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1. Entropy of Markov Chains  
 
We have already introduced the notion of entropy in a conceptually simple situa tion: it 
was assumed that the symbols are independent and occur with fixed probabilities. That is, 
the occurrence of a specific symbol at a certain instant does not alter the probability of 
occurrences of symbols during any other symbol intervals. We need to extend the concept 
of entropy for more complicated structures where symbols are not chosen independently 
but their probabilities of occurring depend on preceding symbols. It is to be emphasized 
that nearly all practical sources emit sequences of symbols that are statistically 
dependent. Sequences formed by the English language are an excellent example. 
Occurrence of the letter Q implies that the letter to follow is probably a U. Regardless of 
the form of the statistical dependence, or structure, among the successive source outputs, 
the effect is that the amount of information coming out of such a source is smaller than 
from a source emitting the same set of characters in independent sequences. The 
development of a model for sources with memory is the focus of the ensuing discussion. 
 
In probability theory the notation Pr(AB) means the probability of occurrence of event A 
given that () event B has occurred. Many of the structures that will be encountered in 
the subsequent chapters can usefully be modeled in terms of a Markov chain. A Markov 
chain is a special type of stochastic process distinguished by a certain Markov property A 
(discrete) Markov chain is defined as a discrete random process of the form 
 

 
 
where the variables Zt are dependent discrete random variables taking values in the state 
alphabet S= {s 1,…, s N}, and the dependence satisfies the Markov condition 
 

 
 
In words, the variable Zt is independent of past samples Zt-2,Zt-3 ... if the value of Zt-1 is 
known. A (homogeneous) Markov chain can be described by a transition probability 
matrix Q with elements 
 

 
 
The transition probability matrix Q is a stochastic matrix, that is, its entries are non-
negative, and the entries of each row sum to one. Any stochastic matrix constitutes a 
valid transition probability matrix. 

Imagine the process starts at time t = 1 by choosing an initial state in accordance 
with a specified probability distribution. If we are in state si at time t = 1, then the 



process moves at t = 2 to a possibly new state, the quantity qij is the probability that the 
process will move to state s j  at time t = 2. If we are in state s j at instant t = 2, we move to 
s k at instant t = 3 with probability qjk. This procedure is repeated ad infinitum. 
The state-transition diagram of a Markov chain, portrayed in the following figure (a) 
represents a Markov chain as a directed graph where the states are embodied by the nodes 
or vertices of the graph; the transition between states is represented by a directed line, an 
edge, from the initial to the final state, The transition probabilities qij corresponding to 
various transitions are shown marked along the lines of the graph. Another useful 
representation of a Markov chain is provided by a trellis (or lattice) diagram (see (b)).  

 

 
Alternative representations of a three-state Markov chain. (a) state-transition 

diagram, (b) trellis diagram for the same chain. Permissible transitions from one state to 
the other are depicted by lines.  
 
This is a state diagram augmented by a time axis so that it provides for easy visualization 
of how the states change with time. 

In theory, there are many types of Markov chains; here we restrict our attention to 
chains that are ergodic and regular. Roughly speaking, ergodicity means that from any 
state the chain can eventually reach any other state; regularity means that the Markov 
chain is non- periodic. In the practical structures that will be encountered, all these 
conditions hold. 

We shall now take a closer look at the dynamics of a Markov chain, To that end, 
let ( )jt

t
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The probability of being in state jσ at time t may be expressed in the state probabilities at 
instant t-1: 

 
 
The previous equation suggests the use of matrices. If we introduce the state distribution 
vector 



 
then the previous equation can succinctly be expressed in an elegant matrix/vector 
notation, thus 

 
By iteration we obtain 

 
In other words, the state distribution vector at time t is the product of the state distribution 
vector at time t = 1, and the (t -1)th power of the transition matrix. It is easy to see that 
Qt-1 is also a stochastic matrix. The previous formula (3.10) is equivalent to the assertion 
that the n-step transition matrix is the nth power of the single step transition matrix Q. 
We note also that Q0 = I is the ordinary identity matrix. 

We shall concentrate now on the limiting behavior of the state distribution vector 
as ∞→t . In many cases of practical interest there is only one such limiting distribution 
vector, denoted by ( )Nπππ ,,1 …= . In the long run the state distribution vector converges 
to this equilibrium distribution vector from any valid initial state probability vector w(1)so  
 

 
The number 1π , is called the steady, or stationary state probability of state iσ . The 
equilibrium distribution vector can be obtained by solving the system of linear equations 
in the N unknowns Nππ ,,1 … : 

ππ =Q  
Only N-1 of these N equations are independent, so we solve the top N-1 along with the 
normalizing condition 
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The proof is elementary: we note that if ππ =Q , then 

 
 
