IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

3821

Privacy Amplification for Federated Learning via
User Sampling and Wireless Aggregation

Mohamed Seif Eldin Mohamed

, Graduate Student Member, IEEE,

Wei-Ting Chang ™, Graduate Student Member, IEEE, and Ravi Tandon™, Senior Member, IEEE

Abstract—1In this paper, we study the problem of federated
learning over a wireless channel with user sampling, modeled
by a fading multiple access channel, subject to central and
local differential privacy (DP/LDP) constraints. It has been
shown that the superposition nature of the wireless channel
provides a dual benefit of bandwidth efficient gradient aggre-
gation, in conjunction with strong DP guarantees for the users.
Specifically, the central DP privacy leakage has been shown to
scale as O(1/K"/?), where K is the number of users. It has
also been shown that user sampling coupled with orthogonal
transmission can enhance the central DP privacy leakage with
the same scaling behavior. In this work, we show that, by jointly
incorporating both wireless aggregation and user sampling, one
can obtain even stronger privacy guarantees. We propose a
private wireless gradient aggregation scheme, which relies on
independently randomized participation decisions by each user.
The central DP leakage of our proposed scheme scales as
O(1/K?®/*). In addition, we show that LDP is also boosted by
user sampling. We also present analysis for the convergence rate
of the proposed scheme and study the tradeoffs between wireless
resources, convergence, and privacy theoretically and empirically
for two scenarios when the number of sampled participants are
(a) known, or (b) unknown at the parameter server.

Index Terms—Federated learning, wireless

differential privacy, user sampling.

aggregation,

I. INTRODUCTION

EDERATED learning (FL) [1] is a framework that enables

multiple users to jointly train a machine learning (ML)
model with the help of a parameter server (PS), typically,
in an iterative manner. In this paper, we focus on a variation
of FL termed federated stochastic gradient descent (FedSGD),
where users compute gradients for the ML model on their local
datasets, and subsequently exchange the gradients for model
updates at the PS. There are several motivating factors behind
the surging popularity of FL: (a) centralized approaches can
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be inefficient in terms of storage/computation, whereas FL
provides natural parallelization for training, and (b) local data
at each user is never shared, but only the local gradients are
collected. However, even exchanging gradients in a raw form
can leak information, as demonstrated in recent works [2]—[8].
In addition, exchanging gradients incurs significant commu-
nication overhead. Therefore, it is crucial to design training
protocols that are both communication efficient and private.

Since the training of FedSGD involves gradient aggregation
from multiple users, the superposition property of wireless
channels can naturally support this operation. Several recent
works [9]-[20] have focused on exploiting the wireless chan-
nel to alleviate the communication overhead of FL. Depending
on the transmission strategy, wireless FL can be broadly
categorized into digital or analog schemes. In digital schemes,
gradients from each user are compressed and transmitted to
the PS using a multi-access scheme. Digital schemes were
proposed in [9]-[11], where in [9] the gradient vectors are
first sparsified and quantized locally at the users by setting
the desired number of top elements in magnitude to one
value before transmissions. In [10], the authors modify the
digital scheme in [9] to allow only the user with the best
channel condition to transmit. In [11], the authors tailor the
quantization scheme to the capacity region of the underlying
MAC, which allows the gradient vectors to be quantized
according to both informativeness of the gradients and the
channel conditions. However, digital schemes require the PS
to decode individual gradients and then aggregate them.

For analog schemes, on the other hand, gradients are
rescaled at each user to satisfy the power constraint and to
mitigate the effect of channel noise. All users then transmit the
rescaled gradients via wireless channel simultaneously. Non-
orthogonal over the air aggregation makes analog schemes
more bandwidth efficient compared to digital ones. There have
been several recent works focusing on the design of analog
schemes for wireless FL. In [12], [13], wireless aggregation is
done by aligning the gradients through power control or beam-
forming. The communication efficiency is further enhanced
by incorporating user scheduling. In addition to power con-
trol, [9], [10], [14] project the gradients to lower dimension
prior to transmissions to improve communication efficiency,
where [14] also utilizes user scheduling and only allows users
with good channel conditions to transmit. In [15], the authors
focus on minimizing the energy consumption of users in wire-
less FL by formulating and solving an optimization problem
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subject to latency constraints. In [16], the authors proposed a
gradient-based multiple access algorithm that let users transmit
analog functions using common shape waveforms to mitigate
the impact of fading. In [17], the authors provide convergence
analysis for wireless FL. with non-i.i.d. data. Based on the
bound on the convergence rate, the authors of [17] optimize
the frequency of global aggregation based on the data, model,
and system dynamics.

There is a large body of recent work focusing on the design
of differentially private FL. Differential privacy (DP) [21]
has been adopted a de facto standard notion for private data
analysis and aggregation. Within the context of FL, the notion
of local differential privacy (LDP) is more suitable in which a
user can locally perturb and disclose the data to an untrusted
data curator/aggregator [22]. In the literature, there have been
several research efforts to design FL algorithms satisfying
LDP [23], [24], which require significant amount of perturba-
tion noise to ensure privacy guarantees. However, the amount
of noise can be further reduced when employing user sam-
pling [25], where users are sampled by the PS to participate
in the training in each iteration. However, sampling schemes
can be challenging in practice since they require coordination
between the PS and users, and may not be feasible if the PS is
untrustworthy. Hence, decentralized sampling schemes that do
not depend on the PS for coordination are desirable. To reduce
the dependency on the PS, Balle et. al. [26] recently proposed
a Random Check-in protocol. More specifically, users have the
choice to decide whether or not to participate in the training
process, and when to participate during the training process.
It is worth noting that the above works focus on orthogonal
transmission and do not take the impact of the communication
channels into account while performing privacy analysis.

In addition to saving bandwidth and computation, it has
been shown in [27]-[29] that wireless FL also naturally
provides strong differential privacy (DP) [30] guarantees.
Specifically, in [27], it was shown that the superposition
nature of the wireless channel provides a stronger privacy
guarantee as well as faster convergence in comparison to
orthogonal transmission. The privacy level is shown to scale
as O(1/VK), where K is the number of users in the wireless
FL system. On the other hand, it was shown in [25] that
one can obtain a similar scaling of O(1/vK) for privacy
leakage through user sampling. The scheme of [25], however,
considers orthogonal transmission from the sampled users.

