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Abstract— Information-theoretic formulations of the private
information retrieval (PIR) problem have been investigated
under a variety of scenarios. Symmetric private information
retrieval (SPIR) is a variant where a user is able to privately
retrieve one out of K messages from N non-colluding replicated
databases without learning anything about the remaining K −1
messages. However, the goal of perfect privacy can be too taxing
for certain applications. In this paper, we investigate if the
information-theoretic capacity of SPIR (equivalently, the inverse
of the minimum download cost) can be increased by relaxing
both user and DB privacy definitions. Such relaxation is relevant
in applications where privacy can be traded for communica-
tion efficiency. We introduce and investigate the Asymmetric
Leaky PIR (AL-PIR) model with different privacy leakage
budgets in each direction. For user privacy leakage, we bound
the probability ratios between all possible realizations of DB
queries by a function of a non-negative constant �. For DB
privacy, we bound the mutual information between the undesired
messages, the queries, and the answers, by a function of a
non-negative constant δ. We propose a general AL-PIR scheme
that achieves an upper bound on the optimal download cost for
arbitrary � and δ. We show that the optimal download cost of
AL-PIR is upper-bounded as D∗(�, δ) ≤ 1+ 1

N −1
− δe�

N K−1−1
.

Second, we obtain an information-theoretic lower bound on the
download cost as D∗(�, δ) ≥ 1 + 1

N e�−1
− δ

(N e�)K−1−1
. The

gap analysis between the two bounds shows that our AL-PIR
scheme is optimal when � = 0, i.e., under perfect user privacy
and it is optimal within a maximum multiplicative gap of N −e−�

N −1
for any � > 0 and δ > 0.

Index Terms— Private information retrieval (PIR), leakage
constraints, data privacy, symmetric PIR (SPIR).

I. INTRODUCTION

IN THE era of big data and data analytics, users who
access a plethora of online services face serious privacy

risks. Their online behavior and data access patterns can
be analyzed to reveal sensitive personal information and
breach their privacy [1]. One possible solution to such data
leakages is to retrieve information privately by executing a
private information retrieval (PIR) protocol. In a PIR protocol,
the identity of the message retrieved by the user remains

Manuscript received May 29, 2020; revised May 13, 2021; accepted May 18,
2021. Date of publication June 2, 2021; date of current version July 14,
2021. The work of Islam Samy and Loukas Lazos was supported by NSF
under Grant CNS 1813401. The work of Mohamed Attia and Ravi Tandon
was supported in part by NSF under Grant CAREER 1651492, Grant CNS
1715947, Grant CCF 2100013; and in part by the 2018 Keysight Early
Career Professor Award. This article was presented in part at the 2019 IEEE
International Symposium on Information Theory. (Corresponding author:
Ravi Tandon.)

The authors are with the Department of Electrical and Computer Engineer-
ing, The University of Arizona, Tucson, AZ 85721 USA (e-mail: islamsamy@
email.arizona.edu; madel@email.arizona.edu; tandonr@email.arizona.edu;
llazos@email.arizona.edu).

Communicated by A. Beimel, Associate Editor for Cryptography.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2021.3085363.
Digital Object Identifier 10.1109/TIT.2021.3085363

secret from the database(s). This is typically achieved at the
expense of an increased communication cost to ensure that
the desired message remains hidden among others. In the
pioneering work by Chor et al. [1], the authors considered
one-bit long messages. The overhead was calculated as the
sum of the queries sent by the user (upload cost) and the
answers provided by the database (download cost). Under
arbitrarily large messages, the download cost becomes the
dominant factor of the PIR overhead. This allows the PIR rate
to be defined as the ratio of the message size to the number
of downloaded bits. The maximum of these rates is referred
to as the PIR capacity and its reciprocal as the download cost.

Since the introduction of the PIR problem in [1], an exten-
sive body of works have investigated efficient PIR schemes
that yield either computational [2]–[5] or information-theoretic
privacy guarantees [6]–[42]. The former achieves privacy
assuming that the DBs are computationally-bounded. Essen-
tially, privacy is preserved due to the intractability of
computationally-hard problems. In information-theoretic PIR,
the DBs are assumed to be computationally unbounded, thus
achieving a higher level of assurance. Perfect privacy is
guaranteed if the queries do not reveal any information about
the desired message (privacy) and the answers are sufficient
to recover it (decodability). An intuitive PIR solution is to
download all K messages from a database. In fact, this is the
only way to guarantee perfect privacy in the single database
case. However, privacy comes at an impractical communica-
tion overhead.

A. Review of Recent Progress on Information-Theoretic PIR
A practical way to increase the PIR capacity is to

consider a distributed storage system (DSS) of N databases.
Shah. et al. [6] proposed a PIR scheme that achieves a rate of
1− 1

N when K messages are replicated across N non-colluding
databases. Later, Sun and Jafar [7] characterized the PIR
capacity for any N and K as (1 + 1/N + 1/N2 + · · · +
1/NK−1)−1. The original scheme introduced in [7] achieves
capacity when the message size L is allowed to grow as a
function of N and K . Subsequently, they characterized the
PIR capacity for a fixed message size [8]. Since the appearance
of the fundamental result of Sun and Jafar [7], numerous
important and practically relevant variations of PIR have been
considered.

Multi-round PIR allows multiple rounds of communication
between the user and databases. While interaction does not
increase capacity, it can reduce the storage overhead at each
database [10]. Sun and Jafar [11] considered the robust PIR
problem where M − N out of a total of M > N databases
fail to respond to user queries. Additionally, they characterized
the capacity when T < N databases collude and share the
received queries. Tajeddine et al. [12] considered MDS-PIR
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for coded databases where each message is separately coded
using an (N, M ) MDS code. Banawan and Ulukus [13] derived
the coded PIR capacity for arbitrary N, M , and K . Wang and
Skogland [14] showed that the PIR capacity remains 1 − M

N
even if each message is coded. In [15] and [16], the sce-
nario of N MDS-coded databases with T colluding ones
was presented. However, the capacity of this case is still an
open problem (for other variants of MDS-PIR, see [17]–[20]).
In [21] and [22], the case of multi-message PIR, where the
user can use one query to request more than one messages,
was investigated. Banawan and Ulukus [23] characterized the
PIR capacity with Byzantine databases where any subset of
databases can be adversarial and respond untruthfully. In [24],
Tajeddine et al. studied the same model but in the presence of
colluding databases. Banawan and Ulukus [25] studied PIR
through a wiretap channel, where an eavesdropper tries to
decode the content sent through the channel. Other variants of
PIR in the presence of eavesdroppers are studied in [26], [27].

The problem of PIR was also studied when the user has
a cache or side-information, which can be useful in increas-
ing PIR capacity [28]–[32]. PIR from storage-constrained
databases was studied in [33], [43], [44], where capacity
was characterized under the assumption of uncoded storage
across databases. Recently, Tian et al. [34] proposed a new
capacity-achieving scheme with an optimal message size of
N − 1 and a minimum upload cost. Other lines of work
considered different privacy requirements from the original
PIR model in [7]. The problem of symmetric PIR (SPIR) was
studied in [9], where the user must be able to retrieve the
message of interest privately (user privacy), while at the same
time the databases must avoid any information leakage about
the remaining K − 1 messages (DB privacy). The SPIR opti-
mal download cost was characterized as N

N−1 with common
randomness at least α = 1

N−1 bits per desired message bits.
Latent-variable PIR was considered recently in [45], where
privacy is required for a latent variable describing a predefined
user attribute. Additional interesting variants of PIR can be
found in [35]–[42].

The novel coding schemes and fundamental ideas developed
in the above works have also helped in advancing other
problems beyond PIR. For instance, an interesting connection
between blind interference alignment (BIA) and PIR was
studied in [46] showing that a good BIA scheme translates
to a good PIR protocol. Secure and private distributed matrix
multiplication has been considered in [47]–[51] addressing the
problem of computing a product of two matrices with some
constraints on the identity of the product matrices and/or the
information content in the matrices. Jia and Jafar [17] showed
the connection of the secure and private distributed matrix
multiplication to one variation of the MDS-PIR problem.
Recently, the problem of private set intersection (PSI) was
studied in [52] from a PIR perspective and capacity results
were obtained.

B. Relaxing Privacy Metrics for PIR

The above works have all focused on perfect privacy,
either for the user (as in PIR), or for both the user and the
DBs (as in SPIR). The perfect privacy requirement usually
comes at the expense of high download cost and does not

allow tuning the PIR efficiency and privacy according to the
application requirements. In scenarios of frequent message
retrieval, trading user or DB privacy for communication effi-
ciency could be desirable. Ideally, one would select a desired
leakage level and then design a leakage-constrained PIR
scheme that guarantees such privacy while maximizing the PIR
capacity.

A few previous works have introduced privacy definitions
that relax the notion of perfect privacy. Asonov et al. replaced
privacy with the concept of repudiation [53]. The repudia-
tion property is achieved if some uncertainty remains about
the desired message. However, this metric does not provide
any information-theoretic privacy guarantees, as repudiation
is satisfied even if the retrieved message can be identified
with almost certainty. Recently, Toledo et al. [54] adopted
a game-based differential privacy definition to increase the
PIR capacity at the expense of bounded privacy loss. How-
ever, their privacy definition only captures the privacy of the
submitted queries. The authors propose several schemes that
hide the query identity and study their cost. Although the
query privacy can be thought of as functional equivalent to
information-theoretic PIR in some cases, it does not satisfy
the perfect privacy definition.

In our prior work, we introduced the Leaky PIR (L-PIR)
where a bounded amount of leakage is allowed about the mes-
sage identity [55]. We adopted a concept similar to differential
privacy to bound the leakage as a function of a non-negative
constant �. The leakage in privacy is achieved by constructing
multiple biased “retrieval paths” across databases where each
path realizes one query per database. Lin et al. [56], [57]
relaxed user privacy by allowing bounded mutual information
between the queries and the corresponding requested message
index. Unlike [56], [57], which deal with the average leakage
(measured by mutual information), the L-PIR model in [55]
satisfies the privacy leakage constraints strictly for all possible
query/message index combinations, and thus provides stronger
privacy guarantees.

In another recent work, Guo et al. [58] considered the
problem of SPIR with perfect user privacy and relaxed DB
privacy. DB privacy was relaxed by allowing a bounded mutual
information (no more than δ) between the undesired messages,
the queries, and the answers received by the user. Similar to the
original work on SPIR in [9], SPIR with relaxed DB privacy
in [58] requires sharing common randomness among DBs and
comes at the expense of a loss in the PIR capacity.

