
On the Guaranteed Error-Correction of
Decimation-Enhanced Iterative Decoders

Shiva Kumar Planjery, David Declercq, Madiagne Diouf
ETIS

ENSEA/Univ. Cergy-Pontoise/CNRS UMR 8051
95014 Cergy-Pontoise, France

Email: {shiva.planjery,declercq,madiagne.diouf}@ensea.fr

Bane Vasic
Dept. of Electrical and Computer Eng.

University of Arizona
Tucson, AZ 85721, U.S.A.

Email: vasic@ece.arizona.edu

Abstract—Finite alphabet iterative decoders (FAIDs) proposed
for LDPC codes on the binary symmetric channel are capa-
ble of surpassing the belief propagation (BP) decoder in the
error floor region with lower complexity and precision, but
these decoders are difficult to analyze for finite-length codes.
Recently, decimation-enhanced FAIDs (DFAIDs) were proposed
for column-weight-three codes. Decimation involves fixing the bit
values of certain variable nodes during message-passing based
on the messages they receive after some number of iterations. In
this paper, we address the problem of proving the guaranteed
error-correction capability of DFAIDs for column-weight-three
LDPC codes. We present the methodology of the proof to derive
sufficient conditions on the Tanner graph that guarantee the
correction of a given error pattern in a finite number of iterations.
These sufficient conditions are described as a list of forbidden
graphs that must not be contained in the Tanner graph of the
code. As a test case, we consider the problem of guaranteeing
the correction of four errors. We illustrate the analysis for a
specific 4-error pattern and provide the sufficient conditions for
its correction. We also present results on the design of codes
satisfying those sufficient conditions and their impact on the
achievable code rate.

I. INTRODUCTION

Finite-length analysis of LDPC codes under message-
passing (MP) decoding has attracted significant attention over
the past decade with some of the notable works being compu-
tation trees by Wiberg [1], stopping sets by Di et al. [2], and
graph-cover decoding by Vontobel and Koetter [3]. In spite
of these important contributions, the problem of analyzing
a particular MP algorithm for a fixed number of iterations
still remains a challenge, and the guaranteed error-correction
capability of finite-length LDPC codes under MP decoding
remains largely unknown. This is because the dynamics of MP
becomes too complex beyond a certain number of iterations as
there is exponential growth in the number of nodes with the
number of iterations in the computation trees of the decoder on
the code. The guaranteed error-correction capability assumes
greater importance for the binary symmetric channel (BSC)
as it determines the slope of the error floor in the error-rate
performance of the decoder [4].

The only known results on the guaranteed error-correction
capability of finite-length LDPC codes are for the Gallager-
A decoder which were derived by Chilappagari et al. [5].
They proved that for a column-weight-three code of girth

g ≥ 10, the Gallager-A decoder corrects (g/2 − 1) errors
in g/2 iterations, and for girth g = 8, the code required
some additional constraints on the Tanner graph to guarantee
correction of (g/2−1) = 3 errors. Such type of results are not
known for any other MP decoder especially when the decoder
utilizes soft messages due to the complexity in the analysis.

Recently, a new class of finite alphabet iterative decoders
(FAIDs) [6] were proposed that have lower complexity than
the BP decoder but are capable of surpassing the BP in the
error floor region. While numerical results were provided
showing the superior error-rate performance of 3-bit precision
FAIDs over BP (floating-point), analyzing these decoders still
proved to be difficult. More recently, decimation-enhanced
FAIDs (DFAIDs) [7] were proposed, wherein the technique
of decimation is incorporated into the FAIDs in a novel
manner that allows the decoder to be more amenable to anal-
ysis while maintaining their good performance. Decimation
involves fixing the bit values of certain variable nodes (see
[7] for references). In [7], the proposed DFAID was able to
match the good performance of the original FAID while being
analyzable at the same time. However, no results on guaranteed
error-correction were provided in [7].

In this paper, we address the problem of proving the
guaranteed error-correction of 7-level DFAIDs for column-
weight-three codes. Using the same 7-level DFAID proposed
in [7], we will provide a methodology to analyze the DFAID
algorithm on a given error pattern of weight-t and prove
its guaranteed correction in a finite number of iterations by
enforcing constraints on its neighborhood. These constraints
which are regarded as sufficient conditions are described in the
form of a list of subgraphs which the Tanner graph of the code
must not contain. As a test case, we consider the guaranteed
correction of error patterns of weight t = 4. While the
analysis and proof is limited to one specific 4-error pattern, the
methodology is applicable to prove the guaranteed correction
of any given error pattern. We also provide some results
measuring the impact of each constraint on the achievable code
rate. Complete proofs are omitted due to page limitations.