One natural question to ask is whether one could pro-
vide even stronger privacy guarantees by incorporating user
sampling to the private wireless FedSGD scheme. If it does
provide stronger guarantee, how much additional gain can be
obtained? How can we optimally utilize the wireless resources,
and what are the tradeoffs between convergence of FedSGD
training, wireless resources and privacy?

Main Contributions: In this paper, we consider the problem
of FedSGD training over fading multiple access channels
(MACs), subject to LDP and DP constraints. We propose a
wireless FedSGD scheme with user sampling, where users
are sampled uniformly or based on their channel conditions.
We then study analog aggregation schemes coupled with the
proposed sampling schemes, in which each user transmits
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TABLE I

COMPARISON FOR CENTRAL PRIVACY UNDER: (1) ORTHOGONAL AND
(2) WIRELESS AGGREGATION TRANSMISSIONS

Transmission scheme | Without sampling With sampling
0(1/VE) 125]

O(1/K3/*) (Lemma 1)

o(1) 131]
O(1/VE) [27]

Orthogonal

Wireless Aggregation

a linear combination of (a) local gradient and (b) artificial
Gaussian noise. The local gradients are processed as a function
of the channel gains to align the resulting gradients at the PS,
whereas the artificial noise parameters are selected to satisfy
the privacy constraints. The existing privacy analysis in [25],
[26] for FL with user sampling cannot be applied to our
problem. The key challenge is that in each training iteration,
the effective noise seen at the signal received by the PS over
the wireless channel is a function of a random number of
sampled users, making the DP/LDP analysis non-trivial. Using
concentration inequalities, we prove that the central privacy
leakage scales as O(1/K?%/4) with wireless aggregation and
user sampling. We also provide convergence analysis of the
proposed scheme for different sampling schemes. To the best
of our knowledge, this is one of the first results on wireless
FedSGD with LDP and DP constraints with user sampling (see
Table I for comparison).

We would also like to mention a recent concurrent
work [32], in which the authors studied the impact of user
sampling on central DP for wireless FL. Moreover, they have
proposed a wireless transmission scheme that is also robust
against CSI attacks from the PS. It is assumed in that the
identities of sampled users are shared between participating
devices through a side channel, and never shared with the PS.
While the problem is similar in spirit, the main differences of
work compared to their are: 1) In our system, we do not require
the users to share information about participation in any round.
2) We study both local and central DP guarantees and the
associated tradeoffs (including scaling laws) as a function of
users. 3) We also present convergence rates analysis for the
proposed learning algorithm.

Notations: Boldface uppercase letters denote matrices (e.g.,
A), boldface lowercase letters are used for vectors (e.g., a),
we denote scalars by non-boldface lowercase letters (e.g., x),
and sets by capital calligraphic letters (e.g., X). [K] =
[1,2,---, K] represents the set of all integers from 1 to K.
The set of natural numbers, integer numbers, real numbers and
complex numbers are denoted by IN, Z, R and C, respectively.

II. SYSTEM MODEL
A. Wireless Channel Model
We consider a single-antenna wireless FL system with K
users and a central PS. Users are connected to the PS through
a fading MAC as shown in Fig. 1. Let ; denote the random
set of users who participate in iteration ¢. The input-output
relationship at the ¢-th block is

Yt = Z P X, +my, (1)
ke,
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Parameter Server

MAC

Fig. 1. TIllustration of the private wireless FedSGD framework: Users
collaborate with the PS to jointly train a machine learning model over a
fading MAC.

where xy, ; € R¢ is the signal transmitted by user & at the ¢-th
block, and y; is the received signal at the PS. Here, Ay, > 0
is the channel coefficient between the k-th user and the PS
at iteration . We assume a block flat-fading channel, where
the channel coefficient remains constant within the duration
of a communication block. Each user is assumed to know its
local channel gain, whereas we assume that the PS has global
channel state information. Each user can transmit subject to
average power constraint i.c., I [[|xz[|3] < Pp. m; € R?
is the channel noise whose elements are independent and
identically distributed (i.i.d.) according to Gaussian distrib-
ution A (0, Ny). The set of participants K; can be obtained
through various strategies. In this paper, we focus on user
sampling, where user k participates in the training at time
t according to probability py, for k& = 1,..., K. When
K+ = [K], we recover the conventional FedSGD where every
user participates in the training.

For this work, we consider (a) time-invariant uniform
sampling, where the sampling probability remains the same
across users and iterations; (b) time-varying uniform sampling,
where the sampling probability remains the same across users
but varies across iterations; and (c¢) channel aware sampling,
where sampling probabilities for each user can depend on the
local channel gain between the user and the PS. We note that
sampling strategies based on gradients or losses can potentially
leak information about local datasets, hence, require analysis
for privacy. Thus, we leave gradient-based sampling strategies
to future work.

B. Federated Learning Problem

Each user k£ has a private local dataset Dj, with Dj, data
points, denoted as Dy, = {(ul(-k) z(k))} , wWhere u( ) is the
i-th data point and vl(k) is the correspondmg label at user k.
The local loss function at user k is given by

Dka

where w € R? is the parameter vector to be optimized, R(w)
is a regularization function and 2 > 0 is a regularization
hyperparameter. Users communicate with the PS through the
fading MAC described above in order to train a model by
minimizing the loss function F'(w), i.e.,

(W) u” o) + QR(w),

K

> Dy fr(w).

K
Ek:l Dy, k=1

1
w* = argmin F(w) =
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The minimization of F'(w) is carried out iteratively through
a distributed stochastic gradient descent (SGD) algorithm.
More specifically, in the ¢-th training iteration, the PS broad-
casts the global parameter vector w; to all users. Each user
k computes his local gradient using stochastic mini batch
B C Dy, with size b, (i.e., |Bk| = by), i.e.,

g Z ka th

zEBk

@™ "))+ QVR(w,), )

where g (w;) is the stochastic gradient estimate of user k. The
participants, i.e., k € KC;, next pre-process their gy (w;) and
obtains xy, ;, as explained below. Then, the participants send
their x;, ;s to the PS, where the PS receives y; as defined in
(1). Upon receiving yy, the PS performs post-processing on
y: to obtain g, the estimate of the true gradient g; which is
defined as,

gt = Z Dygr(wi)- 3)
Ek 1 Dk

The global parameter w, is updated using the estimated
gradient g; according to wyy1 = w; — 17,8, where 7, is the
learning rate of the distributed GD algorithm at iteration t.
The iteration process continues until convergence.

