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Abstract 

Fiber optic probes are a key element for biomedical spectroscopic sensing. This paper reviews the use of 

fiber optic probes for optical spectroscopy, focusing on applications in turbid media, such as tissue. The 

design of probes for reflectance, polarized reflectance, fluorescence, and Raman spectroscopy will be 

illustrated. This paper covers universal design principals, as well as technologies for beam deflecting and 

reshaping. 
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Introduction 

In the clinical environment, optical techniques (microscope, ophthalmoscope, endoscope, and colposcope) 

have been used for hundreds of years [1-5]. The integration of spectroscopic devices into existing optical 

examinations has the potential to substantially improve clinical practice. Fiber optic cables provide a 

flexible solution for an adequate optical interface between the spectroscopic device and the sample to be 

interrogated in situ. Fiber optic probes can be advanced into cavities and tubular structures, put in contact 

with epithelial surfaces, and inserted into structures that can be punctured by rigid devices such as needles. 

Fiber optic devices for optical spectroscopy can be manufactured as flexible catheters with an outer 

diameter of less than 0.5 mm. This paper reviews fiber optic probes for fluorescence, and elastic and 

inelastic scattering spectroscopy of turbid tissues. After describing the fiber optic interface, we describe 

probes for reflectance spectroscopy (diffuse reflectance and polarized reflectance), probes for fluorescence 

measurements, probes which combine fluorescence and reflectance measurements, and probes for Raman 

spectroscopy. Finally we review optical designs for side looking probes, diffuser tips and refocusing optics. 

The fiber optic probes discussed in this article have a biomedical application in mind. Probes with sensing 

elements for indirect measures such as pH and temperature will not be reviewed in this article. 

The fiber optic interface 

A spectroscopic system incorporates a light source, an optical analyzer with detector, and a light transport 

conduit which, in many cases, is made of fiber optic cables. A separate illumination and collection channel 

minimizes background signals produced in the illumination fiber (Fig. 1a). The excitation or illumination 

light source is typically a laser or a filtered white light source, such as a xenon or mercury lamp. Dielectric 

bandpass filters, monochromators, or double monochromators, can be used as filters according to the need 

for spectral purity. For fluorescence excitation with bandpass filters, xenon lamps with more than 150W 

power consumption require additional mirrors removing infrared (IR) light from the beam path (a cold 

mirror is used if the mirror deflects the main beam path by 90o degrees) to protect the optical parts from 

excessive radiation. Pulsed light sources, such as lasers (e.g. nitrogen-pumped dye laser and optical 

parametric oscillators) or arc lamps release photons in short bursts and, combined with a gated detector 
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allow measurements under ambient light conditions. The coupling optics adapt the f-number of the light 

source to the numerical aperture of the fiber and guarantee optimal irradiance into the fiber. Laser radiation 

can be focused on a small spot compared to the imaging of a lightsource arc onto a fiber bundle. The probe 

transports the remitted light from the tissue to the spectroscopic system. New techniques, such as 

holographic transmission gratings (Holospec, Kaiser Optical Systems Inc, Ann Arbor) and back 

illuminated thinned charge coupled devices (CCDs) with high quantum efficiencies, allow short integration 

times and sufficient spectral and spatial resolution. Additional filter stages that are placed in front of the 

spectrograph reduce the influence of stray light originating from the excitation light source. For 

fluorescence applications, this filter stage holds longpass filters and for Raman spectroscopy holds notch 

filters. 

 
To achieve the smallest probe diameters, single fiber solutions are used in combination with a dichroic 

beam splitter and well-aligned coupling optics (Fig. 1b). Single fiber solutions are limited because of the 

difficulty of reducing back-scattered excitation and illumination light at the fiber coupling site, and the 

suppression of autofluorescence induced in the fiber optic cable by excitation light. Nevertheless, single 

fiber-based probes require a minimal amount of components for the probe and can be used to create the 

smallest illumination spots as well as having excellent light collection efficiency. 

Fiber optic lightguides 

An optical fiber for spectroscopy consists of a core, a doped cladding, and a protective jacket. Light is 

transmitted based on the principle of total internal reflection. The half-angle (α) of the light cone that a 

fiber can accept is characterized by the numerical aperture (NA), which is defined by the difference in the 

refractive indices (n) of the core and the cladding material (Fig. 2): 

2
cladding

2
coremedia nn)sin(nNA −=α=   Equation 1 

For transmission in the visible wavelength range, the optical fiber core is made out of glass or plastic (e.g. 

acrylic or polystyrene). The doped cladding is usually made of a similar material but with lower refractive 

index. Since light is not propagating in the cladding, losses due to absorption are less important. As soon as 

background signals introduced by the fiber itself become critical for the application, or the wavelength 
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range needs to be extended to the ultraviolet (UV) and infrared (IR), high-grade fused silica are used for 

the core material. All-silica fibers have a doped silica cladding, while plastic clad fibers have a silicone 

cladding. Optimized fiber preform manufacturing [6-10] allows transmittance from 200 nm (solarization-

resistant-ultraviolet grade fiber, Polymicro Technologies Inc., Phoenix, AZ or Ceramoptec, East 

Longmeadow, MA) up to 2500 nm (low-hydroxyl fiber) and Sapphire fibers (Saphikon, Milford, NH) 

extend the transmission in the IR above 3000 nm. This allows the application of fiber optic probes for 

Ultraviolet Resonance Raman (UVRR) and IR Raman spectroscopies [11]. Due to bending of the fibers 

and defects in the fibers causing scattering, light may exit the core and hit the jacket. Most plastic jackets, 

such as Nylon and Tefzel®, produce significant autofluorescence when irradiated with UV light. Polyimide 

and metal-coated fibers, such as gold and aluminum, exhibit minimal fluorescence. During intense UV 

irradiation, defects may form in quartz fibers that are accompanied by autofluorescence in a broad band at 

both 450 and 650 nm [12]. The formation of these defects is partly reversible through diffusion processes 

occurring in the quartz glass. It is further known that silica produces intrinsic Raman signals at near 

infrared (NIR) excitation that interfere with in-vivo Raman spectroscopy. If background signals in 

spectroscopic measurements are present, the dynamic range of the detector can become critical [13]. For 

spectroscopic applications, multimode fibers with a core diameter of 50 µm to 600 µm are usually used. 

Short pieces (1-2m) of fibers with larger diameters can be produced in custom runs. The bending radius of 

quartz fibers in which no long-term defects result is approximately 100 times the fiber diameter and the 

momentary bending radius is approximately 50% of the long-term bending radius. 

Fiber packing 

In order to manufacture flexible fiber optic cables with a large optically-active area, fibers with a diameter 

of 100 to 200 µm are packed into bundles. The amount of fibers (nfiber) that can be packed into a round 

cross section is illustrated in Figure 3.  If fibers are packed hexagonally according ring a in Figure 3 the 

number of fibers is determined with:  

∑
=

+=
m

0k
fiber k61n  Equation 2 

Where m is the amount of rings around a central fiber. The total outer diameter (OD) is calculated by 
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)21( mODOD fibertotal +=  Equation 3 

For hexagonal packing with additional fibers, according to ring b in Figure 3, equation 2 changes to 

mkn
m

k
fiber 661

0

++= ∑
=

 Equation 4 

and the total OD is calculated by 

( )[ ]131 ++= mODOD fiberTotal  Equation 5 

However, this is based on optimal arrangement of fibers which usually is not achieved under real 

manufacturing conditions. For a given bundle cross section, the dead space (inactive area) in between the 

fibers increases when the fiber diameter is reduced and reaches an upper value of 25% when more then 3 

fiber rings are used. The inactive area additionally includes the area of the cladding and the jacket, which 

consumes normally more than 30% of the individual fiber cross section. If the jacket is stripped, this 

inactive area is reduced and the cladding accounts for approximately 17% of the fiber cross section. This 

leaves a total active area of approximately 60-65% in a tightly packed and optimized fiber bundle with 

stripped jacket material. 

Beveled versus flat exit surface 
To ensure optimal coupling, the end of fiber optic cable is cleaved or polished. If the exit surface is 

polished with an oblique angle in respect to the fiber axis, the output will be deflected (Fig. 4) (beveled 

fibers). If the critical angle for total internal reflection is reached, the light will leave the fiber through the 

cylindrical side (Figs. 4d, 4e) [14-16]. The critical angle (Fig. 4d) for the silica-air interface is 43.3o and for 

the silica-water interface is 66o. A fiber with a combination of a beveled and a flat polished tip [17], (Gaser 

Technology, Visionex Inc., GA; product no longer available) can also be used for deflection (Fig. 4f) as 

one part of the beam is exiting in the direction of the fiber axis while another part is guided sideways. To 

allow a larger range of steering angle, the beveled surface of the fibers can alternatively be coated (e.g. 

aluminum). 
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Beveled fiber applications for probe designs have been theoretically and experimentally analyzed by 

Cooney [18, 19].  The sensitivity and sampling volume of beveled fibers was compared to other designs, 

such as single fibers (Fig. 4g) flat tipped probes (Fig. 4h), and probes with lenses. The sensitivity and 

sampling volume was measured in a clear medium and results were reported for the collection of Raman 

scattered light and are also applicable for fluorescence collection.  A probe consisting of two beveled fibers 

(Fig. 4i) is at least by a factor of 1.5 more efficient than a dual fiber with a flat tip probe (NA=0.22) and the 

sampling volume is smaller and located closer to the probe tip. A single fiber probe (Fig. 4g) is 1.8 to 4 

times more efficient, depending on fiber diameter, than a dual fiber with a flat tip probe (Fig. 4h).   