Summary of Contributions: We investigate a three-way
tradeoff between user privacy, DB privacy, and the communi-
cation efficiency of PIR. We study the problem of Asymmetric
Leaky PIR (AL-PIR) where some information about the iden-
tity of the desired message is allowed to leak to the DBs, and
some information about the undesired messages is allowed to
leak to the user. The goal is to trade privacy in both directions
for achieving gains in PIR capacity, thus making PIR more
communication-efficient. For user privacy, we adopt the metric
introduced in our prior work [55], where the privacy bound
is determined as a function of a non-negative constant �. For
bounding DB privacy, we adopt a mutual information-based
leakage metric to be bounded by a non-negative constant δ.
We next summarize the main contributions:
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• We propose an AL-PIR scheme that satisfies the leakage
budgets in both directions for arbitrary values of (�, δ),
an arbitrary number of K messages, and an arbitrary
number of N databases. The achievable download cost of
this scheme is given by D(�, δ) = 1 + 1

N−1 − δeε

NK−1−1 .
This cost also represents an upper bound on the optimal
download cost (lower bound on the capacity) of the AL-
PIR. We use an alternate perfect privacy PIR scheme
that follows a path-based approach, where a user’s query
is equivalent to selecting one of several possible paths
across databases. A path is defined as a set of queries, one
per database, that achieves decodability, however different
paths incur different download costs. We leverage this
cost imbalance to introduce leakage through the idea of
biasing the path selection probabilities. A path giving
a lower download cost can be used more frequently
compared to higher download cost paths. This biasing
introduces user privacy leakage. The path selection prob-
abilities are chosen to minimize the download cost while
satisfying the privacy budget, measured by �. To achieve
DB privacy, our scheme requires sharing common ran-
domness among databases. We combine the path-based
approach with the ideas of the scheme presented in [58]
to arrive at our general AL-PIR scheme. In particular,
achieving a DB privacy leakage of no more than δL
bits, requires common randomness given by

(
1

N−1 −
eε+NK−1−1

NK−1−1 δ
)
L bits, which represents an upper bound

on the optimal common randomness size.
• We present a converse proof to obtain a lower bound on

the optimum download cost (upper bound on capacity).
This bound is characterized by D∗(�, δ) ≥ 1 + 1

Neε−1 −
δ

(Neε)K−1−1 . The upper and lower bounds are shown to
match each other at extreme values of epsilon (� = 0;
� → ∞) and for any δ. Moreover, we show through gap
analysis that our upper and lower bounds are within a
maximum multiplicative gap of N−e−ε

N−1 for any � > 0
and δ ≥ 0.

• We derive a lower bound on the optimal required common
randomness at the databases. This bound characterizes
that achieving a DB privacy leakage of no more than
δL bits, requires shared randomness of size no less than
( 1

Neε−1 − (Neε)K−1

(Neε)K−1−1δ)L bits.
• We investigate the tradeoffs variations in both sides of

leakage as special cases of our general (�, δ) AL-PIR
scheme. In particular, we show a three-way tradeoff
between download cost, user privacy, and DB privacy,
such that enhancing one of them would be at the expense
of the other two. We also show matching results for the
following special cases for our derived bounds on the
AL-PIR model: a) perfect user privacy (original PIR) [7],
b) perfect user and DB privacy (SPIR) [9], c) Leaky user
privacy (L-PIR) [55], and d) perfect user privacy and
leaky DB privacy [58].

II. SYSTEM MODEL: ASYMMETRIC LEAKY PIR

We study the PIR problem illustrated in Figure 1. We con-
sider N databases DB1, DB2, . . . , DBN and K independent

Fig. 1. Asymmetric leaky private information retrieval (AL-PIR) problem.

messages W1, W2, . . . , WK , each of size L bits, such that

H(W1, W2, · · · , WK) =
K∑

k=1

H(Wk), (1)

H(W1) = H(W2) = · · · = H(WK) = L. (2)

A user interested in privately retrieving Wk, k ∈ [1 : K]1

sends N separate queries Q
(k)
1 , · · · , Q

(k)
N to each of the N

DBs, where Q
(k)
n denotes the query sent to the nth database

(DBn), n ∈ [1 : N ], when retrieving message Wk. The
N DBs are assumed to be replicated and non-colluding,
i.e., they store all the K messages and they do not share
the queries received from the user. We also assume the DBs
are interested in achieving privacy, i.e., the user must only
decode the requested message subject to a leakage constraint.
To achieve DB privacy, the N DBs are allowed to share
common randomness denoted by a random variable S of size
αL bits, i.e., H(S) = αL. Moreover, S is not known to the
user.

Upon receiving Q
(k)
n , the nth database generates the corre-

sponding answer A
(k)
n as a deterministic function of the query

Q
(k)
n , the K messages, and the shared common randomness S,

i.e.,

H
(
A(k)

n |Q(k)
n , W1, . . . , WK , S

)
= 0. (3)

The user must be able to decode the desired message Wk

upon receiving the answers from the N databases. Formally,
the AL-PIR scheme must satisfy the following correctness,
user privacy, and DB privacy constraints.

Correctness: Given queries Q
(k)
[1:N ] � {Q(k)

1 , · · · , Q
(k)
N },

the user must be able to decode the desired message Wk,
with probability of error Pe, by collecting the corresponding
answers A

(k)
[1:N ] � {A(k)

1 , · · · , A
(k)
N } from the N DBs, i.e.,

H
(
Wk|Q(k)

[1:N ], A
(k)
[1:N ]

)
= o(L)L, (4)

where o(L) is any function that approaches zero as L → ∞.
o(L) is set to zero if Pe is required to be exactly zero.

δ−DB privacy: In the original SPIR formulation [9],
the authors assume no leakage to the user about the undesired

1Notation: Through this work, we use the notation [1 : X] to represent the
set of integers from 1 to X.
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messages. For a desired message Wk, perfect DB privacy is
satisfied if

I
(
W[1:K]\k; Q(k)

[1:N ], A
(k)
[1:N ]

)
= 0, ∀k ∈ [1 : K], (5)

where W[1:K]\k � (W1, . . . , Wk−1, Wk+1, . . . , WK) is the
set of all messages except Wk. In this work, we relax this
condition by assuming a general leaky DB privacy constraint.
The leaked information about the undesired messages must be
bounded as,

I(W[1:K]\k; Q(k)
[1:N ], A

(k)
[1:N ]) ≤ δL, ∀k ∈ [1 : K], (6)

where δ ≥ 0 is a non-negative constant.
�−user privacy: Under perfect user privacy, the privacy

constraints are expressed as,

(A(k1)
n , Q(k1)

n , W1, · · · , WK) ∼ (A(k2)
n , Q(k2)

n , W1, · · · , WK),
(7)

∀k1, k2 ∈ [1 : K]. This guarantees that the submitted
queries are always independent of the message index. The
previous constraint can be alternatively expressed as,

(A(k1)
n , Q(k1)

n |WΩ)∼(A(k2)
n , Q(k2)

n |WΩ), ∀k1, k2∈ [1 : K],
(8)

where WΩ is any subset of the K messages, i.e., WΩ ⊆
{W1, . . . , WK}. In this work, the privacy constraint is relaxed
such that given any subset WΩ of the K messages, the
following likelihood ratio is bounded as follows:

Pr{Q(k1)
n = π, A

(k1)
n = γ|WΩ}

Pr{Q(k2)
n = π, A

(k2)
n = γ|WΩ}

≤ e�, ∀k1, k2 ∈ [1 : K],

(9)

∀n ∈ [1 : N ], where π and γ represent any possible
realizations for the queries and answers, respectively and � is a
non-negative constant. Unlike perfect user privacy constraint
which ensures that queries and answers are independent of
the message index, the leaky privacy definition allows some
queries and answers to be used more frequently when certain
messages are retrieved. By setting � = 0, the �−user privacy
definition in (9) becomes equivalent to the perfect privacy
constraint in (8).

Although there is a similarity between the definition of the
user privacy and the definition of differential privacy (DP),
we emphasize that this similarity is just in the mathematical
formulation. The main conceptional difference between our
privacy definition and the DP definition is that in our privacy
model, we do not have the concept of neighboring datasets
(that differ in one element). Instead, our model considers a
fixed input dataset for each query. Actually, we note that our
definition bears more similarity to local differential privacy
(LDP). In local differential privacy, a user holding private data
X wishes to reveal Y through a private mechanism. The mech-
anism satisfies �-LDP if P (Y = y|X = x)/P (Y = y|X =
x�) ≤ e� for all realizations x, x� of the private data. The
analogy of the �−user privacy with �-LDP is then clear since
here, the private data refers to the index of the desired message,
and the output of the mechanism corresponds to the query

sent by the user to the DB. One thing that is different for the
�−user privacy is that in a DP setting, the information privacy
is guaranteed against an adversary who designs algorithms for
data processing. In the user privacy definition, the side that
represents the adversary is the database. Whereas, the user
(the side that seeks privacy) is the one that can exclusively
design the queries. Generally, for the �−user privacy, there
are potential challenges related to the accumulation of leakage
across multiple queries. An adversary that monitors multiple
queries can combine the outputs to obtain extra information.
To avoid such a scenario, the parameter � could be adjusted to
ensure that the accumulated leakage across multiple queries is
always within the allowed limits.

A. Guarantees and Applications of the Leaky Privacy
Definitions

The leaky definition in (9) guarantees that the difference
between the distributions of query and answers for any two
indices and any given realization is always bounded. We high-
light that this is guaranteed for every message index pair and
not on average. From an application perspective, the leaky
definition guarantees that the database has a bounded success
probability in differentiating the requested message index from
any other index, and for any realization that satisfies the
privacy definition. Moreover, this bounded success probability
can be controlled by tuning �.

For database privacy, from an application perspective,
the leaky SPIR metric in (6) guarantees that the user will
not decode more than δL bits, on average, from undesired
messages. Note that this definition does not impose any
restrictions on how the leaked bits are distributed. Depending
on the scheme, the leaked bits could belong to one or multiple
undesired messages and could have a different distribution per
realization. This guarantee is only on average.

Our privacy definitions could be helpful in applications
where privacy is required, but guaranteeing perfect privacy
makes PIR impractical from a communication overhead stand-
point. To provide a concrete example, consider a multimedia
streaming application. From the user perspective, allowing
the database to determine with bounded probability, the mul-
timedia content (e.g., movie) that the user retrieves is a
significant privacy improvement from the current landscape.
This information is not as sensitive as other information
types such as patient records. Moreover, the message size
is prohibitively large to allow for perfect privacy solutions.
Generally, the parameter � should be tuned based on the
sensitivity of the retrieved content. It can be even set to zero
(this means perfect privacy) for applications that do not permit
any leakage. From the database perspective, allowing the user
to access some additional multimedia content with each query
(which for most schemes would be partial content) does not
degrade privacy in a meaningful way.

B. Other Leaky User Privacy Definitions

To relax DB privacy, we adopt the mutual information
metric in [58]. On the other hand, we use the probability metric
we introduced in [55] to bound the leakage of user privacy.
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The latter metric strictly satisfies the privacy constraint for
all possible query/message index combinations. We note that
there are other weaker metrics one can use for relaxing user
privacy. In [56], Lin et al. proposed a metric η that gives a
bound on the average privacy leakage over all databases for a
desired message index given by a random variable θ ∈ [1 : K]
such that,

1
N

N∑
n=1

I(θ; Q(θ)
n ) ≤ η. (10)

Jia et al. introduced the following privacy constraint [59],

H(A(k+1)
n |W1, . . . , Wk) − H(A(k)

n |W1, . . . , Wk) = ιL,

∀k ∈ [1 : K], ∀n ∈ [1 : N ], (11)

where parameter ι controls the leakage budget, with
0 ≤ ι ≤ 1

N . In contrast to our �-user privacy definition
in (9), both of the metrics provide average privacy guarantees,
i.e., they bound the average privacy leakage over all possible
retrieval schemes. This means that the privacy leakage is
allowed to exceed the required bound in the case of individual
message retrievals. In this work, we extend the definition
in (7) to investigate the scenario when the distribution of
the sent queries and the corresponding answers is allowed
to depend on the requested message index within predefined
limits. Also, the AL-PIR model satisfies the �−user privacy
definition strictly over all possible realizations of answers and
queries. This ensures that leakage is always within the allowed
budget � for all individual message retrievals.

