

4AIA] (1-2)l/2U2m() W() d
--1

(3.13)
2j+2

y’, (--1)nT2j+l_n[(2m+ n+2)O’2m+,,+-12m-nlo’lzm_nl_l-4A(n+ 1)Cr2m],

(3.14)

2j+2

4A[A]2 T,,,(sc)W()dsc= Z (-1)"Y2j+l-,,[(Zm+n+l)cr2,,,+,,
--1 n=l

+ (n 2m + 1) trl2,,,,_,,_ 11_ 4A(n + 1 O’2m_l]
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where sgn (0) 0, o’_2 0, r_l 1, cro 2A,

(3.15) (n + 2)o’,+1 4Ar, + ncr,_, n=0, 1,...,

(3.16) 3’,, =(1--1/2t511nl)grlnl-2--O’n, n =-1, 0, ,
(3.17) A=I tan-
We remark that (3.15) is a stable three-term recurrence relation.

We now discuss the nature of the behavior near the corner for the static solution.
In (2.20) and (2.21), let us take cj 0 and dj 60. The corresponding constants a, and
b, are easily obtainable bythe above results. In the static limits, (2.9) at 0 7r/2 becomes

(3.18) Ul r,
7r(37 + 1)

Then using the relation

rn 1-t- 21

(3.19) 1 + 2 2 o’,_ =-- 4(r),

we find that for this example

(r,(3.0

Thus near r= 1, the exponents of the singularities are 0, 2A, 2-2A. These are the
admissible singularities near the corner.

4. Nerie! slt. In this section we describe our numerical procedure. We
inve (2.20) and (2.21) as described in the previous section, and then substitute for
and d from (2.23) and (2.24). The result can be expressed as

12(4.1) a=cl+ 2 [C)a+Cb], j=0,1,...,
n=0

22(4.2) b=c+ [Ca+Cb], j=0, 1,...

where all quantities are known except a and b. The remark made at the end section
of 2 implies that the sums (4.1) and (4.2) are smaller than a and b for j suciently
large. Therefore, this infinite system of equations can be truncated in order to obtain
a numerical solution. This approximation leads to the solution system

N
11 12(4.3) aj cj

N
2 21 22(4.4) b c + Ca C

which can then be solved numerically by inveing the resulting finite matrix for a
and b, j 0, 1,. , N. For j > N, we simply use the relations

N
11 12(4.5)

N
2 21 22Cb N.(4. b c + 2 +Ca j>
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With these coefficients, we then use (2.9)-(2.11) to construct the Hz fields. Ampere’s
law may then be applied to yield the Er and Eo field components.

Several numerical tests were used to verify the accuracy of the solution. First and
most obvious was to verify that the boundary conditions (2.4)-(2.8) were satisfied by
the solution. Since conditions (2.4)-(2.6) were built into the solution basis functions,
only (2.7) and (2.8) yield information on the solution process itself.. Because these two
conditions pertain to the continuity of the field and its derivative across r= 1, the
solution was checked by examining the fields at r 1_ and r 1/.

Once the boundary conditions were verified, the results were numerically tested
as a solution to the original differential equation (2.4). This was done by writing a
procedure to numerically produce the required derivatives and substitute them into
(2.3). Having verified that the numerical results satisfy the boundary conditions and
satisfy the differential equation, we know that the solution is the correct one because
the uniqueness theorem guarantees it.

To obtain a quantitative estimate of the accuracy of the solution, we tested its
satisfaction of the principle of reciprocity. A typical result is shown in Fig. 2, for the
case in which the dielectric ratio r/= 3 and the characteristic value ka 0.36. We solved
for N 95 solution coefficients in this case. The test utilized eight receiver points along
the x axis between x 1.21 and x 1.56 and the source also on this axis at (x 5.0, y
0.0). The source and receiver points were then interchanged. We have graphed the
differences between the field values in these two reciprocal configurations for all of
the points considered. The differences are negligible. Because it is a stringent test of
the solution, the reciprocity test has been incorporated as a standard test of the solution
quality, i.e., of the number of solution coefficients required, whenever new values of
ka are considered.

10
Reciprocity test

2

E-4

0
1.20

T/R R/T

1.’25 1.30 1.35 1.40 1.,5 1.0 1.5 1.60

x coordinate of transmit/receive point

FIG. 2. The reciprocity relation is satisfied by the semi-cylinder solution. The difference between the field
values obtained from interchanging the source and transmitter is shown relative to the distance of the original
source locations from the origin.