Decomposition of the initial state vector w(1) in terms of the eigenvectors of Q can be 
convenient to demonstrate the process of convergence. The matrix Q has N eigenvalues  
{ }Nλλ ,,1 … , that can be found by solving the characteristic equation 

 
where I is the identity matrix, and N (left) eigenvectors {u1, ... , uN} each of which is a 
solution of the system 

 
Provided that iλ , i = 1,., N, are distinct, there are N independent eigenvectors, and the 
eigenvectors iλ , i = 1,…, N, constitute a basis. The initial state vector may be written as  



 
We find the state distribution vector w(t) at instant t : 

 
 
If it is assumed that the eigenvalues are distinct, the {? i} can be ordered, such that  

321 λλλ >> , etc. Combination of previous formulae reveals that p is an eigenvector 

with unity eigenvalue, thus 11 =λ , We then have 

 
and convergence to p  is assured since 1,11 ≠< iλ . 
 
2. Entropy of Markov Information Sources 
 
We are now in the position to describe a Markov information source. Given a finite 
Markov chain {Zt} and a function ? whose domain is the set of states of the chain and 
whose range is a finite set G, the source alphabet, then the sequence {Xt} where 

( )tt ZX ζ= , is said to be the output of a Markov information source corresponding to the 
chain { Zt } and the function ? . In general, the number of states can be larger than the 
cardinality of the source alphabet, which means that one output symbol may correspond 
to more than one state. The essential feature of the Markov information source is that it 
provides for dependence between successive symbols, which introduces redundancy in 
the message sequence. Each symbol conveys less information than it is capable of 
conveying since it is to some extent predictable from the preceding symbol. In the 
foregoing description of an information source we assumed that the symbol emitted is 
solely a function of the state that is entered. This type of description is usually called a 
Moore-type Markov source, In a different description, called the Mealy-type Markov 
source, the symbols emitted are a function of the Markov chain ( )1,ˆ

+= ttt ZZX ζ . In other 
words, a Mealy-type Markov source is obtained by labelling the edges of the directed 
graph that represents the Markov chain. Mealy- and Moore-type descriptions are 
equivalent. Let a Mealy-type machine be given. By defining a Markov information 
source with state set composed of triples ( ){ }jiji σσζσσ ,ˆ,  and label  ( )jiσσζ̂ on the state 

( ){ }jiji σσζσσ ,ˆ, , we obtain a Moore-type Markov source. The Moore-type model is 
referred to as the edge graph of the Mealy-type model. An example of a Mealy-type 
information source and its Moore-type equivalent are shown in the following figure. 
 



 
(a) Example of a Mealy-type two-state Markov information source, and (b) its four-state 
Moore-type counterpart 
 

The idea of a Markov source has enabled us to represent certain types of structure 
in streams of data. We next examine the information content, or entropy, of a sequence 
emitted by a Markov source, The entropy of a Markov information source is hard to 
compute in most cases. For a certain class of Markov information sources, termed 
unifilar Markov information source, the computation may be greatly simplified. The 
word unifilar refers to the following property. 

Let a Markov information source with a set of states { }Nσσ …,1=Σ , output 
alphabet G, and associated output function ( )tZζ  be given. For each state ,Σ∈kσ  let 

kknkk σσσ ,,, 21 … be the states that can be reached in one step from kσ , that is, the states 

jσ such that qkj> 0. We say jσ is a successor of  kσ , if qkj >0. The source is said to be 

unifilar if for each state kσ the symbols )(,),( 1 kknk σζσζ … are distinct. In other words, 
each successor of k must be associated with a distinct symbol. Provided this condition is 
met and the initial state of the Markov information source is known, the sequence of 
emitted symbols determines the sequence of states followed by the chain, and a simple 
formula is available for the entropy of the emitted X-process. Given a unifilar Markov 
source, as above, let  

kknk σσ ,,1 … be the successors of kσ , then it is quite natural to define 

the uncertainty of state kσ as ( )
kknkk ppHH ,,1 …= , with ( )

kknk ppH ,,1 …  defined as  
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Shannon defined the entropy of the unifilar Markov source as the average of these 
ilk weighed in accordance with the steady-state probability of being in a state in question, 
that is, by the expression 

 
Note that we use the notation H{X }to express the fact that we are considering the entropy 
of sequences {X} and not the function H(.). The next numerical example may serve to 
illustrate the theory. 
 
Example: Consider the three-state unifilar Markov chain depicted in the figure above. 
From the diagram we may read the transition probability matrix 



 
 
What is the average probability of being in one of the three states? We find the following 
system of linear equations that govern the steady-state probabilities: 

 
from which we obtain 23

4
3 ππ =  and 26

7
3 ππ = . Since 1321 =++ πππ we have 

 
The entropy of the information source is found to be equal 

 
In the next section we consider a problem which is central to the field of input-
constrained channels. We focus on methods to compute the maximum amount of 
information that can be sent over an input-constrained channel per unit of time. 
 