 

The efficiency of a “Gaser-type” collection fiber (Fig. 4f, 300 µm core) combined with a flat tip 

illumination fiber (Fig. 4j, 400 µm core) has been measured by Shim et al [17] with a sapphire Raman 

standard. Two configurations were considered: First, the light deflection angle of the ”Gaser” fiber was 

between 13o and 32o (low deflection) and second, the deflection angle was between 35 and 55o (high 

deflection). Compared to a flat tip probe, Shim et al found that, in air, a low deflection probe measures a 4 

times and the high deflection probe a 16 times increased signal. In water, the factors were 6.5 and 28, 

respectively. Similar values were found in 0.25% and 0.50% Intralipid solution. For a flat tip probe with 

a 400 µm illumination fiber and a 300 µm pickup fiber, maximal signal was picked up at a distance 

between 1.7 and 1.4 mm from the tip in water or in the Intralipid™ solution. The low deflection probe 

received the largest signal at a distance of approximately 0.5 mm, and the high deflection probe at 0.25 mm 

from the fiber tip in water or the Intralipid™ solution. 

 

The concept of dual fiber arrangement for separate illumination and collection can easily extend to a 

multifiber design, as shown in Figures 4k and 4l. The sampling volume of a single excitation fiber overlaps 

with concentric arranged collection fibers. Six collection fibers can be arranged around a single 

illumination fiber, which is equivalent to six dual fiber arrangements. To construct the probe tip, the fiber 

bundle is glued together and polished to a cone shape by rotating the probe axially while polishing. This 

design can be optimized for immersed operation (Fig. 4k) or for the interrogation of a surface (Fig. 4i). For 
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surface measurements, the tip needs to be enclosed and a quartz or sapphire window placed at the distal 

end (Fig. 4i). In general, collection and illumination channels are exchangeable. 

Material choice and safety considerations 
All fiber optic probes reviewed and presented in this study have a biomedical application in mind. The 

probe tip is either at close distance or in contact with the tissue surface or body fluids and, therefore, 

should be analyzed for potential hazards. An analysis of potential risks and protection against those risks is 

a requirement of human subject studies funded by the National Institute of Health (NIH). A guidance 

document, which is also helpful for the evaluation of hazards of fiber optic probes, was developed by the 

US Food and Drug Administration (FDA) for electro-optical detection of cervical cancer [20]. The list of 

potential adverse events which are applicable to the use of fiber optic probes are optical radiation hazards, 

thermal hazards, electrical shock hazards, clinical hazards (transmission of diseases), and material toxicity 

hazards. According a general evaluation of medical devices [21], fiber optic probes are most likely 

categorized as transient surface or transient external communicating devices and their materials should be 

tested for cytotoxicity, sensitization, and irritation, and depending on the application, for acute systemic 

toxicity. If the fiber optic probe is made of materials that have been well-characterized in published 

literature and have a history of safe use, there is adequate justification to not conduct some or all of the 

suggested tests.  

 

Optical threshold limit values (TLV) or maximum permissible exposure (MPE) have been established to 

assist in the control of health hazards [22, 23] by the American Conference of Governmental Hygienists 

(ACGIH) and the American National Standard Institute (ANSI). The biologically-effective radiation 

(device emission weighted by the action spectrum which is normalized at 270 nm) should not exceed the 

TLV for skin and eye (which is 3 mJ/cm2 at 270 nm for non-laser based devices). The TLV for skin and 

eye has also been recommended for the cervix. Potential temperature increases should be evaluated using 

endpoints or by potential peak tissue temperature. Since materials (fused silica, acrylic, polystyrene or 

silicone) used for fiber manufacturing are good electric isolators, a fiber optic probe with minimal shock 

hazard can be manufactured.  
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To avoid clinical hazards, such as the transmission of diseases, the fiber optic probe needs to be disinfected 

or sterilized prior to its use with common clinical practice. If the fiber optic probe cannot be detached from 

the spectroscopic equipment, the parts which may be in contact with tissue need to be soaked; for example, 

in a solution based on 2.4% gluteraldehyde (CIDEX, Advanced Sterilization Products, Irvine, CA) or 

0.55% orthophthalaldehyde solution (CIDEX OPA). If a fiber optic probe is used during a surgical 

procedure, it can be covered with sterile drapes developed to cover ultrasound probes. Low temperature 

sterilization with ethylene oxide or hydrogen peroxide gas can be applied to a detachable probe. Most 

critical is the compatibility of the probe materials with the disinfectant. CIDEX OPA is a disinfectant that 

is compatible with most materials used to manufacture fiber optic probes, including adhesives 

cyanoacrylate (super glue) or Epotek 353 and Epotek 301 (Epoxy Technology, Billerica, MA).  

 

A variety of materials that can be used to enclose the fiber optic probe have been well characterized and 

their biocompatibility has been previously published in the literature. Safe choices are materials created for 

implants or materials that were tested for U.S. Pharmacopoeia (USP), class VI.  USP, class VI, is a base 

requirement for medical device manufacturers. A summary of materials that could be used to create fiber 

optic probes are listed in Table 1. One of the first alloys created for human use was stainless steel Type 302 

and the corrosion resistance improved stainless steel Type 316 (hypodermic steel) [24]. A large variety of 

standard tubing diameters and wall thicknesses are available to enclose fiber optic cables and optical 

elements. Aluminum oxide Al2O3 is an inert bioceramic and, when grown to a crystal (sapphire), is 

chemically inert and almost insoluble. Sapphire has a high thermal conductivity and is optically transparent 

between 200 nm and 3 µm. EPOTEK produces a variety of glues with excellent transmission (301-2 and 

307) and with low autofluorescence (301-2FL) that can be used to bond optical elements within the fiber 

optic probe. Several glues from EPOTEK were tested for USP class VI and are autoclavable (e.g. 353 and 

375).  Many thermoplastic polymers have been used in the body, for example, polyethylene (PE), 

polytetrafluoroethylene (PTFE, Teflon), polymethylmethacrylate (PMMA), and polyester (PET). These 

materials can be used to create flexible and heat shrink tubing or plastic enclosures for fiber optic probes. 
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High temperature resistant polymers include polyimide (220oC), PTFE (230oC), and silicone rubber 

(200oC).  

Reflectance probes 

The elastically scattered light that escapes the surface of the sampling volume is called reflectance [25]. 

The transport mean free path (mfp) length of a photon in a turbid media is defined as: 

)'(
1'mfp

sa µ+µ
=  Equation 6 

 

where µa is the absorption coefficient and µs' is the reduced scattering coefficient, which represents the 

isotropic approximation of anisotropic scattering.  

 

The reduced scattering coefficient is defined as: 

)1(' gss −= µµ   Equation 7 

 
where g is the average cosine of the scattering angle probability and µs is the scattering coefficient. The 

optical properties µs, µa and g depend on the chemical and structural composition of the sample. The 

absorption coefficient is a superposition of individual chromophores. Since the major chromophores in 

tissue are oxy, deoxygenated hemoglobin [26, 27], and water, as well as other absorbers such as melanin 

and bilirubin, it is possible to derive diagnostic parameters from the absorption coefficient, such as total 

blood concentration and average blood oxygenation [28]. The structural composition of the sample is 

reflected in the shape, structure, size distribution and concentration of the scattering particles. The reduced 

scattering coefficient shows a linear dependency with wavelength when transformed in double logarithmic 

space. The power constant (slope in double log space) is related to the average scattering size [29, 30], and 

the average scattering size may be related in tissue to the ratio of the nucleus to cytoplasm. All these 

characteristics vary spatially and are wavelength dependent. 
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There are several methods to measure absorption and scattering properties in the time domain, frequency 

domain and steady state by analyzing reflected or transmitted light. Here, we focus on steady-state spatially 

resolved measurements of a reflectance profile from a point source or a narrow collimated light beam. This 

profile can be measured with a contact fiber optic probe. Measurements with fiber optic probes are simple 

and inexpensive, however, they require contact to the tissue which can induce variations because the 

applied pressure affects local blood content in tissue [31].   

Diffuse reflectance probes 

Several recent studies have suggested that differences in the optical properties assessed using diffuse 

reflectance spectroscopy can be used to discriminate normal and abnormal human tissues in vivo in the 

urinary bladder [32, 33], pancreas [34], esophagus [35, 36] , colon [37, 38], ovaries [39], breast [40] and 

the skin [41], using simple fiber optic probes.  

 

In order to extract absorption and scattering properties from reflectance measurements, spatially resolved 

reflectance intensities need to be obtained. This data is then fitted to an analytic expression, which is based 

on diffusion theory with the assumption that the sample is homogenous and semi-infinite [28, 31, 42, and 

43]. When this approximation is compared with Monte Carlo based photon propagation simulations [44-

46], it can shown  

that at source detector separations smaller than 
'

1

sµ
 [42] to 

'
5.1

sµ
 [43], significant deviations occur.  

Therefore, optical properties are normally derived from reflectance profiles measured at six to nine source 

detector separated locations. For tissue, the separation distances are in the range of  2 – 20 mm. The fiber 

optic probes used for these studies consist of a single excitation source and several spatially distributed 

collection fibers (Fig. 5a, b, c). A probe with linear alignment was constructed by Wang et al [47-48] and 

places the detection fibers over a range of 1 to 10 mfp’ (Fig. 5a). Bays et al [49] used a scanning approach 

with a side deflected illumination fiber and collection fiber that can be translated axially (Fig. 5b). A black 

mask was printed on the measurement window and defined measurement locations. The scanning range 

was 27 mm. Alternatively, a circular fiber arrangement (Fig. 5c) by Nichols et al [50] allows a simple 
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calibration of the system by placing a source fiber in the center of all fibers. Measuring the spectrally-

resolved reflectance of all fibers simultaneously requires a dynamic range of 4 orders of magnitude. 