Typically, in the wireless setting, the post-processing done
at the PS involves removing channel effects, averaging the
aggregated local gradients, and/or multiplying a constant to
maintain the unbiasedness. These post-processing steps depend
on the PS’s knowledge of the channel condition, number of
participants, and knowing how users are selected to participate.
As mentioned above, the PS has global CSI. In addition,
we assume that the PS knows the sampling probabilities
Dkt, Vk,t. However, the number of participants may or may
not be known at the PS. Thus, in this work, we study both
cases, where (a) |K| is known, and (b) |K| is unknown, at the
PS.

C. Wireless FL With User Sampling

The training continues for a total of T iterations, where the
users are synchronized with the PS. Here, we describe the per-
iteration operation of the algorithm. At the beginning of each
iteration ¢, the PS transmits the model w; to the users, and
each user computes the local gradient using its local dataset
according to (2). Each user k participates in the training with
probability pj, ;. Users then transmit their local gradients with
d channel uses of the wireless channel described in (1) in the
pre-determined time slot. The transmitted signal of user k at
iteration ¢ is given as:

. { Okt (8 (We) +1pt), WP Dit
Xt = . “)
0, otherwise

where nj; ~ N(O,aitId) is the artificial noise term to
ensure privacy, and ay, ; is the scaling factor satisfying power
constraint at each user. If a user is not participating, it does
not transmit anything. We assume that the gradient vectors
have a bounded norm, i.e., (wy)|l2 < L, Vk, and normalize
the gradient vector by L. The parameters «j s and oy ¢S
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are designed such that the power constraints are satisfied,
ie, E || 5] =of, {Hgk(wt)HQ + da,%’t} < Py. From (1)
and (4), the received signal at the PS can be written as:

Z his o 8k (Wi ) Z Do iny ¢ +my, (5)
keEK: keEK:

Zt

where z; ~ N (O,aﬁtId) is the effective noise, and oﬁt =
>okek, .13 0%+ No. In order to carry out the summation
of the local gradients over-the-air, all users pick the coeffi-
cients ;s in order to align their transmitted local gradient
estimates. Specifically, user k picks oz ; so that

Vk € Ky, (6)

where v, is the alignment constant picked for ensuring that
the power constraints are satisfied. For the alignment scheme
described above, the received signal at the PS at iteration
t in (10) simplifies to y: = D i, 1t8k(We) + 2. The
PS can perform two different post-processing operations to
get unbiased gradient estimate g, ie., E[g] = g (see
Appendix E), based on the knowledge it has: (a) when ||
is known at the PS; (b) when |K;| is unknown at the PS.
Case (a): When |K| is known at the PS, it performs an
update when |/C;| # 0. It obtains the gradient estimate g; by
dividing the received signal by the alignment constant, (; and
the number of participants. When |K;| = 0, g; is set to 0, and
an update is skipped. Hence, the gradient estimate is given as,

1
, if |[IC 0,
')/tC |IC|yt | t|¢
0, if K| = 0,

hi o e = 7,

gt = @)

where

ant+

yt >
gk Wt
Ve e |t | Ct|’Ct el

byl e |ICt

and ¢; = 1— HkK:1 (1—pg,¢) is chosen to ensure unbiasedness
of the estimated aggregated gradient.

Case (b): When |K;| is unknown at the PS, it obtains
the unbiased gradient estimate g; by dividing the received
signal by the alignment constant and the expected number of
participants as follows,

. 1
8t = yi
Pytu|lc1|
m;
L S v — | Y 2 s
M|K1| kEK, Ml ¢l kEK: Tt
where pic,| = E[|K¢]] = Zszl Dk, is the expected number

of participants in iteration ¢. The PS then update the models
and repeats this process for T iterations. We summarize our
transmission scheme in Algorithm 1.

Remark 1: One can divide the local gradient estimate
gr(Wi) by pi to obtain unbiased local estimate for the full
gradient g, i.e.,

kW
Qg t X (M + nk,t) y WP Pkt
Pkt

0, otherwise.

©)

Xkt =
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The received signal at the PS at iteration t is

kW
yi = %Zg 2t D hig X Dy +my, (10)
rek, Pkt kEK,

Zt

It can be readily shown that the PS gets a sum of unbiased
local gradient estimates. However, this approach requires more
pre-processing at the user which further limits the transmit
power scaling, i.e.,

< L
BT A/0R, < llek(w) |2 + dof
In contrast, our scheme requires only the full gradient to

be unbiased and in this case the power constraint is more
relaxed, i.e.,

(1)

a?, < D
M lgk(w)l? + do,

(12)

Algorithm 1 Differentially Private Wireless FedSGD

Scheme With User Sampling

1: Initialize w; at the PS;

2: for iteration t = 1,...,7T do

3:  PS broadcasts the global model w; to all users;

4 for each user in parallel do

5: Compute gy, (w;) according to (4);

6 Transmit x5, ¢ = ag ¢ (gk (wt)—l—nk,t) with probability
Dk, and x3 ¢, = 0 otherwise to the PS;

7. end for

8:  PS receives y; and recovers g; according to (9) for
known |/C;| case and (10) for unknown |/C;| case;

9:  PS updates global model w1 = w; — 1n;8;

10: end for

11: PS returns wy;

D. Privacy Definitions

We assume that the PS is honest but curious. It is honest
in the sense that it follows the FL procedure faithfully, but
it might be interested in learning sensitive information about
users. Therefore, the SGD algorithm for wireless FL. should
satisfy LDP constraints for each user. At the end of the training
process, the PS may release the trained model to a third
party. Thus, the training algorithm should provide central DP
guarantees against any further post-processing or inference.
The local and central DP are formally defined as follows:

Definition 1 ((€§k),5g)-LDP [33]): Let Xy be a set of all
possible data points at user k. For user k, a randomized
mechanism My, : X, — RY is (eik) 0¢)-LDP if for any
x, ©' € Xy, and any measurable subset Oy, C Range(My,),
we have

Pr(My(z) € Ok) < exp () Pr(My(2') € Ok) + 8¢

The setting when 6y = 0 is referred as pure eék)—LDP.
Definition 2 ((ec,6.)-DP [33]): Let D2 X} x Xp x -+ X
Xx be the collection of all possible datasets of all K users.
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A randomized mechanism M : D — R? is (e.,d.)-DP if
for any two neighboring datasets D, D’ and any measurable
subset O C Range(M), we have

Pr(M(D) € O) < exp (e.) Pr(M(D') € O) + 4.