We highlight that there are more stricter privacy metrics that
can be employed, such as min-entropy which is a stronger
notion compared to bounded mutual information. However,
we believe that this will require new tools to obtain lower
bounds on the download cost and constructing schemes with
bounded min-entropy.

1) Communication Cost: To evaluate the performance of the
AL-PIR scheme, we adopt the Shannon theoretic formulation
where the message size is assumed to be arbitrarily long
and therefore, the upload cost is negligible compared to
the download cost [7]. In this case, the AL-PIR rate is the
reciprocal of the download cost D(�, δ), which characterizes
the total information bits the user has to download to retrieve
one desired message bit. Let D�,δ be the total number of
downloaded bits to retrieve message Wk, for some � and δ,
and L be the size of the desired message. The normalized
download cost is given by,

D(�, δ) =
D�,δ

L
=
∑

n H(A(k)
n )

H(Wk)
. (12)

We say that the pair (L, D�,δ) is achievable if there exists
an AL-PIR scheme that satisfies the correctness, DB privacy,
and user privacy conditions in (4), (6), and (9), respectively,
and can retrieve a message of size L bits by downloading a
total of D�,δ bits. Our goal is to find the optimal download
cost D∗(�, δ) such that

D∗(�, δ) = min{D�,δ/L : (L, D�,δ) is achievable}. (13)

The capacity of the AL-PIR C∗(�, δ) is the reciprocal of
D∗(�, δ),

C∗(�, δ) = max{L/D�,δ : (L, D�,δ) is achievable}. (14)

2) Optimal Common Randomness Size: We are also inter-
ested in characterizing the fundamental limits of common
randomness S needed to be stored at the databases. In general,
the common randomness size α is a function of the privacy
budget parameters (�, δ). Therefore, in the following discus-
sion, we use the notation H(S) = α(�, δ)L. We define α∗(�, δ)
as the minimum common randomness size that satisfies the
correctness, DB privacy, and user privacy conditions in (4),
(6), and (9), respectively, i.e.,

α∗(�, δ) = min{α(�, δ) : (4), (6), and (9) are satisfied}.
(15)

III. MAIN RESULTS AND DISCUSSION

In this section, we present our main results on the optimal
download cost and the required amount of shared randomness
for AL-PIR. Given desired privacy budgets � and δ for the
user and DB privacy leakage, respectively, we state our main
results in the following Theorems.

Theorem 1: Define d1(�, δ) := 1 + 1
N−1 − δeε

NK−1−1
. For

N ≥ 2 and shared randomness S with size H(S) ≥ α1(�, δ)L,
where

α1(�, δ) =

{
1

N−1 − eε+NK−1−1
NK−1−1

δ, 0 ≤ δ < δ1(�),
0, δ > δ1(�),

(16)

the optimal download cost of AL-PIR, satisfying both
the �−user privacy and δ−DB privacy definitions,
is upper-bounded by

D∗(�, δ) ≤ DUB(�, δ) =

{
d1(�, δ), 0 ≤ δ < δ1(�),
d1(�, δ1(�)), δ ≥ δ1(�).

(17)

In (16) and (17), δ1(�) is the maximum DB privacy leakage
(when no common randomness is required, i.e., α1(�, δ) = 0)
which is a function of the allowed user privacy leakage �, and
is given by,

δ1(�) =
NK−1 − 1

(N − 1)(e� + NK−1 − 1)
. (18)

The proof of Theorem 1 is presented in Section IV. As a
result of Theorem 1, we have the following remark.

Remark 1: The required size of shared randomness for our
achievability scheme, as given by α1(�, δ) in (16), yields an
upper bound on the optimal size of minimum shared random-
ness α∗(�, δ) as defined in (15), i.e., α∗(�, δ) ≤ α1(�, δ).

Moreover, α1(�, δ) is also sufficient to satisfy (��, δ�) privacy
constraints, such that �� ≥ � and δ� ≥ δ. In other words, if a
given amount of common randomness is sufficient to satisfy
(�, δ) privacy, then it is also sufficient if the privacy budgets
are increased.

In Figure 2, we show the effect of � and δ on the download
cost for the case when N = K = 2. We can observe the
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Fig. 2. The achievable download cost for our AL-PIR scheme when
N = K = 2 as a function of ε for different values of δ.

following: a) the download cost is a monotonically decreasing
function of the privacy budgets � and δ; b) as � approaches
infinity, which corresponds to no user privacy, the achieved
download cost approaches 1; c) for � = 0 (perfect user privacy)
and as δ approaches zero (perfect DB privacy), the achieved
download cost is 2 which matches the case of SPIR studied in
[9] where the optimal download cost is N

N−1 = 2; and d) for
δ ≥ δ1(�) = 1/(eε+1) (or � ≥ ln(1/δ − 1)), the download cost
is only a function of � (the line corresponding to δ = 0.4).

Theorem 2: Define d2(�, δ) := 1 + 1
Neε−1 − δ

(Neε)K−1−1 .
For N ≥ 2, and shared randomness S with size H(S) ≥
α2(�, δ)L, where

α2(�, δ) =

{
1

Neε−1 − (Neε)K−1

(Neε)K−1−1 δ, 0 ≤ δ < δ2(�),

0, δ > δ2(�),
(19)

the optimal download cost of AL-PIR subject to �−user
privacy and δ−DB privacy is lower-bounded by

D∗(�, δ) ≥ DLB(�, δ) =

{
d2(�, δ), 0 ≤ δ < δ2(�),
d2(�, δ2(�)), δ ≥ δ2(�),

(20)

where

δ2(�) =
(Ne�)K−1 − 1

(Ne� − 1)(Ne�)K−1
. (21)

Furthermore, the optimal size of common randomness sat-
isfying �−user privacy and δ−DB privacy is lower-bounded
by α∗(�, δ) ≥ α2(�, δ).

The proof of Theorem 2 is presented in Section V. We note
that the results in Theorems 1 and 2 hold for N ≥ 2 DBs.
In the following proposition, we characterize the capacity for
the case of one database.

Proposition 3: The optimal download cost D∗(�, δ) for
N = 1 and for any 0 ≤ � < ∞ is given by:

D∗(�, δ) =

{
∞, δ < (K − 1),
K, δ = (K − 1).

(22)

The above result shows that the problem of AL-PIR for
one database is degenerate. In particular, to satisfy the �-user
privacy constraint, any query/answer pair has to be requested

to retrieve each of the K messages with non-zero probability.
Since N = 1, the only solution is to download all messages,
i.e., a download cost of K . However, upon downloading all K
messages, the leakage about the remaining (K − 1) messages
is fixed and given by δ = K − 1. Hence, if the DB privacy
budget is δ < (K − 1), the AL-PIR problem is infeasible and
the capacity is 0, i.e., D∗(�, δ < K − 1) = ∞. We prove
Proposition 3 in Appendix D.

In the next Corollary, we show that our proposed scheme
in Theorem 1 is information-theoretically optimal for perfect
user privacy, i.e., � = 0, and is optimal within a maximum
multiplicative gap ratio of N−e−ε

N−1 for any (�, δ). The proof of
the corollary is presented in Appendix A.

Corollary 1: The multiplicative gap ratio between the upper
and lower bounds on the download cost of the AL-PIR, given
by Theorems 1 and 2, respectively, is bounded as follows:

DUB(�, δ)
DLB(�, δ)

≤ N − e−�

N − 1
. (23)

In Figure 3, we show the upper and lower bounds on the
download cost of the AL-PIR and the numerical multiplicative
gap ratio, as a function of system parameters (N, K, �, δ).
Specifically, in Figure 3a, we set the allowed DB privacy
leakage to the maximum leakage, i.e., δ > max(δ1(�), δ2(�))
as defined in (18) (no shared randomness required for this
case). This gives the results of the L-PIR model considered
in [55]. As the number of messages increases, both upper and
lower bounds increase, whereas both decrease with N . This
happens as increasing N increases the number of bits that
can be utilized as a side information to retrieve the desired
message. On the other hand, increasing K adds an overhead on
any retrieval scheme to satisfy the privacy by considering the
symmetry among downloaded bits from different messages.
We observe a similar trend for the multiplicative gap ratio as
well. In Figure 3b, we fix the value of the DB privacy leakage
to δ = 4×10−5. This choice insures that δ < min(δ1(�), δ2(�))
for all � ∈ [0 : 10] considered in the plots. We note that while
increasing K does not have significant impact on the bounds,
both the download cost and multiplicative gap ratio decrease
with N . Moreover, we observe that the bounds match when
� = 0, i.e., when perfect user privacy is required, and when
� → ∞, i.e., no user privacy is required.

The generality of the AL-PIR problem formulation allows
us to recover several existing results on PIR as special cases of
Theorems 1 and 2. These cases are discussed in the following
remark.

Remark 2 (Connections to State-of-the-Art Results): From
Theorems 1 and 2, the lower and upper bounds on the optimal
download cost D∗(�, δ) for any (�, δ) can be used to derive
the following prior results.
• No user privacy and perfect DB privacy (� → ∞, δ =

δ1(� → ∞) = δ2(� → ∞) = 0). From the shared randomness
bounds (16) and (18), when � → ∞ and δ = 0, we get that
α∗(� → ∞, 0) = α1(� → ∞, 0) = α2(� → ∞, 0) = 0,
i.e., no shared randomness is needed. Substituting the � and
δ values in the download cost bounds (17) and (20), we get
DUB(� → ∞, δ = 0) = DLB(� → ∞, δ = 0) = 1, meaning
that the upper and lower bounds are matching and give an
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Fig. 3. Lower and upper bounds on the download cost of AL-PIR for different values of N , K and δ as ε increases.

optimal download cost of D∗(� → ∞, δ = 0) = 1. That is,
AL-PIR is achieved by only downloading the requested file
from any of the databases.
• Perfect user privacy and maximum leakage on DB

privacy [7] (� = 0, δ = δ1(� = 0) = δ2(� = 0) =
NK−1−1

NK−1(N−1)
). We obtain the original PIR result in [7] for

perfect user privacy leakage � = 0. For this special case,
we get the optimal required shared randomness characterized
by α∗(�, δ) = α1(�, δ) = α2(�, δ) = 0, i.e., no shared
randomness is needed. Using the bounds in (17) and (20),
we obtain matching upper and lower bounds, giving an optimal
download cost of

D∗(� = 0, δ =
NK−1 − 1

NK−1(N − 1)
) = DLB(� = 0, δ =

NK−1 − 1
NK−1(N − 1)

) = DUB(� = 0, δ =
NK−1 − 1

NK−1(N − 1)
)

= 1 +
1
N

+ · · · + 1
NK−1

. (24)

• Perfect user privacy and DB privacy [9] (� = 0, δ = 0).
By setting � = 0, δ = 0 in Theorems 1 and 2, we obtain
the SPIR results in [9] where the optimal required shared
randomness is given by α∗(0, 0) = α1(0, 0) = α2(0, 0) =

1
N−1 and the optimal download cost is obtained using the
bounds in (17) and (20) as

D∗(� = 0, δ = 0) = DLB(� = 0, δ = 0) = DUB(� = 0, δ = 0)

= 1 +
1

N − 1
. (25)

• Leaky user privacy and maximum leakage on DB
privacy [55]. We obtain the L-PIR results in [55] for any
level of user privacy leakage � and a DB privacy leakage
δ ≥ max (δ1(�), δ2(�)), where the optimal required shared
randomness is given by α∗(�, δ) = α1(�, δ) = α2(�, δ) = 0
and the bounds on the optimal download cost are obtained
using (17) and (20) as

D∗(�, δ) ≥ DLB(�, δ2(�)) = 1 +
1

Ne�
+ · · · + 1

(Ne�)K−1
,

D∗(�, δ) ≤ DUB(�, δ1(�)) = 1 +
NK−1 − 1

(N − 1)(e� + NK−1 − 1)
.