Neutral density filters in the fiber optic path reduce the required dynamic range of the detector. Our 

approach to measure reflectance with a source-detector separation from 200 µm to 3 mm requires three 

different integration time settings (150ms, 2s and 9s), and sufficient spacing in between the fibers on the 

CCD detector to prevent blooming, and an increased number of detection fibers for larger source-detector 

separations. Fiber tracks are electronically binned on the CCD to detect lower light levels [51]. Wang et al 

[48, 52] modified their linear probe design with an oblique incident source fiber and measured the shift of 

the reflectance profile. This removes the necessity of measuring in absolute units. All fiber optic probes 

that measure reflectance profiles in the diffusion regime have a diameter of approximately 2 cm and the 

assumption is made that the optical properties do not vary over this range. However, the optical properties 

of currently investigated target areas (e.g. cervix, ovaries, and oral cavity) vary over orders of millimeters 

(lesion size) and the organ size is similar to the diameter of the proposed probes. Therefore, an accurate 

measurement of optical properties from small, premalignant lesions requires other approaches. 

 

To overcome limitations of the diffusion theory, heuristic approaches, such as Monte Carlo trained neural 

networks [31, 53, and 54] have been investigated to obtain optical properties. Accurate numerical light-

propagation can be modeled outside the diffusion regime with various forms of multivariate analyses [55]. 

Also hybrid approaches [56, 57] were proposed that combine diffusion theory and Monte Carlo 

calculations to predict reflectance profiles over a wide range of source-detector separations. Recently, Dam 

et al [58] presented a probe design with 6 short source-detector separations between 0.6 and 7.8 mm. The 

probe measures at 4 different wavelengths. Using a multiple polynomial regression model, absorption and 

scattering could be predicted with an error of roughly 3% for absorption and 1.5% for scattering. 

Bevilacqua et al [59, 60] have investigated short source-detector separated reflectance measurements and 

explained their sensitivity to the scattering phase function. Their probe diameter is 2.5 mm and 

incorporates eight linearly-aligned 300 µm diameter fibers. He found that for source detector separations 

between 
'

5.0

sµ
 and 

'
10

sµ
, the reflectance profile is not only depending on the average cosine of the 
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scattering phase function, but also on the second momentum of the phase function. It is still difficult to 

determine absorption accurately if only reflectance profiles are available [59], however, if the ratio of 

second and first momentum is known, absorption and scattering can be derived accurately from the 

reflectance intensity and the spatial slope of the reflectance intensity profile. 

 

Mourant et al [61, 62] have shown that for certain source-detector separations, the path length of the 

collected photons does not depend on scattering parameters. For experimentally verified µa of 0−0.86  cm-1 

a source-detector separation of approximately 1.75 mm is mainly sensitive to changes in absorption. 

Scattering parameters for this investigation were in the tissue relevant range for visible light (7.5 < 

µa’ < 15 cm-1 and 0.8 <g < 0.95). The NA (0.2 or 0.34) of the fibers did not affect these findings. Drezek et 

al [63] found that changes in neoplastic cells mainly affect high scattering angles which can best be 

detected with a source-detector separation smaller than 500 µm and an NA of the fibers smaller than 0.4. 

 

Both scattering and absorption properties of tissue can contain diagnostic information relevant to tissue 

pathology. Variations in scattering are due to inhomogeneities in the refractive index; recent results [63, 

64] have shown that tissue backscattering is altered as the size of the nucleus increases and the nuclear 

texture becomes coarser. In case of spherical scatterers, a periodic structure in the reflectance spectrum is 

characteristic and depends on relative scattering size and collection and illumination geometry [36, 65]. 

This periodic structure can be theoretically derived by evaluating the scattering phase function at the angle 

corresponding with the angle between illumination and collection direction for every wavelength.  

 

A probe to collect data which measures reflectance at a single point is shown in Figure 5d. A wedge is put 

in front of a fiber bundle to reduce specular reflection in the detection path [66]. Reflected light from the 

glass tissue interface is absorbed on the sides of the wedge (black paint or glue mixed with carbon 

powder).  If the angle of the wedge is chosen carefully, light that is specularly reflected back onto the fiber 

bundle will reach it with an angle that is larger than the acceptance angle of the fibers and will therefore 

not be transported to the detector. 
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Polarization reflectometry probes 
 
Polarization techniques have been successfully used to gate detection depth in reflectometry. This is 

particularly interesting because the origin of epithelial neoplastic changes is within the first 100-300 

micrometers of tissue and neovascularization is originating in deeper tissue layers. Reflectance measured in 

a parallel-polarized fashion contains mainly light scattered from upper tissue layers, since light from the 

deeper tissue layers is multiple scattered which randomized the polarization status. Light loses its original 

polarization status after approximately 20 scattering mfp lengths (1/µs) and becomes unpolarized in the 

diffusing regime [67, 68]. Cross polarized reflectance originates from deeper tissue layers since the 

polarized illumination light needs to undergo several scattering events until significant components are 

created in perpendicular polarization direction.  Subtracting the perpendicular polarized reflectance from 

the parallel polarized, removes 90% of light originating from deeper tissue layers [69]. Dividing this 

subtracted reflectance by the sum of the parallel and perpendicular polarized reflectance cancels common 

attenuation and the spectral characteristics of the light source and detector. Jacques et al [69] used this 

technique for polarization imaging to detect basal cell carcinoma in highly pigmented tissues. Syris 

Scientific, LLC (Gray, ME) and Cytometrics Inc. (Philadelphia, PA) use an orthogonal polarized imaging 

technique to enhance signal from deeper tissue layers and to reduce surface specular reflections. [70] 

 

Fiber optic probes which measure polarized reflectance consist of a polarization filtered white light source 

and a polarization filtered detection system with an optical multichannel analyzer (Fig. 5e). Since 

multimode fibers do not conserve the polarization status of light, the polarization filters need to be placed 

at the fiber optic probe tip. Johnson et al [71] presented a system which measures reflected light at four 

positions though a linear polarizer. Linear polarizing laminated film (Edmund Scientific, Barrington, NJ) 

was placed in front of the fibers. Suppression of different polarization modes was in the order of 98-99%. 

Ideally, in a polarization filtered probe, two or more pieces of polarization film are placed on the probe tip 

(as shown in Figure 5f and 5g). It is expected that light from fibers (b) and (c) do not return the same 

intensities. Also fiber positions (d) and (e) will collect less light than locations (b) and (c). This is 

illustrated in Fig. 5h for the case of one small scattering particle. It can be deducted that parallel polarized 
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location (b) will exhibit highest intensity. In this simplified model, location (c) should receive sin2(θ) less 

light and locations (d) and (e) would require several other scattering events until the scattering plane is 

aligned with the polarizing filter. The light intensities detected in these fibers can be calculated with Monte 

Carlo simulations that consider the propagation of polarized light [72, 73]. The probe design from Johnson 

et al [71] incorporates a single polarization film covering all 5 fibers. For diagnostic purposes, the 

polarization ratio of light collected from fiber (b) and (c) was formed. This design is similar to Fig. 5g, 

with fibers (d) and (e) covered with the same polarization film as fibers (b) and (c). The distance between 

the fibers is critical for such measurements, as described by Gurjar et al [74] and Backman et al [75]. It is 

desirable to keep the angle between the axis of the illumination and collection path small. This prevents 

photons from entering the detection channel after one scattering event in a cross-polarized setup. If the 

angle is larger, after one scattering event, the projection of the field vector can result in a component that 

pass the polarization filter. Small source-detector fiber separations are most sensitive to changes in the 

scattering phase function at high angles [63]. Sokolov et al [76] presents in-vitro results with a system 

similar to Fig. 5e. Data from phantoms and cell suspensions was represented in a linear combination of 

forward and backward scattering components which were determined by the Mie theory. A fiber optic 

probe was designed based on this study (Fig. 5i and 5j) and characterized in vivo. [77] A laminated 

polarization film was mounted with microscope guidance onto a fixture holding three 200 µm diameter 

fibers. Clear tape with adhesive on both sides was very useful in mounting the filters, because the tape is 

transparent and the filters could be visualized with a light microscope. A glass cover and rigid tubing 

encapsulate the construction. If the measurement and illumination spot have to overlap on the sample 

surface, the shield thickness could be increased. An increased shield thickness results in specular 

reflections from the shields exit surface. Tilting the reflective surface, in respect to the optical axis, 

prevents reflected light from coupling back into the fibers. Alternatively, an optical lens can be placed in 

front of the probe similar to Fig. 14a (section Refocusing), or a conical reflector (Fig. 5k) could align the 

beam path. If reflectors are used to align the illumination and measurement path, linear polarized light will 

be converted into elliptical polarized light if the light is not purely linear polarized. This will make 

construction with mirrors challenging. 
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Fluorescence probes 

A growing number of clinical studies have demonstrated that fluorescence spectroscopy can be used to 

distinguish normal from abnormal human tissues in vivo in the head and neck [78-88], cervix [89-99], skin 

[83,100-105], bladder [106-112], bronchus [113-116], esophagus [116-122], colon [116, 119-138], breast 

[139-145], brain [146-151] and artery 78, 151-162]. Recent reviews [86, 91, 120, 127, 128, 130, 145, 163-

171] provide an overview of studies using fluorescence spectroscopy. It is well known that fluorescence 

intensity and line shape are a function of both the excitation and emission wavelength in samples such as 

human tissue containing multiple chromophores. Major fluorescence contributors are structural proteins 

such as elastin and collagen, pyridine nucleotide (NAD(P)H), flavoprotein (FAD), tryptophan, and 

porphyrins [164, 171]. 