We refer to a pair of datasets D, D’ € D if D' can be
obtained from D by removing the whole dataset of a user k.
The setting when 6. = 0 is referred as pure €.-DP.

13)

III. MAIN RESULTS & DISCUSSIONS

A. Privacy Analysis for Wireless FedSGD With User
Sampling

In this section, we first derive the central DP leakage for
wireless FedSGD with user sampling. Specifically, we con-
sider two sampling strategies: (a) non-uniform sampling; and
(b) both time-varying and none time-varying uniform sam-
pling. For non-uniform sampling, each user can be sampled
according to a probability that depends on the channel con-
ditions. We then study a special case, i.e., uniform sampling,
to understand the asymptotic behavior of the central privacy as
a function of the total number of users. In addition, we show
that user sampling is also beneficial for the local privacy
level. We also quantify the gain for the local privacy level
achieved by user sampling and wireless aggregation where
Gaussian mechanism is used at each sampled user. The privacy
guarantee of the proposed wireless FedSGD with non-uniform
sampling is stated in the following Theorem.

Theorem 1 (Non-Uniform Sampling): Suppose each user k
participates in the training process at iteration t according to
probability py., and utilizes local mechanism that satisfies
(Gékt),ég)-LDP if they decided to participate. The central
privacy level of the wireless FedSGD with user sampling at
iteration t is given as

~ 1)]

maxyg (k)
€ct < log {1 4 ok Pt (e’““a"’“"eht

1-9
@ log {1 + TaXk Phit (em — 1)]
1—4¢ ’
o maxg pg0e
et = 0 Ty (14)
for any &' € (26_2“\2’<t\/K,1) and = \/L?«/O.Mog (2/6"),

where i, = Zszl Di,t denotes the expected num-
ber of users participating in iteration t, and c¢ =
21og(1.25/0¢), where omin = ming oy, and L is

the Lipschitz constant for the loss function. In (14), eékf) is

the effective local privacy level of user k due to samplzng
and wireless aggregation. Step (a) follows from the Gaussian
mechanism which will become clearer in the sequel.

The proof of the Theorem can be found in Appendix B.
The privacy parameters in (14) indicates that the central
privacy leakage depends on the user with the highest sampling
probability. Intuitively, a user with high sampling probability
participates in the training process more often than other
users with lower probabilities, thereby having most impact
on the central privacy leakage. For the case with uniform
sampling probability, the privacy parameters can be simplified

3825

to the following (the proof of Corollary follows directly from
Theorem 1):

Corollary 1 (Uniform Sampling): Suppose  each  user
decides to participate with probability py, = p;, and the
local mechanism satisfies (eg? ,0¢)-LDP for each user k.
The central privacy level of the wireless FedSGD with user
sampling is given as

Q¢Sbg1+1%y@$ﬁf§_n
Ptr

Y
6C,t_5+1_5/5

(15)
for any ¢ € (2672”21(, 1) and 8 = \/LE\/O.Mog (2/6"),
where ¢ = 22 /210g(1.25/5,).

We note that both (14) (respectively, (15)) is a convex
function of {py ¢}, (respectively, p;) when eg? < 1. If the
primary goal is to have strong privacy guarantee and does
not need fast convergence, one can solve for the optimal
sampling probabilities using the expressions in (14) and (15).
Howeyver, it is difficult to obtain a closed form solution of the
optimal sampling probability for the non-uniform case. Due
to convexity, one can still solve it numerically using convex
solvers. In contrast to the non-uniform case, one can solve for
the optimal sampling probability for the uniform case as stated
in the following Lemma.

Lemma 1: For any p; > (3,03 0.51og (2/0"),
the optimal sampling probability that minimizes the upper
bound on €. in (14) is given by

pt*—min[ = 1og(2)]

for sufficiently large K. By plugging p; back into (15), one
can obtain the following upper bound on the central DP,

(16)

2 log (5) ’ Tesoe(2)
VE(1 —§)

1
_O<W>'

The proof of Lemma 1 is presented in Appendix C.
From Lemma 1, we observe that the central privacy level
behaves as O(1/K?3/*) as opposed to the O(1/vK) for
wireless FL without sampling [27] and O(1/v/K) for FL with
orthogonal transmission and user sampling [26] (see Table I).
Clearly, when both wireless aggregation and user sampling are
employed, we can obtain additional benefit in terms of central
privacy. We also plot the central privacy level of the proposed
scheme against other variations (see Fig. 2a).

We next analyze the local privacy level achieved by the
FedSGD transmission scheme.

Lemma 2: For each user k, the proposed transmission
scheme achieves (egct),pm (0¢+0"))-LDP per iteration, where

€. = log -1)+1

1 2L [ 125
é b= vV 1+ Rt Umin,t S 5[
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(a) Comparison for central privacy, where wireless aggregation with sampling is shown to outperform other variants; (b) Total privacy leakage as a

function of K, number of users for different values of 7', the number of training iterations, where L = 1, 0,y = No =3, vt =1, §; =0 = 10~% and

p= \/% % log (%) for both figures.

Opwin: Minimum per user noise variance

: €. = 0.2587

v, ‘ ‘ ‘ R
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p: sampling probability

(a)
Fig. 3.

Opin: Minimum per user noise variance

0.6 0.7 0.8
p: sampling probability

(b)

(a) Contour plot of central DP leakage as a function of op,i, and p. It can be seen that there are many operating points to achieve a specific central

DP, and there exists a tradeoff between op,iy and p for a fixed ec; (b) Contour plot of LDP leakage as a function oyi, and p, where the local leakage is a
monotonically decreasing function of p, where L = 1, §; = ¢’ = 10~% and K = 200 for both figures.

where Omin,t £ miny Ok,tr Kt e Zi]il,i;ék Dt — BK, where
B and &' are defined in Theorem 1.