(26)

• Perfect user privacy and Leaky DB privacy [58]
(� = 0, δ). For perfect user privacy � = 0 and DB privacy
leakage characterized by δ, we obtain the results in [58], where
the optimal required shared randomness is characterized by
α∗(0, δ) = α1(0, δ) = α2(0, δ) = 1

N−1 − NK−1

NK−1−1δ and the
optimal download cost is obtained using the bounds in (17)
and (20) as

D∗(� = 0, δ) = DLB(� = 0, δ) = DUB(� = 0, δ)

=
N

N − 1
− δ

NK−1 − 1
. (27)

IV. PROOF OF THEOREM 1: UPPER BOUND

ON D∗(�, δ) FOR THE AL-PIR

The leakage in user privacy is achieved using the path-based
approach introduced in our previous work [55]. A retrieval
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Fig. 4. The original PIR scheme in [7] for N = 2, K = 2, and L = 4.

path is equivalent to a set of queries across databases that
guarantee decodability. Possible retrieval paths have different
download costs. The probability of selecting each path is
chosen to minimize the download cost while satisfying the
privacy budget, measured by �, which is a process referred
to as path biasing. First, we give the following example for
N = K = 2 to describe the idea of path biasing to achieve
�−user privacy leakage with DB Privacy leakage (δ ≥ δ1(�)).

A. AL-PIR Example for N = 2, K = 2, and Privacy
Leakage (�, δ ≥ δ1(�))

Consider the simplest non-trivial PIR setting with
N = 2 DBs and K = 2 messages denoted by W1 and W2.
To motivate the construction of AL-PIR, we first recall the
perfect PIR scheme proposed by Sun and Jafar in [7]. Assume
that the messages W1 = {a1, . . . , a4} and W2 = {b1, . . . , b4},
are each L = 4 bits long. Figure 4 shows a retrieval structure
for W1 using the scheme in [7]. The main idea is that one
can use coding and leverage side information from the other
database to reduce the download cost to 3/2. We highlight
that the shown bit indices represent one possible permutation
of the real indices. Thus, W1 retrieval can be obtained through
multiple bit structures that are selected uniformly and have an
equal download cost of 3/2.

In Figure 5, we show an alternative PIR scheme in which
the requested message can be downloaded via sequences of
structures that give unequal download cost. In particular, when
the user wants to retrieve message W1, it picks one of the four
possible queries/paths:

• Path P1:(∅, W1): Send no request to DB1 and request W1

from DB2. This path/query has a download cost of L bits.
• Path P2:(W1, ∅): Request W1 from DB1 and send no

request to DB2. This path has a download cost of L bits.
• Path P3:(W2, W1 ⊕ W2): Request W2 from DB1 and

W1 ⊕ W2 from DB2. This path has a download cost of
2L bits.

• Path P4:(W1 ⊕ W2, W2): Request W1 ⊕ W2 from DB1

and W2 from DB2. This path has a download cost of
2L bits.

Paths P1 and P2, which have lower download cost, are
selected with probability p, whereas higher download cost
paths P3 and P4 are selected with probability q. From the
total probability theorem, we have

2p + 2q = 1. (28)

The answer of DBn can take four different structures,
πn,1, . . . , πn,4. These structures represent the element addition
of all possible subsets of {W1, W2}. Note that the selection
probability of any structure πn,j , j ∈ [1 : 4] equals the
selection probability of all paths containing that structure.
Also, there is one path per message that contains each structure
πn,j . For example, π1,2 = {W1} is paired with π2,2 = {∅} to

Fig. 5. AL-PIR scheme for N = 2, K = 2, general ε, and δ ≥ δ1(ε).

retrieve W1, or it can be paired with π2,3 = {W1 ⊕ W2} for
W2 retrieval. Let the path selection probabilities be uniform,
i.e., p = q = 1

4 . Thus, each structure is selected with
probability 1

4 , irrespective of the requested message index. It is
straightforward to show that this probability assignment satis-
fies the perfect privacy definition in (7). Moreover, although
the cost varies per path, the uniform path selection yields
an optimal average download cost of 3/2. Therefore, this
path-based PIR scheme is also optimal and matches the result
of Sun and Jafar [7] for perfect privacy.

1) Improving the Download Cost via Path Biasing
(Achieving �−User Privacy): The leaky privacy definition
in (9) together with the path-based scheme described above,
lead us to consider schemes that bias the path selection
process for retrieving desired messages. We next show that this
helps reduce the average download cost for any non-zero �.
Intuitively, if we assign higher selection probability to paths
with lower download cost than the average (for example L),
an overall lower cost can be achieved at the expense of some
bounded loss of privacy due to the biasing. The question we
pose is whether there are values p �= q that yield an average
download cost less than 3

2 and simultaneously satisfy the

�−user privacy definition in (9). The probability Pr{Q(i)
n =

π, A
(i)
n = γ|WΩ} can be expressed as

Pr{Q(i)
n = π, A(i)

n = γ|WΩ} =

Pr{Q(i)
n = π|WΩ}Pr{A(i)

n = γ|Q(i)
n = π,WΩ}. (29)

The term Pr{Q(i)
n = π|WΩ} depends on the path selection

probability. To provide privacy, for any answer to a specific
structure π, the term Pr{A(i)

n = γ|Q(i)
n = π,WΩ} should

be constant independently of the requested message. To meet
the privacy definition in (9), it is sufficient to show that the
possible structures to each query satisfy:

Pr(πn,j |i = 1)
Pr(πn,j |i = 2)

< e�, ∀n ∈ {1, 2}, j ∈ [1 : 4], (30)

where Pr(πn,j |i = k), is the probability of retrieving structure
πn,j when the desired message is k. Based on the scheme
in Figure 5, there are two cases for each structure πn,j :

(i) πn,j is used to recover W1 and W2 with the same
probability either p or q, then

P (πn,j |i = 1)
P (πn,j |i = 2)

= 1, (31)

which clearly satisfies (9).
(ii) πn,j is selected with different probabilities p and q to

retrieve W1 and W2, respectively, and vice versa. Then,
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p and q must satisfy

e−� ≤ Pr(πn,j |i = 1)
Pr(πn,j |i = 2)

=
p

q
≤ e�. (32)

Invoking the fact that the sum of path probabilities must
equal one, we use (28) to substitute by q = 0.5 − p and
rewrite (32) as

p

0.5 − p
≤ e�. (33)

This gives us the following inequality,

p ≤ e�

2(1 + e�)
. (34)

Therefore, we can pick p that satisfies (34) with equality,
and then select q = 0.5−p, as a valid choice of path selection
probabilities which satisfy the �−user privacy constraint.

2) Computing the Download Cost D(�, δ ≥ δ(�)): Since
our scheme is symmetric with respect to messages, the same
download cost is obtained for the retrieval of message W1 or
message W2. Then, the average download cost can be written
as

D(�, δ ≥ δ(�)) =

∑4
j=1 Pr{P = Pj} · DPj

L
, (35)

where Pr{P = Pj} ∈ {p, q} is the probability that path Pj

is chosen and DPj is the cost of path Pj . From Figure 5,
we know that DP1 = DP2 = L, and DP3 = DP4 = 2L.
Hence, D(�, δ ≥ δ(�)) equals

D(�, δ ≥ δ(�)) =
2 × p × L + 2 × q × (2L)

L
= 2p + 4q

(a)
= 2 − 2p

(b)

≥ 2 − e�

(1 + e�)
, (36)

where (a) follows from (28), and (b) follows from (34).
Hence, the download cost of this scheme (when p =
eε
/2(1+eε)), can be rewritten as

D∗(�, δ ≥ δ1(�)) =
3
2
− e� − 1

2(e� + 1)
, (37)

which is lower than 3
2 , the optimal download cost under perfect

privacy. Note that a lower cost cab be achieved for any �.
3) Computing DB Privacy Leakage δ: We have shown in

the above example that the biased selection probability of the
path-based scheme can trade user privacy for lower download
cost. We now calculate the DB privacy leakage. From the
above leaky construction, we can show that

H(A(1)
[1:2]) = D(�, δ ≥ δ1(�)) × L ≥ 3

2
L − e� − 1

2(e� + 1)
L. (38)

Similarly, the average size H(A(1)
[1:2]|W2) of answers given

W2 is known and can be expressed as

H(A(1)
[1:2]|W2) =

4∑
j=1

Pr{P = Pj} · DPj |W2

= 2 × p × L + 2 × q × L = L, (39)

Fig. 6. AL-PIR scheme for N = 2, K = 2, ε = ln(1.5), and δ = 4/15.

where DPj |W2 is the cost of path Pj when W2 is given. This
makes the DB privacy leakage, or the information revealed
about W2, equal to

I(W2; A
(1)
[1:2]) = H(A(1)

[1:2]) − H(A(1)
[1:2]|W2)

≥ 1
2
L − e� − 1

2(e� + 1)
L = δ1(�)L. (40)

We highlight that this construction can achieve a lower DB
privacy leakage compared to the perfect privacy scenario in [7]
where I(W2; A

(1)
[1:2]) = L/2, without the need for any shared

randomness. However, this construction cannot fulfill the DB
privacy constraint if δ < δ1(�). In the following example,
we introduce a construction that can satisfy any DB privacy
requirement with the utilization of the common randomness.

B. AL-PIR Example With N = 2, K = 2, � = ln (1.5), and
δ = 4/15

Figure 6 shows an example of a possible AL-PIR scheme
with N = 2, K = 2, � = ln (1.5), and δ = 4/15. We observe
that the allowed DB privacy leakage δ is less than δ1(�),

4
15

= δ < δ1(�) =
1
2
− e� − 1

2(e� + 1)
= 0.4. (41)

Now, assume that each of the two messages is of size L = 3
bits, W1 = {a1, a2, a3} and W2 = {b1, b2, b3}. To satisfy the
δ−DB privacy condition, we include the least required amount
of shared randomness S that has a size of α1(�, δ)L, where
α1(�, δ) is computed from (16):

α1(�, δ)L = (
1

N − 1
− e� + NK−1 − 1

NK−1 − 1
δ)L =

L

3
= 1 bit.