Single pixel measurements 

The classic fiber optic probe to measure fluorescence consists of at least one excitation and one collection 

fiber (Fig. 4h or 6a). A quartz shield placed at the distal end of the fibers (Fig. 6a item (f)) allows the 

illuminated and probed area to overlap. The fraction of overlapping increases with an enlargement of the 

numerical aperture of the fibers and the thickness of the shield. A larger shield thickness requires a larger 

diameter shield. A typical shield thickness is 1 mm – 7 mm.  If a shield is omitted, fluorescence can still be 

detected but will originate from deeper layers because the average photon path length is increased. Such a 

design has been used to measure skin fluorescence [105]. 

The collection efficiency βt for a fiber optic probe describe in Figure 6a can be described as: 

2
t

0
t )shieldz( +

β
=β  Equation 8 

 
where z is the position along the optical axis of the probe and β0 is a constant which includes the detector 

efficiency [97]. Previous studies performed in arterial tissue have demonstrated empirically that tissue does 

not emit isotropically as a result of highly forward scattering [172, 173]. For arterial specimens, tissue 

fluorescence power decreases with the shield thickness as n
tshield

1
, where n is approximately 1.1. 
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Pfefer et al [174] have shown the influence of the fiber diameter and shield thickness to probing depth and 

remittance at 337 nm excitation, 450 nm emission, and at 400 nm excitation, 630 nm emission. The 

simulation consisted of a single fiber delivering excitation and collecting fluorescence (Figs. 4g and 6b). 

The Monte Carlo simulations assumed typical optical properties for esophageal tissue. The remittance (337 

nm excitation, 450 nm emission) increased with increasing fiber diameter and was 0.11% for 0.1 mm fiber 

diameter and was 0.4% for 1 mm fiber diameter when the fibers were placed in direct contact with the 

tissue. 80% of the fluorescence signal originated between the tissue surface and a depth of 0.175 mm when 

a 0.1 mm diameter fiber was used. A 1 mm diameter fiber collected from deeper tissue layers and 80% of 

the fluorescence signal originated between the tissue surface and a depth of 0.375 mm. Placing a shield in 

front of the fibers increased the probing depth further.  With a 5 mm thick shield, 80% of the fluorescence 

was collected between the surface and 0.425 mm for fibers with 0.2 - 1 mm diameter, while the collected 

fluorescence dropped by a factor of 20 for the 0.2 mm fiber and a factor of 5 for the 0.6 mm diameter fiber.  

Similar results were found at 400 nm excitation wavelength with the probing depth increased by 

approximately 20%. This indicates that by varying the excitation and emission aperture one may be able to 

identify depth variations in fluorophore concentrations.  

 

A typical probe with the design presented in Fig. 6a consists of excitation fibers, collection fibers, carbon 

filled or low fluorescent epoxy, and tubing. A rigid type uses metallic tubing and a flexible type uses shrink 

tubing (Zeus Industrial Products, Inc). A probe with an outer diameter of 4 mm, as presented in Fig. 6c has 

been successfully used by Ramanujam et al [94] in a study with more than 100 patients. The shield and a 

sleeve are detachable to disinfect the probe. With the classical design, a probe based on seven 200 µm 

fibers has a diameter of at least 1.5 mm. 

Minimizing the outer diameter 

For an improved detection and illumination spot overlap, the shield in front of the probe is replaced with a 

coated glass rod or a thick piece of optical fiber (Fig. 7a). It acts as a mixing element, homogenizing the 

output of the probe, with two major benefits: During manufacturing, illumination and collection fibers can 

be randomly mixed and the outer diameter of a probe is reduced and limited by the number of excitation 
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and emission fibers only. Simple probes with minimal diameter can be assembled by stripping the jacket 

from the excitation and emission fibers, bundling the fibers with glue, and attaching a glass rod with shrink 

tubing (Fig. 7b). The length of this rod should exceed 
NA
Rfiber2

to allow a uniform illumination. 

Innova Quart (Phoenix, AZ) has successfully manufactured fiber optic tips using CO2 laser micro-

machining. Melting and compressing fibers in a fiber bundle eliminates the dead space in between the 

fibers. An increase of power density and almost complete overlap in between illumination and collection 

areas was reported. However, this technique is currently limited to fiber bundles with a few fibers only. 

Multi-pixel measurements 

With a single pixel measurement one can obtain spectroscopic information of a small tissue volume and, 

based on the performed analysis, a classification of the measurement location is possible. However, for 

many biomedical applications, a tissue surface area needs to be investigated, either to determine the extent 

of a lesion or to identify the location of potential lesions. Pitris et al [175] and Agrawal et al [176] have 

successfully adopted the principle of a single pixel fluorescence spectroscopy measurement to a 

measurement that interrogates 31 locations simultaneously (Fig. 8a, b). For that purpose, the traditional 

single pixel measurement is conducted in parallel and data is obtained from a static pattern of pixel 

locations. Several spectroscopic measurements can be conducted simultaneously with modern aberration 

corrected imaging spectrographs.  Combined with a large focal plane CCD detector (e.g. 30 x 12 mm), 

these spectrographs can disperse up to 30 and more input channels with minimal cross-talk. The average 

pre-cancerous lesion size, for example, of the cervical epithelium is between 1 and 2 mm. This means that 

for the screening of the cervix one does not need a high spatial resolution and can use fiber optic multi-

pixel probes. The outer diameter of the probe in Fig. 8b is 1 inch and the shield thickness is ¼ inch. In 

order to cover the whole cervix (which is approximately 3 cm in diameter), this probe was placed onto 4 

quadrants separately [177]. Figure 8a shows a schematic arrangement of a multi-pixel probe consisting of 

several 6 around 1 single pixel probes, while Fig. 8b shows the actual implementation with a single 

excitation and collection fiber. As proposed in Fig. 8a, using several excitation fibers for each collection 

fiber increases the illumination intensity. An estimation based on commonly-used equipment and the 
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previously-introduced formula for hexagonal packing shows that more than 500 fibers with a core diameter 

of 200 µm can be successfully located in a spot created by a standard 300W xenon lamp. The focal spot 

size of the excitation source at the coupling site is determined by the arc size, which is typically in the 

order of 0.5-3 millimeters. A 300W xenon lamp with a parabolic reflector (Compact Illuminator 6000CI, 

ORC) produces a spot diameter of approximately 7 mm when a lens with a focal length of 50 mm is used.  

 

Fiber optic multi-pixel systems have been recently presented by the private sector [178, 179].  An 

advanced system that can measure fluorescence and reflectance spectra at 120 locations was introduced by 

Nordstrom et al [178]. This system incorporates imaging optics and a laser scanning device that can 

simultaneously illuminate 6 excitation channels out of 120 rectilinear aligned fibers. In order to investigate 

even larger surface areas, researchers have proposed systems that do not rely on fiber optic probes, such as 

a flying spot scanner [180], or the use of imaging techniques [181]. 

Influence of illumination and detection spot separation 

Keijzer et al [157] described scattering and detection of fluorescence from arterial tissue outside the 

illumination spot experimentally and theoretically (Fig. 8c). β and α absorption bands of oxygenated 

hemoglobin alter the fluorescence spectra. Avrillier et al [182] described the same effect and called the 

fluorescence distortions “media function”. In experiments with a separate excitation and fluorescence 

collection fiber (200 µm in diameter), they showed that when brain is excited at 308 nm, the fluorescence 

ratio at 360 nm and 440 nm emission decreases with increased fiber separation (2.8 for 250 µm, 2.5 for 500 

µm, and 2.4 for 750 µm. Pfefer et al [174] have investigated the average probing depth in esophageal tissue 

when fluorescence is collected outside the excitation spot. They simulated an excitation fiber with a 

diameter of 100 µm and found that inside the excitation fiber area, the collected fluorescence was very 

sensitive to superficial layers, however the first 50 µm outside the excitation area, the detected 

fluorescence, is mainly originating from a depth of 125 µm, while the intensity dropped by approximately a 

factor of 2.5 compared to the intensity within the excitation area. Absorption in the fluorescence distortion 

function and, hence, the spectral shape variations are enhanced when the excitation and collection fibers 
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are separated further [182]. This may be useful to detect neovascularization with fluorescence 

spectroscopy. In contrast, when multi-pixel fluorescence measurements are conducted in parallel, the 

spacing of the collection spots and the shield thickness have to be chosen carefully to minimize cross-talk 

between the measurement channels.  

Combined probes fluorescence and reflectance spectroscopy 

It is well known that the absorption and scattering properties of tissues in vivo affect both the intensity and 

lineshape of measured fluorescence spectra [164]. Furthermore, measuring both fluorescence and diffuse 

reflectance spectra may provide additional information of diagnostic value [183]. Durkin et al [183] have 

described a probe that combines the measurement of fluorescence and optical properties. Scattered light is 

collected with a white light “transmission” measurement. This light travels through the same tissue volume 

which is excited for fluorescence measurements. The probe, as illustrated in Fig. 9a and 9b, consists of a 

total of 21 optical fibers (200 µm diameter, NA=0.2) arranged in concentric bundles. The center bundle 

contains seven fluorescence excitation fibers and twelve fluorescence collection fibers. At the distal end of 

the probe, the fibers which excite and collect fluorescence are sealed with a quartz shield. This shield is 

placed in contact with the sample surface and ensures that the area from which fluorescence is collected is 

the same as that illuminated for reflectance measurements. The reflectance fibers are flush with the tip of 

the central shield. Similar attempts have been described in the literature [168, 184]. 