II. DECIMATION-ENHANCED FAIDS

Let G denote the Tanner graph of an (N ,K) binary
LDPC code C consisting of the set of variable nodes V =

{v1, · · · , vN} and set of check nodes C = {c1, · · · , cM}. The
degree of a node is its number of neighbors. For column-
weight-three codes, every variable node has a degree dv = 3.
N (u) denotes the set of neighbors of a node u and N (U)

denotes the set of neighbors of all u ∈ U . Let x̂(k)i denote
the bit value of a variable node vi ∈ V decided at the end of
the kth iteration. Let r = (r1, r2 . . . , rN) denote the output
vector received from the BSC. Let T k

i (G) denote a depth-
k computation tree of graph G corresponding to a decoder
enumerated for k iterations with node vi as its root.

An Ns-level DFAID [7] denoted by FD is defined as
a 4-tuple given by FD = (M,Y,ΦD

v ,Φc), where M =
{−Ls, . . . ,−L1, 0, L1, . . . , Ls} is the alphabet which the mes-
sages belong to, and consists of Ns = 2s + 1 levels with
Ls being the highest level. The set Y denotes the set of
possible channel values defined as Y = {±C}, and for each
node vi ∈ G, the channel value yi ∈ Y is determined by
yi = (−1)riC. ΦD

v and Φc are the variable and check node
update functions that will be defined shortly.

Definition 1: A variable node vi is said to be decimated at
the end of lth iteration if x̂(k)i is set to x̂∗i ∀k > l. Then, from
the lth iteration, vi sends (−1)x̂

∗
iLs as its outgoing message

on all its edges irrespective of its incoming messages.
A decimation rule β : Y ×Mdv → {−1, 0, 1} is a function

used at the end of some lth iteration by the decoder to decide
whether a variable node should be decimated and what value
it should be decimated to based on the incoming messages and
the channel value in the lth iteration. Let γi denote the output
of a decimation rule applied to a node vi. If γi = 0, then the
node is not decimated. If γi = 1, then the node is decimated
with x̂∗i = 0, and if γi = −1, then the node is decimated with
x̂∗i = 1. Each instance of applying the decimation rule on all
variable nodes is a decimation round. For this work, the rule
β must also satisfy the below properties:

1) β(C,m1,m2,m3) = −β(−C,−m1,−m2,−m3)
∀m1,m2,m3 ∈M

2) β(C,m1,m2,m3) 6= −1 and β(−C,m1,m2,m3) 6= 1
∀m1,m2,m3 ∈M

3) Given m1,m2,m3 ∈M, if β(C,m1,m2,m3) = 1, then
β(C,m′1,m

′
2,m

′
3) = 1 ∀m′1,m′2,m′3 ∈ M such that

m′1 ≥ m1, m′2 ≥ m2, and m′3 ≥ m3.
Property 2 implies that a variable node vi can be decimated
only to its received value ri.

There are two key aspects to note regarding the application
of a decimation rule.

1) The decimation rule is applied after messages are passed
iteratively for some l iterations.

2) After each decimation round, all messages are cleared
to zero (note: the decimated nodes remain decimated).

β is defined using a set Ξ that consists of all unordered triples
(m1,m2,m3) ∈ M3 such that β(C,m1,m2,m3) = 1. Due
to property 1, Ξ is sufficient to completely specify β.

Let m1 and m2 denote the extrinsic incoming messages to
a node vi ∈ V with dv = 3. The map ΦD

v : Y ×Mdv−1 ×
{−1, 0, 1} → M which uses the output of β as one of its

arguments is defined as

ΦD
v (yi,m1,m2, γi) =

{
Φv(yi,m1,m2), γi = 0
γiLs, γi = ±1

The update function Φc :Mdc−1 →M is used at a check
node with degree dc, and is defined as

Φc(m1, . . . ,mdc−1) =

dc−1∏
j=1

sgn(mj)

 min
j∈{1,...,dc−1}

(|mj |)

where sgn denotes the standard signum function.
The subgraph induced by the set of non-decimated nodes is

referred to as a residual graph. For the analysis in this paper,
we shall use the 7-level DFAID defined with the algorithm
defined below, where Φv is defined by Table I and the set Ξ
is defined by Table II.