The various field components are obtained once the solution coefficients have
been generated. We show, respectively, in Figs. 3(a) and 3(b), the total Er and Hz field
components induced near a dielectric semi-cylinder with the dielectric ratio rt 3 by
a point source located along the x axis at (x 5.0, y 0.0). The characteristic value
ka 2.00, and N 380 solution coefficients were employed. Note that since the source
is on the axis, the symmetric solution obtained here is the complete result.



DIELECTRIC SEMI-CYLINDER 1565

(a)

Er around dielectric semi-cylinder
ka-2, r0-(5,0), 7=3

-2.0 -1.0 0.0 1.0 2.0
xMin value in plot -28.404390

Max value in plot 28.404390

(b)

Hz around dielectric semi-cylinder
ka=2, ro= (5,0), r/=3

-2.0 -1.0 0.0 1.0 2.0
x Min value in plot -0.0767461

Max value in plot 0.1300215

FIG. 3. The field components are generated once the solution coefficients are obtained. The total Er and

Hzfield components induced near a dielectric semi-cylinder with the dielectric ratio q 3 by a point source along
the x axis at (x= 5.0, y =0.0) are shown, respectively, in (a) and (b). The characteristic value ka 2.00.

In Figs. 3(a) and 3(b), the solid lines represent positive field values, the dashed
lines negative values. We can clearly see the localization of the Hz field contours in
the dielectric in Fig. 3(b). The lens effect of the semi-cylinder which transforms the
cylindrical wave of the point source to more of a plane wave character can also be
perceived. The discontinuities in the normal field component Er across the dielectric
interfaces are also clearly seen in Fig. 3(a).

Another scattering quantity of interest is the bistatic radar cross section. For the
present problem, it is defined as

iHTat(r, 0)l 2 ](4.7) tr(0, 0o) !irn 2rr = 0)[2J
It reduces to the expression

6411S(0_,0o)12 ](4.8) tr(0, 0o) v-- IHo(k:ro)lJ
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where we have the term

(4.9) S(0, 0o)= Y (2-6on) e-i"/2 cos nO C.
n=0

This defines the bistatic radar cross section in terms of the exterior region solution
coefficients. The bistatic radar cross section for the case corresponding to Figs. 3(a)
and 3(b) is given in Fig. 4. It shows the enhancement of the field in the forward
scattering direction by the semi-cylinder "lens." The side lobes in the radar cross
section are aligned with the field modes seen in Figs. 3(a) and 3(b). It also shows the
expected symmetry of the far-field about the source/semi-cylinder axis.

As the values of ka are increased, we can observe the transition between the
different allowed modes of the solution in the field contour plots. This information
can then be correlated with the bistatic radar cross section to determine the influence
on the far-field behavior of variations in the dielectric parameters. This is particularly
true for the influence of the dielectric corners on the far-field of the resulting fields.

5. Discussion. We have presented a dual series solution to the electromagnetic
semi-cylinder scattering problem. The complete problem was decomposed into its
symmetric and antisymmetric components. Only the symmetric part was solved
explicitly. The antisymmetric problem solution follows immediately in an analogous
fashion and has been left to future efforts.

We have assumed throughout that ro> 1. If ro< 1, then the source term in the
right side of (2.4) is replaced by 0 and the second term under the summation in (2.11)
is omitted. The source term would then appear in the right side of (2.3) as

1/216(r- ro) + 6(r- ro*)]60,
where j 1 if the source is inside the dielectric half-cylinder or j 2 if the source is
outside of it. Then to the field uj we would add the source term

,--o (2-8,o)J,(kr<)H,(kr>)cos nO cos nOo,

where r< min (r, ro) and r> max (r, ro). In (4.1) and (4.2) the changes would only
and 2appear in the inhomogeneous terms c c.

Radar cross section from dielectric semi-cylinder
2.5

2.0

1.5,

0

0.5

0 40 80 120 160 200 240 280 320 360
0 (degrees)

FIG. 4. The bistatic radar cross section is generated once the solution coefficients are obtained. The bistatic
radar cross section resultingfrom thefield which originatesfrom apoint source along the x axis at (x 5.0, y 0.0)
and is scattered by a dielectric semi-cylinder with the dielectric ratio q 3 is shown. The characteristic value
ka 2.00.
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As with any solutions to canonical problems, their complete usefulness is only
realized after exercising them for many different cases. One area of interest would be
for the application of the solution to the Geometric Theory of Diffraction [6] class of
solutions. We have begun a study of the problem solution with the hope of extracting
the diffraction coefficient, at least presently, for the restricted geometry where the point
source is on the x axis. The general diffraction coefficient will await the completed
implementation of the general problem’s solution.
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