 

The authors attempt [50, 185] to measure combined fluorescence and reflectance resulted in a probe with a 

mixing element for the fluorescence channel, 4 different source-detector separations and visual 

illumination for probe placement (Fig. 9c). The current probe consists of 46 fibers: 25 for fluorescence 

excitation, 12 for fluorescence, and 9 for reflectance collection. Reflectance is measured in a circular 

fashion with fibers placed at 200 µm, 1.1,  2.1 and 3 mm distance to the source fiber (Fig. 9d). The 

detection fibers are linearly aligned in the spectrograph ferrule (Fig. 9e). For fluorescence measurements, 

all emission collection fibers are binned on the CCD chip, while for reflectance measurements all fibers are 

imaged with appropriate resolution. The outer diameter is smaller than 5 mm which allows to measure 

through a trocar shaft in the peritoneal cavity (Fig. 9f). 
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Probes for Raman spectroscopy 

Near-infrared Raman scattering can be used as a tool to perform in situ histochemical analysis [11, 13, 186-

205]. In biological applications, approximately 10-10 of the incident light is Raman scattered and the Raman 

signal is normally 6 orders of magnitude weaker than typical fluorescence signals. The amount of light that 

can be delivered to the sample area is limited due to heating hazards. The design of a fiber optic probe for 

Raman spectroscopy is driven by maximal light collection. Additionally, background signal originating 

from the laser source, the fibers and all optical components can fill the dynamic range of the detector and 

overwhelm the Raman signal [13, 206]. These signals must be reduced with filters to accomplish sensitive 

in-vivo measurements. The dynamic range of the detector can also be enlarged with multiple readings that 

reduce the noise by the square root of the number of readings. Currently, Raman spectra of tissues are 

recorded in-vivo in less than 5 seconds [207]. 

 

A design developed by Myrick and Angel (Fig. 10a) [208, 209] is based on GRIN lenses. Filters are placed 

in the excitation and emission path and allowed remote analysis with fiber optic cables. The light source is 

bandpass filtered to eliminate signals produced in the fibers, and a longpass filter reduces specular 

reflections and elastically scattered light that enters into the collection fibers. 

 

A similar approach is shown in Figure 10b. A probe developed by Savannah River Technology Center 

(Aiken, SC) [210] consists of dielectric filters placed in between fibers that are held together with spring-

loaded SMA connectors. Six collection fibers are arranged around an excitation fiber. They are arranged 

according to the drawings in Figure 4l. A sapphire window isolates the probe from the surrounding 

environment. 

 

Berger et al [188] and Tanaka et al [211] have developed a design for improved signal collection to allow 

spectral acquisition in a short time. A compound parabolic concentrator (CPC) was used at the distal end of 

the probe. They produced a hollow shell, based on a mandrel, electrolytically. The mandrel followed an 

optimized parabolic form that was cut with a numerically controlled lathe. Small CPC dimensions with an 
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input aperture of 0.57, an exit aperture of 2.1 mm, and a length of 4.1 mm, were achieved (Fig. 10c). The 

probe design with the CPC improved the collection efficiency six-fold. This system incorporates a 500 mW 

tunable 830 nm-diode laser that was coupled with a mirror and a dichroic beam splitter onto the sample 

site. Inelastic scattered light exiting the CPC is further collimated with a lens and filtered by the dichroic 

mirror and additional filters. Field lenses prevent vignetting of the signal. The last lens images the output 

onto two hundred 100 µm fibers, which illuminate a f/1.8 spectrograph. The signal is detected with a back 

illuminated liquid nitrogen (LN)-cooled CCD. Spectral resolution is 13 cm-1. 

 

Mahadevan-Jansen et al [193, 194, 212] have successfully measured Raman spectra on the cervix with a 

fiber optic probe in less than 3 minutes (Fig. 10d) [193, 194, 212]. A diode laser is coupled into a single 

200 µm fiber. A small diameter dielectric filter (3 - 4 mm) rejects out of band light (OD5) and a gold 

mirror deflects the focused beam onto the specimen site. The beam has to pass a quartz window which is a 

part of the housing. Scattered light from the same spot area is imaged with two biconvex lenses on a fiber 

bundle. Elastically scattered and specular reflected light is rejected with a beam aperture stop and a 

holographic notch filter (OD6). The optics in the detection arm are 8 mm in diameter and the whole probe 

diameter is less than 2 cm. A similar spectroscopic detection system is used, as described in Fig. 10c: The 

spectrograph with the holographic transmission grating (Holospec, Kaiser Optical Systems, Ann Arbor, 

MI) and the deep depletion, back illuminated, LN-cooled CCD allow optimal system performance. A 

similar two-legged probe is commercially available by InPhotonics (Norwood, MA). The design is further 

optimized by inserting a dichroic mirror that combines the excitation and collection light before focusing it 

onto the sample.  

 

Kaiser Optical Systems has presented a commercially available fiber optic Raman probe (Fig. 10e) [213]. 

Excitation light is filtered though a transmission grating and can be monitored outside the probe head. The 

sample spot is imaged with two microscope objectives onto a fiber optic cable. Two Raman notch filters 

remove excitation light in the collimated beam path. The filters are arranged symmetrically to remove 

interference signals. 
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All of the described Raman probes include imaging optics to enhance the collection efficiency. This makes 

it difficult to correct the spectral throughput of the system with standardized light sources such as the 

tungsten filament lamp. The NA of the probe should be filled with light similar to tissue measurements. 

Therefore, the calibration light source has to be placed in focus of the imaging optics of the probe. This can 

be accomplished by measuring the diffuselyscattered light from a reflectance standard placed at the tissue 

location. If the calibration light source is not placed at the location of the measured tissue, light passes the 

probe optics differently than during tissue measurement conditions. This may result in the transmission of 

light outside the designed blocking areas of band pass filters or in increased scattering of light on non-

optical surfaces inside the probe. The reflectance standard can be flat Spectralon disk or an integrating 

here with an entrance port for the calibration light source and an exit port for the probe. 

ed from this probe [17]. It can easily be configured for fluorescence and reflectance 

easurements. 

sp

 

Visionex Inc. developed a biomedical Raman probe based on fibers with beveled and flat tips (Fig. 4j). A 

central flat delivery fiber (400 µm diameter) is surrounded by seven beveled collection fibers (300 µm 

diameter). Furthermore, filters are incorporated onto the core of the fibers approximately 2.5 cm from the 

probe tip: a bandpass filter is placed in line with the delivery fibers and a longpass filter in line with the 

collection fibers. The fibers have a NA of 0.22.  Small probe diameters and excellent collection efficiency 

has been report

m

 

The scattering cross section for Raman interactions is increased dramatically if excitation is in resonance 

with the electronic transitions of the chromophore involved in the vibration. For many biologically relevant 

chromophores, these transitions are in the UV. Resonance enhancements are on the order of 104 – 105 for 

UV absorption bands [11]. To measure these phenomena with fiber optic probes, the inherent signals 

produced in the delivery and collection system are problematic. The Raman group [16] at the University of 

British Columbia has successfully built a fiber optic probe for UV resonance Raman spectroscopy (Fig. 

10f). UV-grade and solarization-resistant UV-grade optical fibers [9] are used for the collection and 

excitation path, respectively. Their design incorporates an excitation fiber and an oblique polished fiber 
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with a larger diameter to collect the scattered light (600 µm). This configuration minimizes inner filtering 

(sample self-absorbance). Because solutions are investigated, a reflective surface based on a metallic 

coating is needed on the collection fiber. Aluminum reflects more than 90% at 250 nm. 

Side looking probes and their application 

on the jacket material, it can be dissolved in acid, mechanically abraded, or burned 

way with a lighter.  

ted with a reflective material. The increase of irradiance is 2.4 in air and 1.6 in water (Fig. 

1a and 11b). 

ed 

r vaporization and coagulation of tissue but can also be used for spectroscopic applications (Fig. 11c). 

As described earlier, oblique polishing of individual fibers deflects the output of the fiber in respect to the 

fiber axis (Fig. 4b-e). At the critical angle for total internal reflection, light will leave the fiber through the 

cylindrical side which focuses the beam in an angular direction resulting in an elliptical focal spot close to 

the fiber surface. In order to permit the light to leave the fiber sideways at the tip, the jacket needs to be 

stripped. Depending 

a

 

Illumination analysis software ASAP (Breault Research Organization Inc., Tucson, AZ) shows maximal 

irradiance at a polishing angle of 40 degrees in air as surrounding media [214]. The distance between the 

focal spot and the fiber wall is 1.3 times the cladding radius. In water, this distance increases to 3.17 times 

the cladding radius. Since the critical angle for total internal reflection on the silica-water interface is 66o, a 

40o polishing angle is not sufficient. For a side deflection with this geometry, the beveled fiber end surface 

needs to be coa

1

 

Enclosing a single oblique polished fiber into a glass capillary tube allows the production of minimal 

diameter deflecting probes. These off-the-shelf products (Innova Quartz, Phoenix, AZ) are manufactur

fo

 

If separate illumination and collection fibers are needed, the alignment of these fibers will be a tedious 

task. An example of separate illumination and collection fibers is shown in Fig. 11d. In order to produce 

this probe, fiber pairs are mounted in a cylindrical tube with grooves. A simultaneous investigation of sites 
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along the circumference of the probe is possible (ring probe). The fiber pairs need to be aligned flush and 

rotated so that the illumination and collection spot overlap. Shrink tubing or elastic bands could assist in 

this task. 