Algorithm 1 7-level Decimation-enhanced FAID algorithm [7]
1) Initialize γi = 0 ∀vi ∈ V .
2) Run the decoder for three iterations using update maps

Φv and Φc defined for the 7-level FAID.
3) Perform decimation using the rule β for every vi ∈ V ,

which constitutes the first decimation round.
4) Restart the decoder by resetting all the messages to zero

and pass messages for one iteration. This implies that a
decimated node vi will send γiL3 and a non-decimated
nodes vj will send Φv(yj , 0, 0).

5) Repeat step 3) only for nodes vi ∈ V whose γi = 0,
followed by 4), until the maximum possible number of
nodes have been decimated.

6) Run the decoder for the remainder of iterations using
maps ΦD

v and Φc.

At the end of the kth iteration, the bit value x̂(k)i for a non-
decimated node vi is determined by assigning Li = i for i ∈
{1, 2, 3} and calculating the sign of the sum m1+m2+m3+yi.

TABLE I
Φv OF 7-LEVEL DFAID DEFINED FOR yi = +C

m1\m2 -L3 -L2 -L1 0 L1 L2 L3

-L3 -L3 -L3 -L2 -L1 -L1 -L1 L1

-L2 -L3 -L1 -L1 0 L1 L1 L3

-L1 -L2 -L1 0 0 L1 L2 L3

0 -L1 0 0 L1 L2 L3 L3

L1 -L1 L1 L1 L2 L2 L3 L3

L2 -L1 L1 L2 L3 L3 L3 L3

L3 L1 L3 L3 L3 L3 L3 L3

TABLE II
SET Ξ DEFINING β(C,m1,m2,m3) = 1

m1 m2 m3

L3 L3 L3

L3 L3 L2

L3 L3 L1

L3 L3 0
L3 L3 -L1

m1 m2 m3

L3 L2 L2

L3 L2 L1

L3 L2 0
L3 L2 -L1

L3 L1 L1

m1 m2 m3

L3 L1 0
L3 L1 -L1

L3 0 0
L2 L2 L2

L2 L2 L1

Note that since Φv(C, 0, 0) = L1, Φv(C, L1, L1) = L2,
and Φv(C, L2, L2) = L3, at least three iterations are required

for a variable node to send ±L3. Also note that the smallest
message level a correct node can send is 0 in the second
iteration since Φv(C,−L1,−L1) = 0, and −L1 in the third
iteration since Φv(C,−L2,−L2) = −L1.

III. ANALYSIS: GUARANTEED ERROR-CORRECTION

Given an error pattern on graph G, let variable nodes
initially wrong be referred to as error nodes, and variable
nodes initially correct be referred to as correct nodes. Let I
denote the maximum number of iterations allowed for MP on
the residual graph (step 6) by the 7-level DFAID.

Firstly, note that due to Property 2 of β, an error node
can only be decimated to a wrong value, and a correct node
can only be decimated to the correct value. This provides a
necessary condition for successful correction which is that
no error node must be decimated. Therefore, the analysis
for proving the guaranteed error correction of a given error
pattern can be categorized into three main steps: 1) analyzing
the decimation of error nodes and deriving conditions on
their neighborhood such that no error node gets decimated, 2)
analyzing the decimation of correct nodes in the neighborhood
of the error nodes, and examining what the subsequent residual
graph is for the given error pattern, and finally 3) examining
whether the error nodes get corrected. This must be done for
every error pattern of weight t.

We now consider the goal of proving the guaranteed correc-
tion of all error patterns of weight t = 4 in I = 3 iterations.
We start out by assuming that the graph G has girth 8 and later
add more constraints as needed. Fig. 1 depicts the subgraphs
of all possible 4-error patterns assuming girth 8. denotes the
error node. � and � denote an odd-degree and even-degree
check node in the subgraph respectively. Also note that all-
zero codeword is assumed throughout the analysis.