(42)

Each message is divided into two parts as follows: W1

is divided into W
(1)
1 = {a1} (size of S = L/3), and

W
(2)
1 = {a2, a3}; and W2 is divided into W

(1)
2 = {b1}, and

W
(2)
2 = {b2, b3}.
Suppose that the user wants to retrieve W1. The user can

use any of the four possible paths shown in Figure 6, where a
path is defined as a query set Q

(k)
[1:N ] which satisfies, together

with its corresponding answer, the correctness and privacy
constraints. However, these paths have different download
costs. The first two paths have a cost of 4L/3 bits, whereas
the other two paths have a cost of 2L bits. The correctness
of the scheme is straightforward, the XOR addition of the
two structures forming each path results in getting a1, a2,
and a3. To reduce the download cost by trading user privacy,
similar to the previous example, we select the lower cost paths
with probability p = 0.3, whereas the higher cost paths are
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assigned a probability q = 0.2. These selection probabilities
are chosen such that both �−user privacy and δ−DB privacy
conditions are satisfied. As we will discuss later in more
details, the ratio describing �−user privacy leakage in (9)
is given by the maximum ratio between the probabilities of
selecting different paths, represented here as p/q = 1.5 = e�.

When W1 is requested by the user, the DB privacy leakage
is described as the information user can decode about W2.
We notice that the first two paths in Figure 6 do not reveal
any information about W2, while using the other two paths,
the user can decode the two bits W

(2)
2 = {b2, b3}. This gives

the average DB privacy leakage as

I(W2; A
(1)
[1:2]) = 2 × 0.3 × 0 + 2 × 0.2 × 2 × L

3
=

0.8 × L

3
=

4
15

L = δL. (43)

Hence, this achieves the δ−DB privacy condition. The
average number of downloaded bits for this scheme is

D�,δ = 2 × 0.3 × 4 + 2 × 0.2 × 6 = 4.8 bits, (44)

which yields a download cost of

D
(
� = ln (1.5), δ =

4
15
)

= 4.8/3 = 1.6. (45)

We highlight that this scheme clearly improves the down-
load cost in comparison to the perfect SPIR, which has a
download cost of N/N−1 = 2, at the expense of some loss
in user and DB privacy.

C. General (�, δ) AL-PIR Construction

In this section, we generalize the AL-PIR scheme in the
previous examples for arbitrary values of N , K , and asym-
metric privacy leakage characterized by the pair (�, δ). Assume
there are K ≥ 2 messages, W1, . . . , WK . Consider a random
permutation of the databases indices. Let each message Wk

be divided into two parts Wk = {W (1)
k , W

(2)
k } such that

H(W (1)
k ) = (N − 1)α1(�, δ)L, (46)

H(W (2)
k ) = L − (N − 1)α1(�, δ)L, (47)

where α1(�, δ) is the minimum required amount of shared
randomness for the AL-PIR scheme to ensure the δ−DB
privacy and computed as

α1(�, δ) = max
(

0,
1

N − 1
− e� + NK−1 − 1

NK−1 − 1
δ

)

=

{
1

N−1 − eε+NK−1−1
NK−1−1 δ, 0 ≤ δ < δ1(�),

0, δ > δ1(�).
(48)

Furthermore, let each W
(1)
k and W

(2)
k be divided into N−1

equal sub-packets,

W
(1)
k = {W (1)

k,1 , . . . , W
(1)
k,N−1}, (49)

W
(2)
k = {W (2)

k,1 , . . . , W
(2)
k,N−1}, (50)

such that for all 
 ∈ [1 : N − 1], H(W (1)
k,� ) =

α1(�, δ)L, H(W (2)
k,� ) = ( 1

N−1 − α1(�, δ))L. For instance,

in the example of Figure 6 where α1(�, δ) = 1/3 and L = 3
bits, W1 is divided into W

(1)
1 = {a1} of size 1 bit, and

W
(2)
1 = {a2, a3} of size 2 bits.
For a requested message Wi, the DBs mask W

(1)
k ’s,

k ∈ [1 : K] \ i, with the secret key S. The content of W
(2)
k ’s

may be allowed to leak to the user. To retrieve a required
message Wi, the user first selects one of the possible retrieval
paths across the N DBs. Any path is formed by a set of N

queries, Q
(k)
[1:N ], which are submitted to the respective DBs.

The selected path has to fulfill two requirements: (i) the path
correctly recovers Wi; (ii) the N submitted queries satisfy
both the �−user privacy and δ−DB privacy conditions. The
user sends the following query vector to DBn

πn,i = (x1, . . . , xi−1, (xi + n)N , xi+1, . . . , xK),
xk ∈ [0 : N − 1], k ∈ [1 : K], (51)

where (xi + n)N denotes (xi + n) (mod N). This K × 1
vector gives the indices of the K message bits, one bit for each
message, that should be included in the answers. The design
of πn,i makes sure that all submitted queries πn,i’s include the
same indices of all undesired messages, and different indices
of the required Wi. Then, the identical undesired bits, within
the N collected answers, can be utilized to decode the desired
bits. After DBn receives the query πn,i, it responds with
answer γn(πn,i),

γn(πn,i) =
{ ⊕

k∈[1:K]\i

W
(1)
k,xk

⊕ S ⊕ W
(1)
i,(xi+n)N

,

⊕
k∈[1:K]\i

W
(2)
k,xk

⊕ W
(2)
i,(xi+n)N

}
, (52)

where
⊕

represents the summation via XOR operation.
We denote by W

(1)
k,0 and W

(2)
k,0 the null or the empty set

∅. This response ensures protecting all W
(1)
k,� ’s by encoding

them with S. We observe that once one of the N queries
is designed, i.e., the indices xk’s are chosen, the remaining
N − 1 queries are deterministic functions of these chosen
indices. As xk ∈ [0 : N − 1] for any k ∈ [1 : K],
each πn,i can be represented by NK different vectors. Each
of these vectors creates one possible path to retrieve Wi.
Thus, for a specific permutation of DBs indices, we have
NK possible paths in general. For the example in Figure 6,
there are NK = 4 paths for the retrieval of W1. The first
retrieval path is created from the queries π1,1 = (0, 0), and
π2,1 = (1, 0) with corresponding answers γ1(π1,1) = {S, ∅},
and γ2(π2,1) =

{
a1 ⊕ S, {a2, a3}

}
. A general form for one

possible path is shown in Figure 7.
1) Analysis of Correctness: The user can decode the

sub-messages W
(1)
i,� and W

(2)
i,� , ∀ 
 ∈ [1 : N − 1], of the

requested message (Wi,�) using the information retrieved from
DBs N − xi and (N + 
 − xi)N as follows

{W (1)
i,� , W

(2)
i,� } = γN−xi(πN−xi,i) ⊕ γN+�−xi(π(N+�−xi)N ,i)

=
{ ⊕

k∈[1:K]\i

W
(1)
k,xk

⊕ S ⊕ W
(1)
i,0 ,

⊕
k∈[1:K]\i

W
(2)
k,xk

⊕ W
(2)
i,0

}
⊕ { ⊕

k∈[1:K]\i

W
(1)
k,xk

⊕ S ⊕ W
(1)
i,� ,

⊕
k∈[1:K]\i

W
(2)
k,xk

⊕ W
(2)
i,�

}
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Fig. 7. One path of the AL-PIR scheme that retrieves Wi with xi = N −1.

=
{
W

(1)
i,0 ⊕ W

(1)
i,� , W

(2)
i,0 ⊕ W

(2)
i,�

}
=
{
W

(1)
i,� , W

(2)
i,�

}
. (53)

2) Proof of �−User Privacy: We note that the total down-
load cost for each path is not fixed, but it depends on the
choice of xk’s, k ∈ [1 : K]. Then, we have two types of
paths:

• Lower cost paths ( ∀k ∈ [1 : K] \ i, xk = 0):
Generally, N possible paths belong to this case, those
created from queries πn,i where xi = 0, 1, . . . , N − 1.
In this case, we have

γN−xi(πN−xi,i) =
{ ⊕

k∈[1:K]\i

W
(1)
k,0 ⊕ S ⊕ W

(1)
i,0 ,

⊕
k∈[1:K]\i

W
(2)
k,0 ⊕ W

(2)
i,0

}
=
{
S, ∅}, (54)

i.e., we only download the secret key S of size α1(�, δ)L
from DBN−xi . Whereas, for other databases, all struc-
tures download data of the form

{
W

(1)
i,� ⊕ S, W

(2)
i,�

}
,

each of size L
N−1 bits. In total for these type of paths,

the user needs to download (N − 1) L
N−1 + α1(�, δ)L =

(1 + α1(�, δ))L bits from all DBs.
• Higher cost paths (∃ k ∈ [1 : K] \ i,xk �= 0):

For this case, there are NK −N possible paths. Here, all
requested query structures are of size L

N−1 bits, and the
user needs to download N

N−1L bits in total from all DBs.
Without loss of generality, we assign probabilities p and q,

where p ≥ q, to lower cost and higher cost paths, respectively,2

such that

N × p + (NK − N) × q = 1. (55)

We can see that any query πn,i with certain xk’s can be
used to recover any desired message. This is obtained by
requesting that query with other N − 1 queries that share the
same xk’s of the K−1 remaining messages. This is crucial to
satisfy the �−user privacy requirements because accessing a
structure does not eliminate any of the message possibilities.
Furthermore, each structure is selected to retrieve Wi with the
same probability of selecting the path coming through it, either
p or q. Similar to (29), Pr{Q(i)

n = π, A
(i)
n = γ|WΩ} can be

expressed as

Pr{Q(i)
n = π, A(i)

n = γ|WΩ} =

Pr{Q(i)
n = π|WΩ}Pr{A(i)

n = γ|Q(i)
n = π,WΩ}. (56)

The term Pr{A(i)
n = γ|Q(i)

n = π,WΩ} is also a constant,
independent of the requested message. Thus, to meet the

2Due to symmetry, paths belonging to the same type are assigned the same
probability. Assigning different probabilities does not improve the download
cost or the privacy.

definition in (9), we show that possible structures of each
query satisfy:

Pr(πn,i|i = k1)
Pr(πn,i|i = k2)

≤ e�, ∀n, k1, k2 ∈ [1 : K], (57)

where Pr(πn,i|i = k1), is the probability of selecting structure
πn,i when the desired message is Wk1 . The following lemma
generalizes the condition in (34) to satisfy �−user privacy for
any K . It states the upper bound on the path biasing that does
not violate the �−user privacy.