Diffuser tips 

lation [229], diffuse light delivery systems 

an also be used for illumination during spectral measurements. 

With the approval of photosensitive drugs such as Photofrin® (QLT Photo Therapeutics Inc., Vancouver, 

Canada) by the FDA and clinical trials of many others, there is a need for fiber optic probes which provide 

a homogeneous illumination of large areas in canals and on surfaces. Diffusely scattering elements 

mounted at the end of fibers or fiber bundles distribute light over large areas. In addition to therapeutic 

applications, such as photodynamic therapy [215-228] and coagu

c

 

The scattering particles included in the diffuser elements are titanium (TiO2) or aluminum oxide (Al2O3) 

which are embedded in a transparent matrix such as optical glue (Epotek 307, Epoxy Technology, Inc. 

Billerica, MA). Flexible containment is produced with micro-tubing based on fluorpolymers (PTFE, FEP 

from Zeus, Orangeburg, SC). Rigid tips are based on ceramics or materials similar to Spectralon 

(Labsphere, North Sutton, NH). If these materials are used in the UV wavelength range to deliver 

fluorescence excitation, the autofluorescence and transmission is of importance. FEP tubing (0.3 mm wall 

thickness) shows good transmission from 250 nm up to 2 µm (40%@250 nm, VIS 80-90%), while 

autofluorescence is an order of magnitude lower than tissue fluorescence. Some oxides such as Al2O3 or 

aSO4 emit fluorescence in the UV-VIS and can contribute to background signals. 

g. 12a 

nd 12 b). Figure 12b illustrates a diffuser with a length of 30 mm and a diameter of less than 2 mm. 

B

 

An example diffuser is presented in Fig. 12a. Light exits the fiber optic bundle and enters a turbid 

cylindrical volume. Scattered light leaves this volume in a radial direction. A uniform light distribution 

along the optical axis is achieved with a reflector mounted at the end of the scattering volume. Light that 

would leave the probe in an axial direction is reflected back into the scattering material and undergoes 

further scattering events [229]. The length of the probe determines the concentration of scatterers (Fi

a
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A probe to measure fluorescence spectra inside the endocervical canal was proposed by the authors and 

consists of a diffuser element and side looking fibers. In addition to the diffuser described above (Fig. 12a, 

and 12b), a reflective foil (aluminum or gold) placed around a diffuser tip restricts illumination in an 

angular direction. The foil is attached to the diffuser with thin-walled shrink tubing (Fig. 12c). For 

spectroscopic measurements inside the canal, oblique polished fibers probe the light emitted from the 

sample area. The collection fibers are bundled and, in order to probe different positions along the axis, 

each beveled fiber is retracted to a different axial position. The diffuser and the bundle with the collection 

fibers are placed adjacent. Since the illumination light exits the diffuser and needs to pass collection fibers, 

the absorbing jacket of the fibers needs to be removed. 

A sapphire tip based ring probe 

 (Swiss Jewel, Tenero, 

Switzerland; Sapphire Engineering Inc., Pocasset, MA; SWIP, Biel, Switzerland). 

Sampling along the circumference of the probe is useful to identify the angular position of obstructions in 

tubes (e.g. arteriosclerosis) or for identification of lesions in tubular structures (e.g. dysplasia in the 

endocervical canal). A probe initially designed for radial ablation and simultaneous spectroscopic analysis 

[214] is illustrated in Fig. 13a and 13b. The fibers are glued onto a metallic ring (OD 2.4 mm, ID 2.05 

mm). A hollow plug attaches internal flexible tubing for flushing and a guide wire. A custom made 

sapphire prism (Swiss Jewel, Tenero, Switzerland) is attached to the plug.  The output of the fibers with a 

NA of 0.22 is totally deflected at the back surface of the prism. An outer flexible silicone tube seals the tip 

from the liquid environment. Two different outer diameters were realized: 1.4 and 2.8 mm. Fig. 13b shows 

the individual parts partially assembled. In the upper picture the outer tubing is not completely mounted. 

For spectroscopic measurements, smaller 100 µm fibers were integrated in between the ablation fibers 

(lower picture). The sealing of such a tip is a tedious task since only small amounts of glue can be used. 

Similar tips can be produced with vee-, ring-, orifice-, cup- and chisel-jewels
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Refocusing 

Refocusing the illumination or collection beam paths can serve several purposes: 1) to decrease the sample 

volume if the target is placed in focus, or 2) to increase the illuminated area if the target is placed outside 

the focus. A focused beam samples a smaller area and leads to increased illumination intensity. If light is 

collected through a focusing optic, it will encompass a larger solid angle. In contrast, if the area to be 

illuminated is large, a rapidly diverging beam is desirable. This can be accomplished by placing the sample 

behind the focal spot where light diverges. Concave and convex optical surfaces can be placed between the 

fiber exit and the tissue. Following, we present three different solutions with increasing complexity to 

ptic cable.  First, the fiber tip is altered into a spherical shape, which is 

concentrate the fiber output. Lastly, mirrors are used to redirect and focus the fiber output.  

Spherical fiber tips 

Melting the end of the fiber shapes the exit surface of optical fibers. An almost spherical surface will be 

created by the surface tension of liquid quartz [230]. Its form is determined by the volume of melted quartz 

which is related to the amount of absorbed thermal energy. A number of techniques are used to achieve this 

deformation: micro furnace, Bunsen micro-burner, electrical arc, and a CO  laser beam [231]. 

 

The smallest possible surface curvature is a hemisphere. Theoretical results of a beam exiting a 

hemispherical fiber tip in air and water are shown in Fig. 14a and b (modified from [14]). Because the 

refractive index of silica is 1.46, the focusing power is limited in aqueous media. Figure 14c illustrates the 

focusing of a fiber with a 200 µm core diameter and a NA of 0.22 in water. The beam in water is reduced 

to a quasi-parallel beam. A light intensity concentration was found at a distance 3 times the distal radius of 

curvature from the vertex. In simulations [214] the maximal irradiance was found to be 3 times the 

 the fiber. A fiber optic probe for spectroscopic measurements could be manufactured 

refocus the beam of a fiber o

equivalent to adding a plano convex lens in front of the fiber. Second, spherical lenses image and 

2

irradiance within

with a single fiber (Fig. 1b). The sampling area would be smaller then the fiber diameter and the solid 

angle of collected light larger than the NA of the fiber. 
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Ball lenses 

Spherical ball lenses have been used as collimators in fiber optic connectors [232]. Sapphire spheres with a 

high refractive power are industrially produced in a wide range of diameters (Sandoz SA, Cugy, 

Switzerland; Rubis Precis, Charquemont, France). Light emitted from a fiber can be focused with this lens 

type onto the sample site (Fig. 15a and 15 b).  Rol et al [14] found a maximal illumination intensity when 

the ratio of the back surface distance to the fiber and the radius of the sphere is in between 1.8 and 2.8 in 

water and air. Illumination analysis shows a maximal increase of the irradiance by a factor of 4.8 in water 

(Fig. 15c) and 5.7 in air (Fig. 15d). With increased fiber diameter, spherical aberrations will degrade the 

 

An example fiber optic probe (Fig. 15a) with a 200 µm core diameter fiber and a sphere with a radius of 

0.4 mm will not exceed an outer diameter of 0.9mm (modified from [15]). The sphere and fiber can be held 

in a cylinder with a conic inner shape. For side looking applications, the same principle is used with a half 

sphere. If the plane is inclined by 45 degrees and the step in the refractive index is equivalent to sapphire-

al reflection at the interface and leave the probe at 90 

degrees in respect to the probe axis. A micro quartz tube encloses the half sphere and provides air as 

refractive media. For spectroscopic measurements a setup as described in Fig 15(b) would be needed. 

Mirrors can concentrate light [233]. The complex refractive index of a dielectric material defines the 

absorption and the reflectance of a mirror. An example of a non-imaging parabolic light concentrator is 

presented in Fig. 9c. For side looking applications, parabolic or spherically polished mirrors focus the 

output of several fibers onto the same area (Fig. 16a and 16b). Best performance is achieved with a 

parabolic surface (Fig. 16b). The manufacturing of such mirrors requires a high-precision, numerically-

controlled lathe. Surfaces with optical quality can be manufactured with single-point, diamond-cutting 

machines. 

 

focusing of the beam because light will propagate outside the paraxial regime.  

air, the beam will be deflected with total intern

Spherical and parabolic reflectors 
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An example of a probe illuminating a ring is shown in Fig. 16c and 16d [214]. Multiple fibers are glued 

into a metallic ring. A plug with the optimized polished surface is centered into the ring and deflects the 

axial fiber output in a radial direction. A quartz tube shields the reflective surface. Illumination analysis 

shows that the output of 5 fibers (2 fibers were arranged on an inner concentric ring and 3 on an outer 

location) overlaps on the circumference of the probe (Fig. 16e and 16f). The rotational symmetric design 

spreads the light from the fibers in an elliptical spot around the circumference. The inner ring of fibers 

 collection fibers and the outer ring as illumination fibers. This design confines the 

Summary 

nd light collection for spectroscopic 

applications. Specific solutions for fluorescence, reflectance and Raman spectroscopy are available and the 

possibility of combining them in a single probe is feasible. Future technology development will lead to 

integrated, multifunctional, and highly optimized fiber optic probes. 

could be used as

sampling volume close to the probe surface since the light diverges rapidly outside the focal spot (Fig. 