(1) (2) (3) (4)

(5) (6) (7)

(8) (9) (10)

Fig. 1. Subgraphs of all possible 4-error patterns with girth 8

A. Analyzing Decimation of Error Nodes

First, note the following lemma.
Lemma 1: If β(C, L1, L1, L1) = 0 and no error node gets

decimated at the end of first decimation round, then no error
node will get decimated in any subsequent decimation round.

Due to the above lemma, for a given 4-error pattern, it
now suffices to show that none of the error nodes will get

decimated at the end of first decimation round, i.e., at the end
of the third iteration. To examine this, we need to determine
the triples of messages that node vi can receive at the end of
the third iteration for different possible neighborhoods (that are
allowed) in graph G, and verify that it does not get decimated
with rule β. But instead of determining all possible such
triples, we can exploit the monotonicity property 3 of β, and
just determine the worst-case triple defined below.

Definition 2: The worst-case triple of an error node vi
corresponding to a given error pattern is defined as the triple
(m1,m2,m3) ∈ M3 that root node vi receives on the
computation tree T 3

i (G) for a particular allowed neighborhood
in G, such that any other possible triples (m

′

1,m
′

2,m
′

3) ∈M3

the root vi satisfies (m
′

1,m
′

2,m
′

3) ≥ (m1,m2,m3).
If the worst-case triple for error node vi is (m1,m2,m3)

and β(−C,m1,m2,m3) = 0, then error node vi will not get
decimated. However, if β(−C,m1,m2,m3) = −1 signifying
that it gets decimated, then we have either the choice of modi-
fying β or enforcing some constraints on the neighborhood by
forbidding the presence of certain connections between nodes
such that (m1,m2,m3) can never be received by node vi. each
message in the triple is referred to as the worst-case message.

In order to determine the worst-case triple received by error
node vi, we analyze the different possible messages passed in
the computation tree T 3

i (G) based on its different possible
neighborhoods. For convenience, let us use the following
conventions regarding the locations of nodes in T 3

i (G). The
zeroth level of the tree T k

i (G) is where the root is, the first
level of the tree contains the variable nodes that send outgoing
messages towards the root, and the kth level is the base of
the tree containing all the leaf nodes. Also we introduce the
definition of computation subtree.

Definition 3: A computation subtree is a subset of nodes in
the computation tree T k

i (G) that forms a tree with a variable
node in T k

i (G) as its root.
Let H denote the subgraph induced by a given error pattern.

In order to determine the worst-case triple for an error node
vi in the given error-pattern on the computation tree T 3

i (G),
the following steps need to be performed.

1) Start out by drawing T 3
i (G) with error node vi being the

root as if we are drawing T 3
i (H), i.e., by treating H as

an isolated graph. If H contains a degree-one check, then
on the tree T 3

i (G), such a check will have only a correct
node as its child. For a check node in H that has a degree
greater than one, ignore the correct nodes connected to it
on T 3

i (G) because the worst-case message is determined
by the error node(s).

2) At the first level, examine the correct nodes on each
branch in this level. Consider all possible connections
for the remaining two edges emanating from this correct
node: 1)either it is connected to two checks in H , 2) or
to just one check in H and to another outside H , 3)
or to two checks outside H . For each possibility, we
need to verify that such a connection is topologically
possible. For instance, if we assume the girth of G is
8, we need to ensure that such a connection does not

introduce a six-cycle. Each valid possibility leads to a
subtree of depth 2, which shall be referred to as first-
level candidate subtree.

3) For each choice of first-level candidate subtree, expand
only from check nodes in H to reach the second level.
Repeat the above step for the correct nodes in the second
level and each possibility is referred to as second-level
candidate subtree. Once this is done, this automatically
determines the variable nodes in the third level.

4) Choose the first-level subtrees and second-level subtrees
such that the root receives the worst-case triple.

As an example, let us consider the 4-error pattern on the 8-
cycle which corresponds to pattern (1) in Fig. 1. Fig. 2 depicts
the analysis done for determining the worst-case triple. Note
that the error nodes are depicted by , and the correct nodes
are depicted by #.

Assume that
this node

sends worst
possible
message

Fig. 2. Subgraph induced by the 4-error pattern and its corresponding minimal
worst-case computation tree S3

1

In the first level, we assume that v5 sends the worst
possible messages (the smallest message) which is −L1, by
virtue of Φv . Also, in the second level, assuming that the
girth is 8, note that v6 and v8 can be connected to at most
two degree-one checks in H or it would create a 6-cycle.
Therefore, the subtrees chosen at the second level do send
the worst-case messages. The worst-case triple of node v1 is
(−L1,−L1,−L1). Since β(C, L1, L1, L1) = 0, this means
β(−C,−L1,−L1,−L1) = 0, and therefore v1 will not be
decimated.