The proof is presented in Appendix D.

Remark 2: From Lemma 2, we can observe the pri-
vacy benefits of wireless gradient aggregation. Asymptoti-
cally, the local privacy level behaves like O(1/y/1+ ky).
In contrast, the local privacy achieved by orthogonal
transmission scales as a constant, and does not decay
with K [27].

Remark 3: In our privacy analysis we assume that the
sampling probability is strictly greater than zero, i.e., p; > 0.
We also assume that p; > [, so that the exponent term
is non-negative. These additional assumptions (lower bounds
on sampling probability) can also be interpreted as indirect
constraints over utility (e.g., predictive accuracy of the trained
model).

In this paper, we have considered both (stronger) LDP
and (weaker) central DP privacy. If one only considers the

stronger LDP, then it is clear as shown in Fig. 3b, that
to achieve a certain local privacy budget €y, the amount of
noise each user adds is a decreasing function of the sampling
probability. The intuition behind this is that as sampling
probability increases, the wireless channel also allows the
artificial noises of the sampled users to aggregate, thus pro-
viding a boost in LDP. On the other hand, let us now consider
the (weaker) central DP. For a central privacy leakage budget
of €., as shown in Fig. 3a, the amount of noise added by each
user is interestingly a non-monotonic function of the sampling
probability.

With the utility constraints (lower bounds on sampling
probability) in place, depending on other parameters (e.g.,
Lipschitz constant, &y, 8', K), the optimal probability that
provides the strongest central DP guarantee might not be
the minimum possible probability (i.e., p = [3) anymore. For
example, for L = 1, §; = 6’ = 107* and K = 200, we can
see in Fig. 3a that there are many ways to achieve certain
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€c. One can then tune oy and py for a specific scenario.
As an example, in a power-constrained setting, one would
like to keep omin as small as possible, then one would pick
the p* as shown in 3a. This would however, result in higher
LDP leakage. Alternatively, one can consider increasing p; to
achieve better LDP at the expense of adding more noise.

While Theorem 1 shows the per-iteration leakage, we can
use advanced composition results for DP using the Gaussian
mechanism to obtain the total privacy leakage when the
wireless FL algorithm is used for 7 iterations. When the
sampling probability is time-varying, using existing results
in [34], it can be readily shown that the total leakage over
T iterations of the proposed scheme is (ec ) st )-DP for
Se (0, 1] where egT) and 5§T) can be found as follows,

6

et —1)e
(1) _— e = L)€t 1 2
I A 200g(:) 3" @ (17)
te[T] te[T]
e 2 Z (m]?XPk,t)Q
QO (Ve _q) lm
B 2(1 —4")2
/ 1 %
+ 210g(g)( Ve R _1>
> (maxpyg )2
te[r] K
X (18)

1-4 ’
where step (a) follows from the fact that e® + 1 > 2, where
2 >0 and log(1 + z) < z. Also,

T
0 =1-1 =81 -06cs)
t=1
T mgxpk,t&
11— 1— (- —F
( 6)161_[1< '+ =% )

By examining the expression in (18), we can see that, for a
given T', min; puxc,| — BK grows as K increases. Therefore,
the exponential term approaches 1 as K increases, and (18)
goes to 0 as the number of users increases. For the case
when the sampling probability is time-invariant, using existing
results in [35], it can be readily shown that the total leakage
over T iterations of the proposed scheme is (EC , T, —|—5) DP

for & € (0,1] where = /2 Tlog(1/d)e. + Te(e —1).

We can expect the same behavior to hold true for the time-
invariant case since the result in [34] is more general than the
result in [35]. We illustrate the total central privacy leakage
for the uniform sampling time-invariant case as a function of
K in Fig. 2b for various values of 7T'. As is clearly evident,
the leakage provided by wireless FedSGD goes asymptotically
to 0 as K — oo. It is worth noting that total privacy leakage
over T iterations can be further tightened using existing
techniques such as Rényi DP composition [36] (see Fig. 2b).
More specifically, after 1" iterations, the leakage in this case
will be

Te.+ IOg(l/éc)
a—1

o)

6 =6

b c CH

where « is a hyper-parameter that typically ranges 1 to 64 [37].
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B. Convergence Rate of Private FL

In this section, we analyze the performance of private
wireless FedSGD under the assumption that the global loss
function F'(w) is smooth and strongly convex,' and the data
across users is i.i.d. Specifically, we consider two scenarios
when (a) |K| is unknown and (b) |KC;| is known to the PS.
We take both privacy and wireless aggregation into account
while deriving the bounds. Interestingly, we show that the
unknown |/C;| case always outperforms the known || case.
Therefore, it is not necessary for the PS to know |/Cy|.
We confirm this observation in the experiment section as well.
Due to privacy requirements and noisy nature of wireless
channel, the convergence rate is penalized as shown in the
following Theorem.

Theorem 2 (Unknown |IC;| With Non-Uniform Sampling):
Suppose the loss function F is \-strongly convex and [i-
smooth with respect to w*. Then, for a learning rate
ne = 1/A\t and a number of iterations T, the convergence
rate of the private wireless FedSGD algorithm is

E[F(wr)] — F(w")
L2 (i, + ofic,))
Vb,

2u
S e
t=1

d
+ 55 [m}gmxaét X i, + No]

5 (19)
Vi Hir,

where i, = Yor it and O, = S et (1= Pry).

Theorem 2 is proved in Appendix E. From the above result,
we observe that the convergence rate depends on: (a) the
total number of users K, (b) the number of model parameters
d, (¢) worst amount of perturbation noise across user per
iteration, and (d) the sampling probabilities py s. When the
p; from (16) is used, the convergence rate becomes the
following.

Corollary 2 (Convergence Under Optimal pf From (16)):
Under the same assumptions as Theorem 2, the convergence
rate for the case when the optimal sampling probability p;
from (16) is

2u L?>(2VK — a)
E[F — F(w*) <
[ (WT)] (W ) — )\QTQ — 'thaK
t K [a Kmaxop, + NO]

(20)

_9 /1 2
where o = 24/ 5 log 5.