16f). 

A large variety of optical designs allows optimal illumination a
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Table 

Table 1: Materials suitable for fiber optic probe enclosures and references for biocompatibility. A literature 

reference is equivalent to a paragraph in The Biomedical Engineering Handbook [24]. An implant 

reference means that the material has been used as body implant. USP class VI testing is the basis for 

medical device manufacturers and a reference to this class means that material with this certification is 

available.  

Figures 

iber optic based spectroscopy system with separate illumination and collection path is based 

ic spectroscopy system with a probe that incorporates one optical fiber needs a 

igure 2: A fiber optic cable for spectroscopy consists of a core and a cladding with a lower refractive 

igure 3: Hexagonal packing of fibers into the smallest possible cross section. 
 

igure 4a: The output of an optical fiber is described by the opening half angle (α), or the numerical 

c: Oblique polishing of the fiber tip deflects the output beam. 

Figure 1a: A f

on an excitation source, which is a laser, a white light source (reflectometry), or a monochromator filtered 

arc lamp (fluorescence). Optical elements couple the excitation light into the flexible probe. A probe 

collects the emitted light. Coupling optics adapt the numerical aperture of the probe to the spectrograph or 

filter system. An optical detector (CCD, photodiode array, or photo multiplier tube) is read out and 

digitized [234]. 

Figure 1b: A fiber opt

dichroic beam splitter and well-aligned optics to separate excitation and fluorescence light [234]. 

 

F

index and a rugged supportive jacket. Light is transported by total internal reflection. The light acceptance 

angle of the fiber (α) is defined by the refractive indices of the media, core and cladding (nmedia, ncore, 

ncladding). 

 

F

F

aperture (NA). 

Figure 4b,and 4
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Figure 4d: When total internal reflection is achieved for a part of the light, the output will be split into two 

parts, one exiting in axial direction and the other in radial direction. 

Figure 4e: When all light is totally internally reflected at the fiber end surface or the beveled end surface is 

reflectively coated, light leaves the fiber through the side wall. 

Figure 4f: A fiber based on a combination of a beveled and flat polished surface has a partially deflected 

output beam. 

Figure 4g: A fiber optic probe that illuminates and collects through the same fiber has the highest 

collection efficiency. 

Figure 4h: A dual fiber bundle is used for many spectroscopy application. This concept can be easily 

extended to hexagonal packed fiber bundles. 

Figure 4i: A dual fiber probe based on beveled fibers achieves a better collection efficiency compared to 

the flat tip dual fiber configuration, while collection and illumination channels are still separated.  

Figure 4j: Fiber probes based on a fiber with a combination of a flat tip and a beveled surface have 

excellent collection efficiencies. 

Figure 4k, and 4l: Two probe designs for submersion k) and measurements on surfaces l): A central fiber 

(a) illuminates the sampling volume or the surface. Six surrounding fibers (b) collect the emitted light. 

Collection and illumination channels are interchangeable. Housing with a thin shield (quartz, sapphire) 

permits a constant sampling distance for surface measurements [234].  

 

Figure 5a: A fiber optic probe for reflectometry: The light scattered from a single excitation fiber is 

detected by a linearly arranged array of collection fibers. Tilting the excitation fiber shifts the profile along 

the surface by an amount which is determined by the sample optical properties. The distance between the 

source and detector fibers needs to be adjusted for the expected intensity profile sampling [234]. 

Figure 5b: Scanning fiber optic probe for reflectance measurements: a) illumination fiber, b) SELFOC lens, 

c) deflecting prism, and d) photo mask on exit surface (with permission from 48).  

Fig. 5c: A fiber optic probe with a circular fiber arrangement for reflectometry: A 2cm probe head consists 

of a central calibration fiber, an illumination fiber, and non-equally spaced fibers. A variable neutral 

density filter adapts the light intensity in a transfer array to a smaller dynamic range (with permission from 
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[50] and suggestions from M. Patterson and coworkers). Parts are: illumination fiber (a), circular probe 

head (b), calibration fiber (c), detection fibers (d), linear transfer array (e) + (f), neutral density filter (g), 

and a spectrograph input ferrule (h). 

Figure 5d: A fiber optic probe for single point reflectance measurements: Hexagonal packed fibers are 

randomly assigned for collection (a) and illumination (b). An outer tubing (c) combines the fiber bundle (d) 

with a spacing wedge (e). An absorbing coating (f) based on carbon powder or black paint absorbs specular 

reflected light from the tissue glass interface. 

Figure 5e: Polarized reflectance system: White light is transported from the light source with a fiberoptic 

cable, collimated (a) and passes a polarizer. Reflectance is collected (b) with an imaging system. In the 

collimated beam path, reflectance is filtered with rotatable polarizer (c) for parallel or cross polarization. 

Figure 5f: Frontal view of a fiber optic polarized reflectance probe: A simple probe consisting of one 

illumination channel (a), two detection channels for parallel (b) and cross-polarized (c) light detection.  

Figure 5g: Frontal view of a fiber optic polarized reflectance probe: Ideally all four possible polarization 

combinations are measured. This can be achieved when the illumination fiber (a) and two detector fibers 

(b) and (c) covered with the parallel polarization filter and two fibers (d) and (e) with the cross polarized 

filter. Note that the intensity of channel (c) will be lower than channel (b). 

Figure 5h: Schematic of a back scattering event on a small particle and the intensities associated with 

various pick up geometries. The scattering probability is indicated by the mesh surface and the distance 

from the center (particle) to the surface is equivalent with the scattering probability in that direction. 

Incident light is polarized in vertical direction. Detectors are positioned at the same location as in Figure 5f.  

Figure 5i: A simple polarized reflectance probe consists of optical fibers (a), a mechanical placeholder for 

the fibers (b), the polarization filter (c), a cover glass (d) and a housing (e). Two fibers are covered with the 

same polarization filter while the other fiber is covered with a 90 degrees rotated filter.  

Figure 5j: An assembled version of the probe described in Figure 5i. The probe tip consists of three 200 

µm diameter fibers. The gap formed by the two perpendicular oriented polarization filters can be identified 

in both pictures. 
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Figure 5k: In order to measure the same spot of a surface a polarized reflectance probe could be 

constructed with a conical reflector. There is a large difference in angle of incidence and angle of 

collection with this design and the polarization state changes at the reflecting surface. 

 

Figure 6a: The classic fiber optic probe for fluorescence spectroscopy is based on two or more fibers. 

Hexagonal packing is a dense arrangement and allows the selection of multiple fibers for different 

excitation sources and collection channels. A quartz shield permits the overlap of excitation and collection 

areas. Parts include: excitation fibers (a), collection fibers (b), tubing (c), carbon filled glue (d), sleeve (e), 

and shield (f) [234]. 

Figure 6b: A single fiber fluorescence probe with a spacer (optical shield). 

Figure 6c: A typical fluorescence probe for single point sampling (legend according to Figure 6a) [234]. 

 

Figure 7a: Reduced outer diameter is achieved with a mixing element instead of a quartz shield. The 

mixing element consists of a coated quartz rod or a thick piece of optical fiber. The outer diameter does not 

exceed the diameter of the hexagonal packing. The parts are: excitation fibers (a), collection fibers (b), 

tubing (c), epoxy (d), and coated glass rod (mixing element) (e). 

Figure 7b: Assembling of a reduced diameter fiber probe: Illumination and collection fibers (a), (b) are 

packed hexagonally and glued together (c). The glass rod (d) is placed in front of the polished fiber bundle 

and held in place with shrink tubing (e). 

 

Figure 8a: A multi-pixel fiber optic design based on the design of Figure 6a (frontal view): At each sample 

spot one collection fiber is surrounded by one to six illumination fibers. Cross-talk in between sample spots 

can be influenced by the separation distance of the collection and emission fibers [234]. 

Figure 8b: A typical fluorescence probe for simultaneous multi-pixel measurements with 32 sampling 

locations: Black shrink tubing holds the quartz shield. Emission and collection fiber pairs are arranged 

hexagonally [234]. 

Figure 8c: Separated illumination and collection spot: Fluorescence generated in a 1mm spot area spreads 

by scattering inside the tissue and is also detectable outside the illumination area. Since the average path 

 33 



 

length of the light detected outside the illumination spot is larger, absorption processes are increased and 

can be observed at increased oxyhemoglobin absorption valleys at 540 and 580 nm (adapted from [157]). 

 

Figure 9a: A fiber optic probe that combines fluorescence and reflectance measurements: White light 

scatters through the volume interrogated during fluorescence measurements. Parts include: excitation fibers 

(a), fluorescence collection fibers (b), carbon filled glue (c), outer tubing (d), quartz shield (e), reflectance 

collection (f), and white light illumination (g) [234]. 

Figure 9b: Manufactured probe according to the design of Figure 9a.  Parts included: Same as Figure 8a. 

Figure 9c: Combined fluorescence and reflectance probe: Illumination of the area around the measured 

spot allows visual feedback during measurements (a). Fluorescence fibers (b) and reflectance fibers (c) are 

arranged in the center of the probe. An integrated glass rod minimizes the outer diameter (d) of the 

fluorescence channel. The reflectance fibers (c) are flush with the tissue. 

Figure 9d: A frontal view of the probe and its connectors from Figure 9c: Fluorescence excitation and 

collection fibers (b) are randomly arranged behind the quartz rod. Reflectance illumination (E) is facilitated 

with one fiber, and reflectance is collected at 4 different source-detector separations (0, 1, 2, and 3). 