By using the symmetry of H , this implies that no error
node in H gets decimated. However, note that in general such
symmetry may not exist for other error patterns. For such a
case, we must also determine the worst-case triples of multiple
error nodes in the error pattern in order to ensure that no error
node is decimated. For certain error patterns, the analysis may
be less involved. For example, for pattern (10) in Fig. 1, a
correct node will send in the worst-case −L1 in the third
iteration, and since β(−C,−L1,−L1,−L1) = 0, no error
node gets decimated. In this manner, we obtain the following
lemma regarding all 4-error patterns.

Lemma 2: If the graph G of a column-weight-three code
has girth-8, then for any 4-error pattern, no error node will
get decimated by the 7-level DFAID.

It is evident from the above procedure that this analysis can
be done for any given error pattern of weight t. Having proved
the no error nodes get decimated, the next step of the analysis
is to prove the correction of the error pattern.

B. Analyzing Decimation of Correct Nodes and Sketch of
Proof for Guaranteed Correction

Given an error pattern with H being the induced subgraph
of the error nodes, let V 0 denote the set of error nodes in
H . Let C0 = N (V 0) denote the set of all the neighboring
checks of the error nodes in V 0. Let V 1 = N (C0) \ V 0,
C1 = N (V 1) \ C0. In general, let V l = N (Cl−1) \ V l−1

and Cl = N (V l−1) \ Cl−1 for l > 0. In order to prove the
correction of the error pattern for which no error nodes are
decimated, we rely on analyzing the decimation of correct
nodes in the neighborhood of H using the following lemma
which is based on Algorithm 1.

Lemma 3: If a correct node vj is connected to at most one
odd-degree check in H , and at the end of the pth decimation
round, it has at least one neighboring check cj ∈ N (vj) such
that every node vi ∈ N (cj) \ vj is a decimated correct node,
then node vj will be decimated in (p+ 1)th decimation round
by virtue of β(C, L3, L1,−L1) = 1.

By the above lemma, if all nodes in V 1 are decimated, this
implies all remaining correct nodes will also be decimated in
some decimation round, and the residual graph is H . We can
then easily verify if the error nodes in H are corrected in
I iterations. Therefore, we begin the analysis by examining
whether nodes in V 1 get decimated at the end of the first
decimation round, which requires some assumptions on the
neighborhood of H such as the number of checks in H that
a node in V 1 can be connected to, or the number of checks
it shares with other nodes in V 1. We then analyze whether
a correct node vi ∈ V 1 is decimated in the first round in a
manner similar to the analysis for decimation of error nodes.

If node vi does not get decimated in the first round, we
can then either enforce a constraint on the neighborhood such
that it does get decimated, or analyze the decimation of the
correct nodes connected to its neighboring check nodes, which
could belong to V 1 or V 2, so that Lemma 3 can be invoked to
prove its decimation. In this manner, we continue to expand
the analysis to nodes in V 2, V 3 and so forth, until either we
obtain a node that is decimated in the first round, or conclude
that we have reached a possible residual graph. During the
analysis, each constraint enforced on the neighborhood is a
sufficient condition in the form of a forbidden subgraph.

Let us revert back to the example of the 4-error pattern on
the 8-cycle shown in Fig. 2. Let C0

1 denote the set of degree-1
check nodes in H and C0

2 denote the set of degree-2 check
nodes of H . Also let G(N,M) denote a forbidden graph with
N variable nodes and M check nodes. Regarding the nodes
v9, v10, v11, and v12, we can prove the following lemma

Lemma 4: If a graph G of a column-weight-three code
has girth-8 and does not contain G(6, 10), G(6, 11){1}, and
G(6, 11){2}, then for an error pattern whose induced subgraph
H is an 8-cycle, any correct node vi ∈ N (C0

2) which does

Fig. 3. Forbidden subgraphs belonging to set G for guaranteeing correction of the 4-error pattern in I = 3 iterations

not share a check with vj ∈ N (C0
1) is decimated in the first

decimation round.
The structures of G(6, 10), G(6, 11){1}, and G(6, 11){2} are

shown in Fig. 3. Note that {} is used to distinguish between
two non-isomorphic graphs with the same number of variable
nodes and check nodes. Let G denote the set of all forbidden
graphs depicted in Fig. 3. Using the above method of analysis,
we can prove the following theorem.