It can be seen that the constant in front of both bounds scale as
O(1/T). However, the second parts of the expressions depends
on the sampling probabilities. We can see from (20) that the
first term in the bracket is constant and that the second term
scales as O(1/v/K). Since p; is obtained when privacy is

By assuming smooth and strongly convex global loss function, we are able
to show convergence to the optimal point. One can also show convergence
for non-convex loss functions to a stationary point by following similar steps
in [38] and showing that the expectation of the gradient norm, I [||g¢(13].
diminishes as the number of iterations goes to infinity.
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Comparisons of convergence bounds and training accuracy with uniform sampling for both cases: (1) unknown |K¢| or (2) known |K¢|, where

K =20,L=2T=4000, A =02, p=0.9,d=30, No=1,0%, =0.1,7 = 1 and §p = &' = 1075. Each user has transmit SNRj, = 10 dB and

(b) is trained on MNIST dataset.

prioritized, (20) is potentially the worst bound of the two.
One can potentially select sampling probabilities for (19) to
obtain even better scaling than O(1/v/K). We next present
the convergence results for the case when K; is known at
the PS.

Theorem 3 (Known Ky
Suppose the loss function F is \-strongly convex and -
smooth with respect to w*. Then, for a learning rate
ne = 1/t and a number of iterations T, the convergence
rate of the private wireless FedSGD algorithm is given as

E[F(wr)] — F(w")
T T g2

2
< K —
Vi Gt

- A2T2
t

=1

7 et [ v |
+-2 |maxe?, x E | — — Nl e
e [ ok E i w] H
where (; = 1 — Hle(l — Ph,t)-

Theorem 3 depends on & |:“C_1t‘:| and E [ﬁ} Note that

IC; is a binomial random variable. It is difficult to obtain

closed form expressions for I {ﬁ} and B [ } . However,

1
[KCe]?
it is possible to approximate them using Taylor series approx-
imation, specifically, we approximate [ {ﬁ using Taylor’s

series around IE [|/C;|] for upto second degree as follows:

1 1 1
. [ﬂ] - E[E[uct” TER K] (1K) = (1))
* mw -E n/ctnf]
1 T
TR (22)
K MIICt|

Authorized licensed use limited to: The University of Arizona.

With  Non-Uniform Sampling):

Similarly for E [‘ Klt‘Q} , we approximate it around It [|K;|]
as follows:
1 1 307,
E|—|~—5— + (23)
K Hik.  Hik|

By plugging (22) and (23) back to Theorem 3 for the
uniform sampling case, and setting pi ¢ = p, Vk, t, pc,| = Kp
and 0|21C1,| = Kp(1 — p),Vt, we obtain,

E[F(wr)] - F(w")

21 El 12 d
< Yoo ot e
AT = [ vi¢ Epvid
Ny
frhusr e a2 |

where ( =1 — (1 —p)¥ and 02, , = max; O']%’t.

We note that this bound behaves similarly to the bound in
Theorem 2 with py; = p,Vk,t when either 7" or K is large.
Therefore, the proposed scheme performs similarly when |K;|
is known or unknown. This can be seen in Fig. 4 where
the curves are obtained for X = 200 users, and 7" = 4000
iterations. We also show this empirically in Fig. 4 using
MNIST dataset. It can be seen that for the same sampling
probability p, schemes with unknown |K;| are always better
than schemes with known |C;|. The difference between two
approaches is only at the scaling of the aggregated gradient.
This observation indicates that as long as the direction of
the aggregated gradient is preserved and the scaling is not
drastically different, the performance of the SGD algorithm
will not deviate much [39]. This is due to the fact that the
magnitude of the gradient at a particular iteration is always
corrected in the following iterations as long as the direction
is correct.
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(b) L =0.1, T = 2500.

The impact of the sampling probability on the training accuracy for single-layer neural network trained on MNIST dataset with oi . =0.1

TABLE I

COMPARISON OF PRIVACY LEAKAGE PER ITERATION FOR SINGLE-LAYER NEURAL NETWORK WITH ak : = =0.1. €¢,max AND €c,max
DENOTE THE MAXIMUM LOCAL AND CENTRAL LEAKAGES ACROSS ITERATIONS, RESPECTIVELY

Channel Aware Uniform Channel Aware Uniform
hy =2 p=03 | p=09 hgy =2 p=03 ] p=09
€0, max 3.675 5.124 2.46 €0, max 0.3677 0.5124 0.2460
€c,max 4.535 5.61 3.132 €c,max 0.3642 0.2258 0.2317
Avg. |K| 96 60 180 Avg. |K| 96 60 180
Testing Acc. 85.27% 83.98% | 86.42% Testing Acc. 84.33% 81.76% | 86.25%

@ L = 1,T = 400.

IV. EXPERIMENTS

In this section, we conduct experiments to assess the
performance of the wireless FedSGD with user sampling
on MNIST dataset for image classification. We model the
instances of fading channels Ay, ;’s via an autoregressive (AR)
Rician model [40], where the Rician parameter ' = 5 and the
temporal correlation coefficient p = 0.1. The channel noise
variance (receiver noise) is set as Ng = 1. The user’s transmit
signal-to-noise ratio is defined as SNRy dN . We use
a,%’t = 0.1 as the perturbation noise. Prior to sendmg the
local gradient to the PS, each user clips the local gradient
using the Lipschitz constant chosen emplrlcally with test
runs. We use &y = 107° and & = 2e~ 2uhe,1 /K L1075 1o
satisfy the constraint on ¢’ and to avoid it from going to 0.
We consider two different sampling schemes described as
follows,

Uniform Sampling: Let py,, = p, Vk,t for any p.

Channel Aware Sampling: Each user computes pp; =
hi.t/hw, where the threshold hy, is a hyperparameter which
is optimized via cross-validation.

We train two models: (a) a single-layer neural network
(NN) (with no hidden layer) and (b) a two-layer NN (with
one hidden layer), using MNIST dataset, which consists of
60, 000 training and 10, 000 testing samples. The loss function
we used is cross-entropy, and ADAM optimizer for training
with a learning rate of 7 = 0.001. The training samples are
evenly and randomly distributed across K = 200 users. Users
are split into three groups where the first group consists of

(b) L =0.1,7 = 2500.