Figure 9e: Fluorescence excitation fibers from the design represented in Figure 9c and 9d are arranged in 

two lines and coupled to the output of a monochromator filtered xenon light source. Fluorescence and 

reflectance collection fibers are linearly arranged for the imaging spectrograph ferrule. Sufficient spacing 

between the fibers eliminates blooming on the CCD detector, while measuring low light levels with fiber 

position 2 and 3. 

Figure 9f: Compatibility of probe with laparoscopic equipment: A trocar shaft (a) allows the passage of 

probe with a diameter smaller than 5 mm for measurements during abdominal surgery.  The probe (b) and 

shaft are sealed with a flexible lip (c). Illumination fibers (d) allow a remote controlled illumination of the 

measured spot while endoscopic illumination is dimmed. A second trocar needs to be placed for 

endoscopic supervision. 

 

Figure 10a: A fiber optic probe for Raman spectroscopy based on separate illumination and collection 

fibers. The output of the fibers is collimated and filtered and then projected onto the same area on the 
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sample. Bandpass filters (a) are used for the excitation fibers and longpass filters (b) for the collection 

fibers. GRIN lenses (c) are assembled into the probe in order to maintain small diameters (adapted from 

[209]). 

Figure 10b: A fiber optic probe based on the design in Figure 4l.:  In line filters (a) and (b) are mounted 

into spring-loaded SMA connectors. The fiber length in between the tip and the filters is kept short 

(adapted from [210]). 

Figure 10c: A CPC Raman collection system: Parts include NIR diode laser (a), collimating lens (b), 

reflective mirror (c), dichroic mirror (d), focusing lens (e), parabolic concentrator (f), field lenses (g, h) to 

prevent vignetting, a focusing lens (i) to couple the Raman signal into a collection fiber bundle (j), and a 

high efficiency spectrograph with a LN cooled CCD (k) (with permission from [13,211]). 

Figure 10d: Raman probe: The excitation light is transported through a single fiber (a) and imaged with a 

biconvex lens (b) through a dielectric bandpass filter via a mirror (c) onto the sample area. The inelastic 

scattered light is collected behind a quartz window (d) and imaged with two plano convex lenses (e), (f) 

through an aperture stop (g), and a holographic notch filter onto a flexible fiber bundle (h) (with 

permission from [193]). 

Figure 10e: Commercial Raman probe: Excitation light (a) is collimated (b) and bandpass filtered through a 

transmission grating (c) and aperture stop (d). The excitation intensity can be monitored (e). Raman 

scattered light is collected with a microscope objective and imaged on a collection fiber bundle (f). Two 

holographic notch filters (g) are placed in the collimated beam path to remove reflected excitation light. 

(adapted from [213]). 

Figure 10f: The UVRR spectroscopy probe incorporates a smaller diameter solarization resistant UV grade 

quartz fiber for excitation and an oblique polished fiber to collect scattered light close to the excitation 

fiber. The oblique polished fiber is coated with aluminum (R) to achieve side looking in liquid samples 

(with permission from [16]). 

 

Figure 11a: Illumination analysis of beveled fibers with a uniform spatial and angular light distribution 

inside the fiber shows a focusing in air. When light leaves the fiber through the cylindrical wall, it is 
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focused. In air the irradiance increases to a factor of 2.4 in the focal spot compared to the intensity within 

the fiber. The focus spot has an elliptical shape.  

Figure 11b: Illumination analysis of a beveled fiber in water: The refractive power of the cylindrical 

surface is reduced compared to the silica-air interface in Figure 11a and the irradiance in the focal spot is 

1.6 times larger than in the fiber core. 

Figure 11c: An oblique polished fiber (a) is enclosed in quartz capillary tubing (b) for minimal diameter 

side looking probes (Innova Quartz). A two-fiber arrangement for separate illumination and collection path 

can also be manufactured [234]. 

Figure 11d: A circular arrangement of oblique polished fibers allows the fabrication of a ring probe with 

separate illumination and excitation channels. Alignment is a tedious task [234]. 

 

Figure 12a: A diffuser is mounted on the tip of a fiber bundle which allows uniform illumination along the 

probe axis (CardioFocus Inc., formerly Rare Earth Medical, Inc.). A reflector (a) at the diffuser end and the 

local concentration of scattering particles (b) determine the intensity profile. Tubing (c) made of 

fluorpolymers has a high transmission and good heat resistance [234]. 

Figure 12b: A “Lightstick” manufactured according the design in Figure 12a with a length of 3 cm and a 

reflector allows radial illumination with a relatively flat intensity profile along the axis. 

Figure 12c: This line-sampling probe is based on a combination of a diffuser illuminator (a) and oblique 

polished fibers (b). The light emitted by the diffuser passes the collection fibers which have the jacket 

striped. A metallic foil (c) restricts the illumination to a reduced angle [234]. 

 

Figure 13a: A sapphire prism deflects the output of a fiber ring into a radial direction. The probe consists 

of a plug (a) holding the prism (b) and inner tubing. Fibers (c) are glued into a metallic ring (d). Outer 

tubing (e) and glue seals the fiber tip [234]. 

Figure 13b: In the upper picture, the sapphire prism and the fibers are partially assembled. The lower 

picture represents a cross-sectional view and shows the arrangement of illumination and smaller collection 

fibers in a metallic ring (d) [234]. 
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Figure 14a and 14b: Hemispherically shaped ends of fibers focus the output beam in air (Fig. 14a) and 

collimate the output beam in water (Fig. 14b) [234]. 

Figure 14c: Maximal irradiance is found at a distance of 3 times the fiber radius in water for quartz fibers 

with a NA of 0.22. The irradiance increases by a factor of 3 [234]. 

 

Figure 15a: Ball lenses image the output of a fiber and focus it. The ball lens is centered and placed at a 

fixed distance to the fiber with metallic holder .If this probe is used in a fluid, focusing is limited. 

Figure 15b: A side deflecting probe can be manufactured with a half sphere. The flat surface is inclined to 

the probe axis. If this surface is a sapphire-air interface, total internal reflection will occur. The flat surface 

could also be coated with aluminum to achieve a similar effect. The deflecting optic is housed in quartz 

tube. Focusing in water is not affected, since the beam path is determined inside the probe [234]. 

Figure 15c and 15d: Illumination analysis demonstrates an up to five-fold increase of irradiance in the focal 

spot in water c) and air d) [234]. 

 

Figure 16a and 16b: A spherical (Fig. 16a) or parabolic (Fig. 16b) mirror focuses and deflects the fiber 

output. Rotationally symmetric mirrors with optical surface quality can be manufactured with numerically 

controlled diamond-turning machines [234]. 

Figure 16c and 16d: A fiber optic ring probe with a parabolic reflector according Figure 16b: A plug with 

the reflective surface (Fig. 16d) is mounted into a ring of fibers and flexible tubing. A short piece of a 

quartz tube isolates the mirror from the probe environment [234]. 

Figure 16e: Illumination analysis of the output from 5 fibers was performed with a reflector according the 

design of Figure 16c. The analysis shows a good overlap of the fibers on the exit surface (B) of the probe. 

The spot diagram on the exit surface (B) shows that the output of the optical fibers is spread in a 

circumferential direction [234]. 

Figure 16f: The flux density profile was measured at the exist surface (B) and the 5 fibers produced an 

increase of a factor of 2 compared to the intensity inside a single fiber. A ray trace projection (A) shows 

that the output is focused to a small spot in radial direction [234]. 
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TABLE 1: Materials suitable for fiberoptic probe enclosures. 
 
 Fiberoptic 

application 
Reference 
medical 
application 

Biocompatibility Useful properties 

Metals, Alloys     
stainless steel 302 tubing, housing needle tubing literature  
stainless steel 316 tubing, housing needle tubing literature 

implants 
• increased acid resistant 

Titanium and 
Titanium alloys 

tubing housing  literature 
implants 

Amalgam  dental filling 
material 

literature 
dental implants 

Ceramics     
Aluminum Oxide, 
Sapphire 

scattering 
particles 
optical window 

 literature 
implants 

• transmission 200nm - 3µm 
• high thermal conductivity 
• almost insoluble 

Polymers     
Polyethylene PE tubing, housing pharmaceutical 

bottles, catheter 
literature 
hip implants 

 

PVC tubing blood bags, 
cannulae 

USP VI  

Teflon, PTFE tubing catheter, vascular 
grafts 

USP VI • temperature resistant, 230oC 

PMMA optical 
components 

bone cement, 
blood pump 

literature 
optical implants 

• transparent in the visible 

Polyester, PET  suture, mesh, 
vascular grafts 

literature 
implants 

Polyimide tubing  USP VI • temperature resistant 220oC 
Silicone rubber catheters, 

coatings, tubing 
 literature 

implants 
• temperature resistant 200oC 
• flexible 

Cycloolefin 
copolymer, Topas 

optical 
components 

micro plates for 
cell culture 

USP VI • 93% transmission visible 
• UV transparent below 300 

nm 
Glue     
Cyanoacrylate 
(superglue) 

 surgical adhesive USP VI • fast bonding 

EPOTEK 301 bonding of 
optical elements 

 USP VI • transparent in the UV and 
visible 

• low autofluorescence 
EPOTEK  
353, 375 

sealing  USP VI • autoclavable 

2-TON DevCon sealing  suggestive for low 
skin carcinogenicity 

• high tensile strength 
• water resistant 
• transparent 
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