Lemma 1: To preserve �−user privacy definition of the
AL-PIR, the biased probability p has to satisfy the following
inequality

p ≤ e�

Ne� + NK − N
. (58)

Proof: Based on the proposed scheme, each structure πn,i

can be selected with probability p or q, then

Pr(πn,i|i = k1)
Pr(πn,i|i = k2)

∈
{

p

p
,
q

q
,
p

q
,
q

p

}
≤ e�. (59)

As p ≥ q, we only need to guarantee that

p

q
≤ e�. (60)

Substituting (55) in the inequality, we get

e� ≥ p

q
=

(NK − N)p
(NK − N)q

=
(NK − N)p

1 − Np
. (61)

By rearranging the above inequality, we get the following:

p ≤ e�

Ne� + NK − N
. (62)

Equation (55) can be used to find the following equivalent
condition:

q ≥ 1
Ne� + NK − N

. (63)

3) Analysis of δ−DB Privacy: We show that the proposed
AL-PIR scheme satisfies the DB privacy leakage constraint
in (6). From the previous construction, we categorized the
paths into two groups: (a) N paths of size (1+α1(�, δ))L bits;
and (b) NK −N paths of size N

N−1L bits. Then, the expected

size of the answers, H(A(i)
[1:N ]) can be expressed as follows:

H(A(i)
[1:N ]) = pN(1 + α1(�, δ))L + q(NK − N)

N

N − 1
L

(a)
= pNα1(�, δ)L + L +

NK − N

N − 1
qL

(b)
= L + pNα1(�, δ)L +

1 − pN

N − 1
L

= L +
L

N − 1
− pN

(
1

N − 1
− α1(�, δ)

)
L,

(64)
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where (a) and (b) follow from (55). We then calculate
H(A(i)

[1:N ]|W[1:K]\i) as follows:

H(A(i)
[1:N ]|W[1:K]\i)

(a)
= H(Wi, A

(i)
[1:N ]|W[1:K]\i)

(b)
= H(Wi) + H(S, A

(i)
[1:N ]|W[1:K]\i, Wi)

= H(Wi) + H(S) + H(A(i)
[1:N ]|W[1:K]\i, Wi, S)

(c)
= H(Wi) + H(S) = (1 + α1(�, δ))L, (65)

where (a) follows the correctness property in (4) whereas
(b) and (c) hold from the fact that answers are function of
messages and the shared randomness.

Lemma 2: To preserve δ−DB privacy for δ < δ1(�),
the biased probability p has to satisfy the following inequality

p ≥ e�

Ne� + NK − N
. (66)

Proof: According to (64) and (65), we can express the
DB privacy leakage as

δL ≥ I(W[1:K]\i; A
(i)
[1:N ])

= H(A(i)
[1:N ]) − H(A(i)

[1:N ]|W[1:K]\i)

= L +
L

N − 1
− pN

(
1

N − 1
− α1(�, δ)

)
L

− (1 + α1(�, δ))L
(a)
= (pN − 1)α1(�, δ)L +

1 − pN

N − 1
L

= (1 − pN)(
1

N − 1
− α1(�, δ))L

(b)
= (1 − pN)min

(
1

N − 1
,

e� + NK−1−1
NK−1 − 1

δ

)
L, (67)

where (a) follows from (55) and (b) follows from (48). For the
commonly shared randomness S, we have one of the following
two cases:

• No shared randomness is needed (α1(�, δ) = 0):
In this case, the condition in (67) can be written as
follows,

δL ≥ 1−pN

N − 1
L

(a)

≥ NK−1 − 1
(N − 1)(e� + NK−1 − 1)

L=δ1(�)L,

(68)

where step (a) follows by applying the �−user privacy
condition obtained in Lemma 1. Therefore, we obtain the
bound on the DB privacy leakage δ ≥ δ1(�), i.e., DB
privacy leakage is maximized which covers the L-PIR
model previously considered in [55]. This case requires
no condition on the biased probability p as the inequality
in (68) is achieved for any p. We highlight that this
scheme obtains a better DB privacy compared to the
perfect PIR scheme proposed in [7], without the need
to any shared amount of randomness. The latter scheme
causes a leakage of NK−1−1

(N−1)NK−1 L bits.
• Shared randomness is needed (α1(�, δ) > 0):

For any α1(�, δ) > 0, we always have

1
N − 1

>
e� + NK−1 − 1

NK−1 − 1
δ. (69)

From (67), we get the following relation on p:

(1 − pN) ≤ NK−1 − 1
e� + NK−1 − 1

, (70)

which leads to the proof of Lemma 2.
Lemmas 1 and 2 lead to the following necessary condition

on p to simultaneously satisfy the �−user privacy and δ−DB
privacy definitions.

Lemma 3: To preserve �−user privacy and δ−DB privacy,
the biased probability p has to satisfy the following condition
with equality

p =
e�

Ne� + NK − N
. (71)

Proof: For δ < δ1(�), the proof follows directly by apply-
ing Lemmas 1 and 2. For δ ≥ δ1(�), the proof follows from
Lemma 1 where we pick the maximum value of the biasing
probability p in order to minimize the download cost, i.e., max-
imize the probability of picking the paths of lower cost.

Analysis of download cost: Given that the scheme is
symmetric across all messages, the download cost can be
written as,

D(�, δ) =
H(A(i)

[1:N ])

L
(a)
= 1 +

1
N − 1

− pN

(
1

N − 1
− α1(�, δ)

)
(b)
= 1 +

1
N − 1

− pN min
(

1
N − 1

,
e� + NK−1 − 1

NK−1 − 1
δ

)
(c)
= 1 +

1
N − 1

− e�

e� + NK−1 − 1

× min
(

1
N − 1

,
e� + NK−1 − 1

NK−1 − 1
δ

)
, (72)

where (a) follows from (64), (b) follows (48), and (c) is due to
Lemma 3. According to the size of the available randomness S,
we have one of the following two cases:

• No shared randomness is needed (α1(�, δ) = 0):
This case corresponds to δ ≥ δ1(�). The download cost
in (72) can be written as follows,

D(�, δ) = 1 +
1

N − 1
− e�

e� + NK−1 − 1
× 1

N − 1

= 1 +
NK−1 − 1

(N − 1)(e� + NK−1 − 1)

= 1 +
NK−1

e� + NK−1 − 1

(
1
N

+ · · · + 1
NK−1

)

= d1(�, δ1(�)). (73)

• Shared randomness is needed (α1(�, δ) > 0):
For any α1(�, δ) > 0, we have

1
N − 1

>
e� + NK−1 − 1

NK−1 − 1
δ. (74)

Then, the download cost in (72) can be re-expressed as

D(�, δ) = 1 +
1

N − 1

− e�

e� + NK−1 − 1
× e� + NK−1 − 1

NK−1 − 1
δ

= 1 +
1

N − 1
− δe�

NK−1 − 1
= d1(�, δ). (75)
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Both cases in (73) and (75) yield the upper bound in (17)
for the download cost of AL-PIR and prove Theorem 1.

V. PROOF OF THEOREM 2: LOWER BOUND ON D∗(�, δ)
Without loss of generality, assume the requested message

is W1. We can bound D∗(�, δ) as follows

D∗(�, δ) =
∑N

n=1 H(A(1)
n )

L

≥
H(A(1)

[1:N ])

L

≥
H(A(1)

[1:N ]|Q(1)
[1:N ])

L
. (76)

To further bound D∗(�, δ), we first state the following
two lemmas. Proofs of both lemmas can be found in the
appendices. In Lemma 4, we introduce the relation between the
entropy of answers downloaded to retrieve different messages
given a certain message. We emphasize that, under perfect
privacy definitions, the entropy should be exactly the same
regardless of the requested message,

H(A(k1)
n |Wk1 , Q

(k1)
n ) = H(A(k2)

n |Wk1 , Q
(k2)
n ),

∀k1 �= k2, n ∈ [1 : N ]. (77)

However, this does not hold under the �−user privacy
definition.

Lemma 4: Under the �−user privacy definition, for any k1

and k2 ∈ [1 : K] and a non-negative constant �, we have the
following inequality

H(A(k1)
n |Wk1 , Q

(k1)
n ) ≥ 1

e�
H(A(k2)

n |Wk1 , Q
(k2)
n )

∀k1 �= k2, n ∈ [1 : N ]. (78)

Using Lemma 4, we get the following recursion lemma.
Lemma 5: For k ∈ [2, K], we have

H(A(k)
[1:N ]|W[1:k−1], Q

(k)
[1:N ])

≥ (1 − o(L))L +
1

Ne�
H(A(k+1)

[1:N ] |W[1:k], Q
(k+1)
[1:N ] ).

Using Lemmas 4, and 5, we bound H(A(1)
[1:N ]|Q(1)

[1:N ]) as
follows

H(A(1)
[1:N ]|Q(1)

[1:N ])

= H(W1, A
(1)
[1:N ]|Q(1)

[1:N ]) − H(W1|A(1)
[1:N ], Q

(1)
[1:N ])

(a)
= H(W1, A

(1)
[1:N ]|Q(1)

[1:N ]) − o(L)L

= H(W1|Q(1)
[1:N ]) + H(A(1)

[1:N ]|W1, Q
(1)
[1:N ]) − o(L)L

(b)
= (1 − o(L))L + H(A(1)

[1:N ]|W1, Q
(1)
[1:N ])

≥ (1 − o(L))L + H(A(1)
n |W1, Q

(1)
[1:N ])

(c)
= (1 − o(L))L + H(A(1)

n |W1, Q
(1)
n )

(d)

≥ (1 − o(L))L +
1
e�

H(A(2)
n |W1, Q

(2)
n ), (79)

where (a) is due to the correctness property in (4), (b) follows
from the fact that the message content is independent of
queries, (c) comes from the fact that the answer A

(1)
n is

conditionally independent of the queries submitted to other
DBs given the query Q

(1)
n , whereas (d) comes from Lemma 4.

The addition of the previous relation over all possible n’s gives
us the following

NH(A(1)
[1:N ]|Q(1)

[1:N ])

≥ N(1 − o(L))L +
1
e�

N∑
n=1

H(A(2)
n |W1, Q

(2)
n ). (80)

Dividing by N ,

H(A(1)
[1:N ]|Q(1)

[1:N ])

≥ (1 − o(L))L +
1

Ne�

N∑
n=1

H(A(2)
n |W1, Q

(2)
n )

≥ (1 − o(L))L +
1

Ne�

N∑
n=1

H(A(2)
n |W1, Q

(2)
[1:N ])

≥ (1 − o(L))L +
1

Ne�
H(A(2)

[1:N ]|W1, Q
(2)
[1:N ])

(a)
= (1 − o(L))L +

1
Ne�

H(A(2)
[1:N ]|W1, Q

(2)
[1:N ])

+
1

Ne�
H(W2|A(2)

[1:N ], W1, Q
(2)
[1:N ]) −

o(L)L
Ne�

=(1 − o(L))L +
1

Ne�
H(W2, A

(2)
[1:N ]|W1, Q

(2)
[1:N ]) −

o(L)L
Ne�

= (1 − o(L))L +
1

Ne�
H(W2|W1, Q

(2)
[1:N ])

+
1

Ne�
H(A(2)

[1:N ]|W1, W2, Q
(2)
[1:N ]) −

o(L)L
Ne�

(b)
= (1 − o(L))L +

1
Ne�

L +
1

Ne�
H(A(2)

[1:N ]|W1, W2, Q
(2)
[1:N ])

− o(L)L
Ne�

= (1 − o(L))L +
1

Ne�
(1 − o(L))L

+
1

Ne�
H(A(2)

[1:N ]|W1, W2, Q
(2)
[1:N ]), (81)

where (a) comes from the correctness property in (4), and
(b) is due to the message independence. Following the same
iterative process used in [7], and invoking the recursion
property in Lemma 5, we get

H(A(1)
[1:N ]|Q(1)

[1:N ])

≥ (1 +
1

Ne�
+ · · · + 1

(Ne�)K−1
)(1 − o(L))L

+
1

(Ne�)K−1
H(A(K)