68 users with SNR; = 2 dB; the second and third group
consist of 66 users in each group with SNR;, = 10 and
30 dB, respectively. We use hgy = 2 as the threshold for the
channel aware sampling scheme. For the experiments, we set
the alignment constant 7, = 1. Thus, empirically, the scaling
factor is computed as follows,

w\gk

In Fig. 5 and 6, we show the impact of sampling probability
on the training accuracy. First, we observe that a higher p
leads to a higher accuracy for the model. Next, in Table II(a),
we observe that, for the uniform case with L = 1, the central
DP leakage decreases as p increases, which contradicts with
the intuition that higher p leads to higher leakage. However,
let py = p,Vk,t in (14), ie.,

VP
DII? +dog,

(24)

Q¢ = min

€t < log { - (evf“;*ﬁ) — 1)} , (25)

we can see that the behavior of €., depends on two terms:
p/(1 —¢") and exp(c/\/K(p — [3)). As p increases, the first
term increases and the second term decreases. For a certain
range of ¢, the second term dominates, therefore, €., as a
whole, decreases. This is due to the fact that, since perturbation
noises get aggregated over the wireless channel, the privacy is
enhanced. Hence, users are encouraged to participate more
when ¢ belongs to this range. In general, ¢ depends on
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Fig. 6. The impact of the sampling probability on the training accuracy for two-layer neural network trained on MNIST dataset with a% , =08

TABLE III
COMPARISON OF PRIVACY LEAKAGE PER ITERATION FOR TWO-LAYER NEURAL NETWORK WITH o‘i_t =0.8

Channel Aware Uniform Channel Aware Uniform
hp =2 p=03]p=09 hp =2 p=03] p=09
€¢,max 1.390 2.084 0.8953 €0, max 0.2795 0.4169 0.1791
€c,max 1.991 1.653 1.487 €c,max 0.2620 0.1505 0.1633
Avg. |K| 96 60 180 Avg. |K| 96 60 180
Testing Acc. 88.72% 87.10% | 90.28% Testing Acc. 75.89% 66.33% | 83.68%
(@ L=1 (b) L=0.2
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Fig. 7. Central DPs as a function of p for different values of ¢ with K = 20. Fig. 8. The impact of the perturbation noise on training accuracy for two-
layer NN.

Okt,L,d, and ¢ for Fig. 5a and Table II(a) falls in the
range that allows the second term to dominate as p increases.
We also demonstrate the case when the first term dominates,
i.e., L = 0.1 for this set of parameters. We can see that the
central DP leakage increases as p increases from Table II(b).
When c is in this range, the amplification of privacy is not
enough to outweigh the disadvantage of participating more.
Thus, the intuition that higher p leads to higher leakage holds.
This can also be seen in Fig. 7 that the first term dominates
when ¢ = 2 and the second term dominates when ¢ = 4,6, 8.
Similar trends can be found in Table III.

From Table II, we can also see that channel aware sampling
achieves 85.27% and 84.33% testing accuracy, which is lower

than those of uniform sampling with p = 0.9. This is due to the
choice of hy,. By reducing hy,, we can improve the accuracy of
the channel aware sampling. Another interesting observation
is that, while channel aware sampling suffers slightly from
higher central DP leakages, it does achieve relatively high
testing accuracy and low LDP leakage with significant less
average number of participants compare to uniform sampling
with p = 0.9.

V. CONCLUSION & FUTURE DIRECTIONS

In this work, we showed the privacy benefits of user
sampling and wireless aggregation for federated learning.
More specifically, we showed that for certain settings (when ¢
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is relatively small), the benefit of user sampling outweighs
the advantage of wireless aggregation, therefore, creating
tension between central DP, local DP and convergence rate.
To minimize central DP, user sampling is essential, and we
can tradeoff local DP and convergence rate for central DP by
sampling less. However, for other settings (when c is relatively
large), the privacy amplification from wireless aggregation out-
weighs the disadvantage of additional leakage from sampling
more, making the tension between central DP, local DP and
convergence rate disappear. Hence, user sampling is, in fact,
discouraged to minimize central DP. The resulting leakage for
central DP was shown to scale as O(1/K?/4), improving upon
prior results on this topic. We also showed that knowing only
the statistics of the number of participants at each iteration is
at least as good as knowing the exact number of participants
and hence eliminating the need for coordination between the
PS and users.

There are several interesting future directions which we
briefly discuss next. An immediate direction would be to
study other variations of FL such as FedAvg, where each
user performs multiple local model updates followed by model
exchange with the PS. We believe that recent results (without
privacy) such as [1], [41], [42], together with the techniques
developed in this paper would be useful in such a gener-
alization. Another interesting direction would be to design
data and channel dependent sampling mechanisms, where the
sampling probabilities at each user can depend on both the
local gradients/losses as well as the local channel quality of
each user.

APPENDIX A
GAUSSIAN MECHANISM FOR LDP

In this paper, we assume that each user’s local perturbation
noise is drawn from Gaussian distribution. This well-known
technique is known as Gaussian mechanism and can provide
rigorous privacy guarantees for LDP.

Definition 3 (Gaussian Mechanism [21]): Suppose a user
wants to release a function f(X) of an input X subject to
(e¢,0¢)-LDP. The Gaussian release mechanism is defined as
M(X) = f(X)+N(0,0%1). If the sensitivity of the function
is bounded by Ay, i.e., || f(z) — f(2")|2 < Ay, Va, then for
any 0¢ € (0,1], Gaussian mechanism satisfies (g, d¢)-LDP,

where € = %1 /2log (16_35)

APPENDIX B
PROOF OF THEOREM 1

In this section, we prove the privacy amplification due
to non-uniform sampling of the users. For the per-iteration
analysis, we drop the iteration index ¢ for brevity. Let Y
denote the output seen at the PS through MAC and Y_;
denote the output when user k£ does not participate. Recall
that DP guarantees that any post-processing done on the
received signal does not leak more information about the input.