Theorem 1: If the graph G of a column-weight-three code
has girth-8, and does not contain any subgraphs belonging to
G , then the 7-level DFAID requires at most two decimations,
and I = 3 iterations to correct the 4-error pattern whose
induced subgraph forms an 8-cycle.

While the theorem is stated for a specific 4-error pattern,
we do not expect the set G to change for the correction of
all the remaining 4-error patterns. The complete proof for the
theorem of guaranteeing correction of t = 4 errors in I = 3
iterations will be provided in the journal version of this paper.

C. Code Design and Achievable Code Rates
In order to verify the existence of codes satisfying the above

constraints as well as to study the impact each constraint has
on the achievable code rate, we started with a long quasi-cyclic
code with degree profile (dv, dc) = (3, 23), which was the
maximum possible rate we were able to design with circulant
size of L = 179 ensuring girth 8. We then removed blocks
from this code in order to remove these forbidden graphs.
Table III lists the statistics of the structures to remove, and
the impact each forbidden graph has on the code rate upon
removal. Upon removal of all forbidden graphs, the maximum
code rate we were able to achieve for the family of quasi-cyclic
codes with dv = 3 and L = 179 was 0.5714. These statistics
can be used as guide to choose which sufficient conditions to
enforce or relax in order to obtain the desired code rate.

ACKNOWLEDGMENT

This work was supported by the Seventh Framework Pro-
gram of the European Union, under Grant Agreement number
309129 (i-RISC project), and by NSF grants CCF-0963726
and CCF-1314147.

TABLE III
STATISTICS OF THE STRUCTURES TO AVOID IN A (dv , dc) = (3, 23),

L = 179 QUASI-CYCLIC CODE

Forbidden graphs Number Max. Blocks Max. Rate

G(6, 10) 37 19 0.8421
G(6, 11){1} 8680 9 0.6667
G(6, 11){2} 44981 7 0.5714
G(7, 12){1} 1683 12 0.7500
G(7, 12){2} 3319 12 0.7500
G(8, 13){1} 576 15 0.8000
G(8, 13){2} 965 19 0.8421
G(8, 14){1} 160454 8 0.6250
G(8, 14){2} 138285 8 0.6250
G(8, 14){3} 177284 8 0.6250
G(8, 14){4} 0 23 0.8696
G(9, 15){1} 11809 13 0.7692
G(9, 15){2} 3868 13 0.7692
G(9, 15){3} 0 23 0.8696

REFERENCES

[1] N. Wiberg, Codes and Decoding on General Graphs. PhD thesis,
Linkoping University, Sweden, 1996.

[2] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke,
Finite-length analysis of low-density parity-check codes on the binary
erasure channel, IEEE Trans. on Inform. Theory, vol. IT48, no. 6, pp.
1570-1579, 2002.

[3] P. Vontobel and R. Koetter, “Graph-Cover Decoding and Finite-Length
Analysis of Message-Passing Iterative Decoding of LDPC Codes,” http:
//arxiv.org/abs/cs/0512078.

[4] M. Ivkovic, S. K. Chilappagari, B. Vasic, “Eliminating trapping sets in
low-density parity-check codes by using Tanner graph covers,” IEEE
Trans. on Inf. Theory, vol. 54, no. 8, pp. 3763–3768, 2008.

[5] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin,
“Error correction capability of column-weight-three LDPC codes under
the Gallager A algorithm-Part II,” IEEE Trans. Inf. Theory., vol. 56, no.
6, pp. 2626-2639, Jun. 2010

[6] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasic,“Finite alphabet
iterative decoders, Part 1: Decoding beyond belief propagation on the
binary symmetric channel,” IEEE Trans. Commun., vol.61, no.10, Oct.
2013.

[7] S. K. Planjery,B. Vasic,D. Declercq, “Decimation-enhanced finite alpha-
bet iterative decoders for LDPC codes on the BSC,” Proc. Int. Symp. Inf.
Theory (ISIT’2011), pp. 2383–2387, St. Petersburg, Russia, Jul. 2011.