[1:N ]|W[1:K], Q
(K)
[1:N ])

(a)
= (1 − o(L))L +

(Ne�)K−1 − 1
(Ne�)K−1(Ne� − 1)

(1 − o(L))L

+
1

(Ne�)K−1
H(A(K)

[1:N ]|W[1:K], Q
(K)
[1:N ]), (82)

where (a) follows from the rule of finite sum of geometric
series. Under the L-PIR model presented in [55], the term
H(A(K)

[1:N ]|W[1:K], Q
(K)
[1:N ]) is replaced by zero as answers are

functions of only the K messages. However, this does not
hold in the presence of common randomness. From the δ−DB
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privacy definition in (6), we get the following:

H(A(K)
[1:N ]|W[1:K], Q

(K)
[1:N ])

= H(A(K)
[1:N ]|W[1:K−1], Q

(K)
[1:N ])

− I(WK ; A(K)
[1:N ]|W[1:K−1], Q

(K)
[1:N ])

(a)
= H(A(K)

[1:N ]|W[1:K−1], Q
(K)
[1:N ]) − H(WK)

= H(A(K)
[1:N ]|Q(K)

[1:N ])−I(A(K)
[1:N ]; W[1:K−1]|Q(K)

[1:N ]) − H(WK)

= H(A(K)
[1:N ]|Q(K)

[1:N ])−I(A(K)
[1:N ], Q

(K)
[1:N ]; W[1:K−1]) − H(WK)

≥ H(A(K)
[1:N ]|Q(K)

[1:N ]) − δL − L, (83)

where (a) follows since all messages are independent and WK

is a deterministic function of A
(K)
[1:N ]. By symmetry, we can

assume that H(A(1)
[1:N ]|Q(1)

[1:N ]) = H(A(K)
[1:N ]|Q(K)

[1:N ]). Then,

H(A(K)
[1:N ]|W[1:K], Q

(K)
[1:N ]) ≥ H(A(1)

[1:N ]|Q(1)
[1:N ]) − δL − L.

(84)

Since H(A(K)
[1:N ]|W[1:K], Q

(K)
[1:N ]) ≥ 0, we obtain

H(A(K)
[1:N ]|W[1:K], Q

(K)
[1:N ])

≥ max
(
0, H(A(1)

[1:N ]|Q(1)
[1:N ]) − δL − L

)
.

Next, we can express (82) using (85) as

H(A(1)
[1:N ]|Q(1)

[1:N ]) ≥

(1 +
(Ne�)K−1 − 1

(Ne�)K−1(Ne� − 1)
)(1 − o(L))L

+
1

(Ne�)K−1
max

(
0, H(A(1)

[1:N ]|Q(1)
[1:N ]) − δL − L

)
. (85)

Dividing by L and allowing it to approach ∞, we get

H(A(1)
[1:N ]|Q(1)

[1:N ])

L
≥ 1 +

(Ne�)K−1 − 1
(Ne�)K−1(Ne� − 1)

+
1

(Ne�)K−1
max

⎛
⎝0,

H(A(1)
[1:N ]|Q(1)

[1:N ])

L
− δ − 1

⎞
⎠ . (86)

Following (86), the following two inequalities are true

H(A(1)
[1:N ]|Q(1)

[1:N ])

L
≥ 1 +

(Ne�)K−1 − 1
(Ne�)K−1(Ne� − 1)

, (87)

H(A(1)
[1:N ]|Q(1)

[1:N ])

L
≥ 1 +

(Ne�)K−1 − 1
(Ne�)K−1(Ne� − 1)

+
1

(Ne�)K−1
(
H(A(1)

[1:N ]|Q(1)
[1:N ])

L
− δ − 1). (88)

The inequality in (88) can be rearranged as

(Ne�)K−1 − 1
(Ne�)K−1

H(A(1)
[1:N ]|Q(1)

[1:N ])

L

≥ 1 +
(Ne�)K−1 − 1

(Ne�)K−1(Ne� − 1)
− 1

(Ne�)K−1
(δ + 1)

=
(Ne�)K−1 − 1

(Ne�)K−1
+

(Ne�)K−1 − 1
(Ne�)K−1(Ne� − 1)

− δ

(Ne�)K−1
,

(89)

H(A(1)
[1:N ]|Q(1)

[1:N ])

L
≥ 1 +

1
Ne� − 1

− δ

(Ne�)K−1 − 1
. (90)

From (87) and (90), we get

H(A(1)
[1:N ]|Q(1)

[1:N ])

L
≥ max

(
1 +

(Ne�)K−1 − 1
(Ne�)K−1(Ne� − 1)

,

1 +
1

Ne� − 1
− δ

(Ne�)K−1 − 1
)
.

Substituting by (91) in (76), we can lower bound D∗(�, δ)
as

D∗(�, δ) ≥
H(A(1)

[1:N ]|Q(1)
[1:N ])

L
≥ DLB(�, δ)

= max
(
1 +

(Ne�)K−1 − 1
(Ne�)K−1(Ne� − 1)

, 1 +
1

Ne� − 1
− δ

(Ne�)K−1 − 1
)
. (91)

For a fixed �, DLB(�, δ) is monotonically decreasing in δ

until we reach δ = δ2(�) = (Neε)K−1−1
(Neε−1)(Neε)K−1 at which

1 +
(Ne�)K−1 − 1

(Ne�)K−1(Ne� − 1)
= 1 +

1
Ne� − 1

− δ

(Ne�)K−1 − 1
.

(92)

After this point, DLB(�, δ) is fixed at the value 1 +
(Neε)K−1−1

(Neε)K−1(Neε−1) . Then, we can alternatively represent
DLB(�, δ) as

D∗(�, δ) ≥ DLB(�, δ)

=

{
1 + 1

Neε−1 − δ
(Neε)K−1−1 = d2(�, δ), 0 ≤ δ < δ2(�),

1 + (Neε)K−1−1
(Neε)K−1(Neε−1) = d2(�, δ2(�)), δ ≥ δ2(�).

(93)

This proves the lower bound on D∗(�, δ) in Theorem 2.

A. Required Amount of Shared Randomness

In this section, we prove the lower bound in Theorem 2
on the required amount of shared randomness to achieve the
minimum download cost derived in (91). From the δ−DB
privacy in (6), given a requested message Wk, we get

δL ≥ I(A(k)
[1:N ], Q

(k)
[1:N ]; W[1:K]\k)

= I(A(k)
[1:N ]; W[1:K]\k|Q(k)

[1:N ])

= H(A(k)
[1:N ]|Q(k)

[1:N ]) − H(A(k)
[1:N ]|W[1:K]\k, Q

(k)
[1:N ])

= H(A(k)
[1:N ]|Q(k)

[1:N ]) − H(Wk, A
(k)
[1:N ]|W[1:K]\k, Q

(k)
[1:N ])

+ H(Wk|A(k)
[1:N ], W[1:K]\k, Q

(k)
[1:N ])

(a)
= H(A(k)

[1:N ]|Q(k)
[1:N ]) − H(Wk, A

(k)
[1:N ]|W[1:K]\k, Q

(k)
[1:N ])

+ o(L)L

= H(A(k)
[1:N ]|Q(k)

[1:N ]) − H(Wk|W[1:K]\k, Q
(k)
[1:N ])

− H(A(k)
[1:N ]|W[1:K], Q

(k)
[1:N ]) + o(L)L

= H(A(k)
[1:N ]|Q(k)

[1:N ]) − L − H(A(k)
[1:N ]|W[1:K], Q

(k)
[1:N ])
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+ o(L)L

= H(A(k)
[1:N ]|Q(k)

[1:N ]) − (1 − o(L))L

− H(A(k)
[1:N ]|W[1:K], S, Q

(k)
[1:N ]) − I(S; A(k)

[1:N ]|W[1:K], Q
(k)
[1:N ])

(b)
= H(A(k)

[1:N ]|Q(k)
[1:N ]) − (1 − o(L))L

− I(S; A(k)
[1:N ]|W[1:K], Q

(k)
[1:N ])

= H(A(k)
[1:N ]|Q(k)

[1:N ]) − (1 − o(L))L − H(S|W[1:K], Q
(k)
[1:N ])

+ H(S|A(k)
[1:N ], W[1:K], Q

(k)
[1:N ])

(c)
= H(A(k)

[1:N ]|Q(k)
[1:N ]) − (1 − o(L))L − H(S)

+ H(S|A(k)
[1:N ], W[1:K], Q

(k)
[1:N ])

≥ H(A(k)
[1:N ]|Q(k)

[1:N ]) − (1 − o(L))L − H(S), (94)

where (a) follows from the correctness property, (b) comes
from the fact that answers are function of the K messages and
the common randomness S, and (c) is because the common
randomness S is independent of the K messages. Dividing by
L, allowing it to approach ∞, and substituting by (90) in (94),
we get

δ ≥ 1 +
1

Ne� − 1
− δ

(Ne�)K−1 − 1
− 1 − H(S)

L

=
1

Ne� − 1
− δ

(Ne�)K−1 − 1
− H(S)

L
. (95)

Rearranging the inequality, we get the following bound on
α(�, δ),

H(S)
L

= α(�, δ) ≥ 1
Ne� − 1

− δ

(Ne�)K−1 − 1
− δ, (96)

which is also a valid bound on the optimal common random-
ness α∗(�, δ). Then, following that α∗(�, δ) ≥ 0, we obtain
the following bound,

α∗(�, δ) ≥ α2(�, δ)=max
(
0,

1
Ne� − 1

− (Ne�)K−1

(Ne�)K−1 − 1
δ

)

=

{
1

Neε−1 − (Neε)K−1

(Neε)K−1−1 δ, 0 ≤ δ < δ2(�),

0, δ > δ2(�),
(97)

which completes the proof of the lower bound on the optimal
common randomness size in Theorem 2.

VI. CONCLUSION

We studied the AL-PIR problem that relaxes the perfect pri-
vacy requirements for both user and DB privacy. The allowed
leakage is asymmetric allowing for different privacy leakage
in each direction. We showed that allowing privacy leakage
provides an opportunity to improve the optimal download cost.
We introduced an AL-PIR scheme that gives an upper bound
on the optimal download cost for arbitrary leakage budgets.
We investigated possible tradeoffs that stem by adjusting the
level of privacy at both user and DB sides. We further obtained
a lower bound on the download cost and showed that the
multiplicative gap between the upper and lower bounds is
bounded by N−e−ε

N−1 , i.e., our AL-PIR scheme is optimal for

perfect user privacy, � = 0, and is optimal within a gap of at
most N

N−1 for any �.

APPENDIX A
PROOF OF COROLLARY 1

We first notice that for any � > 0, we have δ1(�) ≥ δ2(�).
This follows as we can express d1(�, δ1(�)) = 1 + δ1(�) and
d2(�, δ2(�)) = 1 + δ2(�). Then, from Theorems 1 and 2 and
for any δ ≥ max (δ1(�), δ2(�)), D∗(�, δ) can be bounded as
follows

1 + δ2(�) = d2(�, δ2(�)) = DLB(�, δ) ≤ D∗(�, δ)

≤ DUB(�, δ) = d1(�, δ1(�)) = 1 + δ1(�), (98)

which proves that δ1(�) must be greater than or equal δ2(�)
for any value of � ≥ 0.