 
3.  Capacity of Discrete Noiseless Channels 
 
Shannon defined the capacity C of a discrete noiseless channel by 

 
where N(T) is the number of admissible signals of duration T. The problem of calculation 
of the capacity for constrained channels is in essence a combinatorial problem, that is, 
finding the number of allowed sequences N(T). This fundamental definition will be 
worked out in a moment for some specific channel models. We start, since virtually all 
channel constraints can be modeled as such, with the computation of the capacity of 
Markov information sources. 
 
3.1.  Capacity of Markov information sources 
 
In the previous sections we developed a measure of information content of an 
information source that can be represented by a finite Markov model. As discussed, the 
measure of information content, entropy, can be expressed in terms of the limiting state-
transition probabilities and the conditional entropy of the states. In this section we 
address a problem that provides the key to answer many questions that will emerge in the 
chapters to follow. Given a unifilar N-state Markov source with states  { }Nσσ …,1  and 



transition probabilities ijq̂ , we define the connection matrix { }ijdD = of the source as 
follows. Let 
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The actual values of the transition probabilities are irrelevant; the connection (or 
adjacency) matrix contains binary-valued elements, and it is formed by replacing the 
positive elements of the transition matrix by l’s. For an N-state source, the connection 
matrix D is defined by dij = 1if a transition from state i to state j is allowable and  dij = 0 
otherwise. For a given connection matrix, we wish to choose the transition probabilities 
in such a way that the entropy 
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is maximized. Such a source is called maxentropic, and sequences generated by a 
maxentropic unifilar source are called maxentropic sequences. 

The maximum entropy of a unifilar Markov information source, given its 
connection matrix, is given by 

{ } ,logmax max2 λ== XHC  
where ?max is the largest eigenvalue of the connection matrix D. The existence of a 
positive eigenvalue and corresponding eigenvector with positive elements is guaranteed 
by the Perron-Frobenius theorems. Essentially, there are two approaches to prove the 
preceding equation. One approach, provided by Shannon, is a straightforward routine, 
using Lagrange multipliers, of finding the extreme value of a function of several 
independent variables. The second proof of the above formula to be followed here, is 
established by enumerating the number of distinct sequences that a Markov source can 
generate. 

The number of distinct sequences of length  m + 1, m > 0, emanating from state s i 
denoted by Ni(m + 1), equals the total of the numbers of sequences of unity length that 
emerge from s i, and terminate in s j multiplied (since the source is unifilar) by the number 
of sequences of length m that start in s j. Thus we find the following recurrence equation 
 

 
This is a system of N linear homogeneous difference equations with constant 

coefficients, and therefore the solution is a linear combination of exponentials lambdam. To find 
the particular {? i}, we assume a solution of the form Ni (m) = yi*lambda  m to obtain 

 
or, letting yT = (y1,… ,yN), where the superscript T stands for transposition, we have 
 lambda*y =Dy 

 



Thus the allowable {lambda i} are the eigenvalues of the matrix D. For large sequence length in 
we may approximate Ni (m) by 
 

 
where ai is a constant independent of  m and  lambdamax is the largest real eigenvalue of the 
matrix D, or in other words, lambdamax is the largest real root of the determinant equation 
 

 
Previoous equation states that for large enough m the number of distinct sequences grows 
exponentially with the sequence length m; the growth factor is lambdamax. This is not to say that 
Ni (m) is accurately determined by the exponential term when m is small. We have 

 
The maximum entropy of the noiseless channel may be evaluated by invoking the 
definition of the capacity, or 

 

 
 

The transition probabilities qij associated with the maximum entropy of the source can be 
found with the following reasoning. Let p = (p1,… PN)T denote the eigenvector associated 
with the eigenvalue lambdamax or 

 
The state-transition probabilities that maximize the entropy are 
 

 

       
To prove the above formula is a matter of substitution. According to the Perron-
Frobenius theorems [5], the components of the eigenvector p are positive, and thus qij = 
0, 1 = i,j = N. Since p = (p1,.., pN)T is an eigenvector for ?max we conclude 

 
and hence the matrix Q is indeed stochastic. The entropy of a Markov information source 
is, according to definition 

 
where Hk is the uncertainty of state  sk and (p1, ... ,pN) is the steady-state distribution. 
Thus, 
 



 
Since 

 
and 

 
we obtain 

 
This demonstrates that the transition probabilities given by  

 
are indeed maximizing the entropy. 
 
Example (Continued): We revert to the three-state unifilar Markov chain with transition 
probability matrix 

 
The adjacency matrix D is 

 
The characteristic equation is 

 
from which we conclude that the largest root ?max = 2, and the capacity is C = log2 
?max=1. The eigenvector associated with the largest eigenvalue is p = (1, 3, 2)T. The 
transition probabilities that maximize the entropy of the Markov information source are 
found with  

 