Following that, we can write the multiplicative gap ratio
between the upper and lower bounds on D∗(�, δ) given in (17)
and (20) as follows:

DUB(�, δ)
DLB(�, δ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γ1(�)−γ2(�)δ
γ3(�)−γ4(�)δ

, δ < δ2(�),

γ1(�)−γ2(�)δ
γ3(�)−γ4(�)δ2(�)

, δ2(�) ≤ δ < δ1(�),

γ1(�)−γ2(�)δ1(�)
γ3(�)−γ4(�)δ2(�)

, δ ≥ δ1(�),

(99)

where we have γ1(�) = 1 + 1
N−1 , γ2(�) = eε

NK−1−1 , γ3(�) =
1 + 1

Neε−1 , and γ4(�) = 1
(Neε)K−1−1 . Then, we can upper

bound (99) as follows,

DUB(�, δ)
DLB(�, δ)

≤

⎧⎪⎨
⎪⎩

γ1(�)−γ2(�)δ
γ3(�)−γ4(�)δ

, δ < δ2(�),

γ1(�)−γ2(�)δ2(�)
γ3(�)−γ4(�)δ2(�) , δ ≥ δ2(�).

(100)

For any δ, we have the bound γ1(�)−γ2(�)δ
γ3(�)−γ4(�)δ

≤ γ1(�)
γ3(�)

valid

when γ1(�)γ4(�)
γ2(�)γ3(�)

≤ 1. We can prove that γ1(�)γ4(�)
γ2(�)γ3(�)

≤ 1 in the
following:

γ1(�)γ4(�)
γ2(�)γ3(�)

=
(1 + 1

N−1 ) 1
(Neε)K−1−1

(1 + 1
Neε−1 ) eε

NK−1−1

=
NK−1−1

N−1

(Neε)K−1−1
Neε−1

.e−2�

=
∑K−2

k=0 Nk∑K−2
k=0 (Ne�)k

.e−2� ≤ e−2� ≤ 1, (101)

for any � ≥ 0 with equality when � = 0. Eventually, we can
bound the multiplicative gap ratio for any value of δ as

DUB(�, δ)
DLB(�, δ)

≤ γ1(�)
γ3(�)

=
1 + 1

N−1

1 + 1
Neε−1

=
N − e−�

N − 1
. (102)

APPENDIX B
PROOF OF LEMMA 4

Assume that A
(k1)
n the answer of any DBn, given any

requested message k1 ∈ [1 : K], can take one of T different
structures. Each of them is requested by a certain query,
i.e., Q

(k1)
n also takes T different forms. Let πt and γ(πt) be
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the tth form that Q
(k1)
n and A

(k1)
n can take, respectively. Then,

H(A(k1)
n |Wk1 , Q

(k1)
n ) can be written as

H(A(k1)
n |Wk1 , Q

(k1)
n )

=
T∑

t=1

Pr(Q(k1)
n = πt)H(A(k1)

n |Wk1 , Q
(k1)
n = πt)

=
T∑

t=1

Pr(Q(k1)
n = πt)H(A(k1)

n = γ(πt)|Wk1 )

(a)
=

T∑
t=1

Pr(Q(k1)
n = πt)H(A(k2)

n = γ(πt)|Wk1 )

(b)

≥
T∑

t=1

e−� Pr(Q(k2)
n = πt)H(A(k2)

n = γ(πt)|Wk1)

=
1
e�

T∑
t=1

Pr(Q(k2)
n = πt)H(A(k2)

n = γ(πt)|Wk1 )

=
1
e�

T∑
t=1

Pr(Q(k2)
n = πt)H(A(k2)

n = γ(πt)|Wk1 , Q
(k2)
n = πt)

=
1
e�

H(A(k2)
n |Wk1 , Q

(k2)
n ), (103)

where (a) follows from the fact that the entropy of cer-
tain answer structure γ(πt) is independent of the requested
message, it only depends on the query form πt. Whereas,
(b) comes from the definition in (9) and the corresponding
interpretation in (57).

APPENDIX C
PROOF OF LEMMA 5

We can bound H(A(k)
[1:N ]|W[1:k−1], Q

(k)
[1:N ]) as follows:

H(A(k)
[1:N ]|W[1:k−1], Q

(k)
[1:N ])

(a)
= H(A(k)

[1:N ]|W[1:k−1], Q
(k)
[1:N ])

+ H(Wk|A(k)
[1:N ], W[1:k−1], Q

(k)
[1:N ]) − o(L)L

= H(Wk, A
(k)
[1:N ]|W[1:k−1], Q

(k)
[1:N ]) − o(L)L

= H(Wk|W[1:k−1], Q
(k)
[1:N ])

+ H(A(k)
[1:N ]|W[1:k], Q

(k)
[1:N ]) − o(L)L

= L + H(A(k)
[1:N ]|W[1:k], Q

(k)
[1:N ]) − o(L)L

= (1 − o(L))L + H(A(k)
[1:N ]|W[1:k], Q

(k)
[1:N ])

≥ (1 − o(L))L + H(A(k)
n |W[1:k], Q

(k)
[1:N ])

(b)
= (1 − o(L))L + H(A(k)

n |W[1:k], Q
(k)
n ), ∀n ∈ [1 : N ],

(104)

where (a) is due to the correctness property in (4), and
(b) comes from the fact that the answer A

(k)
n is conditionally

independent of the queries submitted to other DBs given the
query Q

(k)
n . By adding the relation in (104) over all possible

n’s and dividing by N , we get the following:

H(A(k)
[1:N ]|W[1:k−1], Q

(k)
[1:N ])

≥ (1 − o(L))L +
1
N

N∑
n=1

H(A(k)
n |W[1:k], Q

(k)
n )

(a)

≥ (1 − o(L))L +
1

Ne�

N∑
n=1

H(A(k+1)
n |W[1:k], Q

(k+1)
n )

= (1 − o(L))L +
1

Ne�

N∑
n=1

H(A(k+1)
n |W[1:k], Q

(k+1)
[1:N ] )

≥ (1 − o(L))L +
1

Ne�
H(A(k+1)

[1:N ] |W[1:k], Q
(k+1)
[1:N ] ), (105)

where (a) follows using similar steps as in the proof of
Lemma 4.

APPENDIX D
PROOF OF PROPOSITION 3

Here, we prove the bound in proposition 3 for N = 1.
We show that the relaxed privacy conditions have no benefits
when there is only one database even if we ignore the DB
privacy leakage constraint (δ = K − 1). Assuming that the
requested message is W1, we lower bound D�,δ as follows:

D�,δ = H(A(1)
1 ) ≥ H(A(1)

1 |Q(1)
1 )

= H(W1, A
(1)
1 |Q(1)

1 ) − H(W1|A(1)
1 , Q

(1)
1 )

(a)
= H(W1|Q(1)

1 ) + H(A(1)
1 |W1, Q

(1)
1 ) − o(L)L

= (1 − o(L))L + H(A(1)
1 |W1, Q

(1)
1 ), (106)

where (a) follows the correctness property in (4). Let there
be T different structures, π1, . . . , πT , the query sent to the
databases can take. For each structure πt, t ∈ [1 : T ],
the answer is on the form of γ(πt) then we get, for j ∈ [2 : K],

H(A(1)
1 |W1, Q

(1)
1 ) − H(A(j)

1 |W1, Q
(j)
1 )

=
(
H(A(1)

1 , W1|Q(1)
1 ) − H(W1|Q(1)

1 )
)

−
(
H(A(j)

1 , W1|Q(j)
1 ) − H(W1|Q(j)

1 )
)

= H(A(1)
1 , W1|Q(1)

1 ) − H(A(j)
1 , W1|Q(j)

1 )

= H(A(1)
1 |Q(1)

1 ) + H(W1|A(1)
1 , Q

(1)
1 )

− H(A(j)
1 |Q(j)

1 ) − H(W1|A(j)
1 , Q

(j)
1 )

(a)
= H(A(1)

1 |Q(1)
1 ) + o(L) − H(A(j)

1 |Q(j)
1 )

−
T∑

t=1

Pr(Q(j)
1 = πt)H(W1|A(j)

1 , Q
(j)
1 = πt)

= H(A(1)
1 |Q(1)

1 ) + o(L) − H(A(j)
1 |Q(j)

1 )

−
T∑

t=1

Pr(Q(j)
1 = πt)H(W1|A(j)

1 = γ(πt)), (107)

where (a) also comes from (4). We emphasize from the user
privacy constraint in (9) that all queries or structures must be
requested with non-zero probability, otherwise the constraint
in (9) cannot be met. This dictates that γ(πt), the answer of
any structure πt, has to fulfill the decodability conditions, i.e.,

H(W1|A(1)
1 = γ(πt)) = o(L). (108)

As the form of the answer γ(πt) is the same regardless of
the requested message, this implies that

H(W1|A(j)
1 = γ(πt)) = H(W1|A(1)

1 = γ(πt)) = o(L).
(109)
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From (107) and (109), we get the following

H(A(1)
1 |W1, Q

(1)
1 )

= H(A(j)
1 |W1, Q

(j)
1 ) + H(A(1)

1 |Q(1)
1 ) − H(A(j)

1 |Q(j)
1 ).

(110)

Assuming the symmetry across all messages, we have

H(A(1)
1 |Q(1)

1 ) = H(A(j)
1 |Q(j)

1 ), ∀j ∈ [2 : K]. (111)

Using this fact, we have

H(A(1)
1 |W1, Q

(1)
1 ) = H(A(j)

1 |W1, Q
(j)
1 ), ∀j ∈ [2 : K].

(112)

This allows us to write D�,δ as follows

D�,δ ≥ (1 − o(L))L + H(A(2)
1 |W1, Q

(2)
1 )

= (1 − o(L))L + H(W2, A
(2)
1 |W1, Q

(2)
1 )

− H(W2|A(2)
1 , W1, Q

(2)
1 )

= (1 − o(L))L + H(W2, A
(2)
1 |W1, Q

(2)
1 ) − o(L)L

= (1 − 2o(L))L + H(W2|Q(2)
1 ) + H(A(2)

1 |W1, W2, Q
(2)
1 )

= 2(1 − o(L))L + H(A(2)
1 |W1, W2, Q

(2)
1 ). (113)

Completing the proof inductively using equations (107) to
(112), we get

D�,δ ≥ (K − 1)(1 − o(L))L + H(A(K)
1 |W[1:K−1], Q

(K)
1 )

= (K − 1)(1 − o(L))L + H(WK , A
(K)
1 |W[1:K−1], Q

(K)
1 )

− H(WK |A(K)
1 , W[1:K−1], Q

(K)
1 )

= (K − 1)(1 − o(L))L + H(WK , A
(K)
1 |W[1:K−1], Q

(K)
1 )

− o(L)

(a)
= (K − 1)(1 − o(L))L + H(WK |W[1:K−1], Q

(K)
1 )

+ H(A(K)
1 |W[1:K−1], Q

(K)
1 ) − o(L)

≥ K(1 − o(L))L, (114)

where (a) comes from the fact that the answer must be a
function of the K messages. Dividing by L and taking the
limit L → ∞, we arrive at the desired lower bound:

D∗(�, δ) ≥ K. (115)
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