Therefore, it is sufficient to show the following,
Pr(Y € S) <e“Pr(Y_p €8)+ 0., Yk, (26)

and obtain €.. The challenge of this proof is the random par-
ticipation of users and that the local noises get aggregated over
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the wireless channel. In this case, let K denote the random set
of users that participate in an iteration, and let R = |K| denote
the random variable representing the number of participants.
One can readily check that R is a summation of K Bernoulli
random variables and has mean pur = Eszl Pr, Where py, is
the sampling probability of user k. The number of participants
R = |K| determines the amplification of local DP via wireless
aggregation, and in turn, determines the central DP. To take
all possible K into account for the analysis, we condition the
lefthand side of (26) with the event that /C deviates from the
mean, i.e., |R — pugr| > K for any 5 > 0, and bound it using
Hoeffding’s inequality and local DP guarantee. To apply local
DP guarantee, we need additional conditioning on the event &
that denotes the event where user k participates in the training,
ie., k € K. Note that p;, = Pr(&),Vk and the conditional
probabilities pr, = Pr(Ex||R — ur| < BK),VE can be readily
bounded by p;’s using total probability theorem and Hoeffd-
ing’s inequality, i.e., one can show that pj. < py/(1 —¢"). For
any k € [K]|, we have the following inequalities:

Pr(Y €S)
= Pr(R — jin| > BK) Pr(Y € S||R — | > OK)
+ Pr(|R — pr| < BK) Pr(Y € S|[R — pr| < BK)
<0 - 1+Pr(|R— pr| < BK)Pr(Y € S||R — ur| < BK),
(27)
where the inequality follows from the fact that any probability
is upper bounded by 1 and from the Lemma below:
Lemma 3: (Hoeffding’s Inequality for Binomial Random
Variable) For a binomial random variable X with K trials

and mean |x, the probability that X deviates from the mean

by more than BK can be bounded as,
Pr(|X — px| > BK) < 207K 2.5 (28)

Sfor any >0, and any ¢’ € [0,1).
To further upper bound (27), we use the following Lemma.
Lemma 4: Let py, = Pr(E||R— pur| < BK) and ¢ be some
constant that depends on the privacy mechanism, specifically

. . A
for the Gaussian mechanism we have ¢ = f—L 2log 15—55,

where L is the Lipschitz constant. The following inequality is
. . e i )
true when the local mechanism satisfies ( NITE 64) LDP:

Pr(Y € S||R — pr| < SK)
< e + [y (eVrRTR — 1) +1]
X Pl"(Yfk € S||R - /LR| < ﬁK)

Using Lemma 4, we can bound (27) as follows:
Pr(Y € S)
< 0+ Pr(IR - pr| < BK) [pud

n %jk (eﬁ _1)+1} Pr(Y_, €S||R—pr| < BK)

(a)
< & + prdr + Pr(|R — ur| < BK)
X {ﬁk (e\/m;ﬁ _ 1) + 1} Pr(Y-; € 5)

Pr(|R — pur| < BK)
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where (a) follows from total probability theorem and the fact
that Pr(|R — pr| < BK)prde < pide; and (b) follows from
inequality pr < px/(1 — 0’) mentioned at the beginning of
the proof. We can obtain a bound for each user % in a similar
fashion. By selecting the bound that gives us the largest privacy
parameters, we recover the result of Theorem 1. We next prove
Lemma 4.

Proof of Lemma 4: With the &), defined above, let &
denote its complementary event. Then, using total probability
theorem, we have

Pr(Y € S|[R — pg| < BK)
= Dk Pr(Y S S||R— MR| < BK, 8k)

+ (1= pr) Pr(Y € S||R — pur| < BK, &)
W 5. Pr(Y € S|IR — pg| < BK, &)

+ (1= pr) Pr(Y_y € S||R — ur| < BK),  (30)

where we can show that (a) is true as follows,

Pr(Y € S||R — pr| < BK, &)

= > [Pr(K = A_4||R — pgr| < BK, &)
A_rC[K],
|A_k|~pr|<BK

x Pr(Y € S||R — pg| < BK,EL,K = A_y)]
WS [Pr(K = AR - pr| < BK)

A_xC[K],
[|A_k|—pr|<BK

x Pr(Y € S||R — | < K, E5,K = A_y)]
® 3 [Pr(K = A_4||R — pig| < BK)

A_xC[K],
[|A_k|—pr|<BK

X Pr(Y_k €S||R—,UR| < BK,K ZA_k,)}

= Pr(Y_4 € S||R - gl < BK) G1)

where (a) holds since user k is not in the set A_y, therefore,
conditioning on the event £ does not change the probability;
and (b) follows due to similar argument. Next, we upper bound
Pr(Y € S||R — pur| < BK, &) as follows:

Pr(Y S S||R—MR| < ﬁK,gk)

= > [Pr(K=A|R-pg| < BK, &)
AC[K]:k€EA,
A~ pr|<BK

x Pr(Y € S||R — pug| < BK, &, K = A)],  (32)

Note that, in wireless setting, when each user k applies a
mechanism that satisfies (ez, d¢)-LDP, it implies (¢/+/|Al, d¢)-
DP [27] (using quasi-convexity property of DP [43]), we have,

PI‘(Y S S||R - /LR| < BK, &, K = A)

< eV Pr(Y € S||R — pg| < BK,EL,K = A_y) + 6.

(33)
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Plugging (33) into (32), we obtain the following:
PI"(Y S S||R - /LR| < ﬂK,gk)

< ¥ [pr(;c = A||R — pgr| < 8K, &)

AC[K]:kEA,
[|A|-pr|<BK

x [eﬁ Pr(Y € S||R—pur|< 8K, E,K=A_y) + 54 ]

Do+ Y [Pk = AR~ pnl < BE)VT
AC[K]:kEA,
[|Al=pr|<BK

x Pr(Y € S||R — pug| < 8K, £ K = A_k)}

(25@4- Z

AC[K]:kEA,
[|Al-pr|<BK

x Pr(Y_i € S||R — pr| < BK,K = A,k)}

D

AC[K]:k€EA,
[|A]=pr|<BK

x Pr(Y_p € S||R — pur| < BK,K = A—k)} +0¢

|:PI‘(K: = A—k’HR_/J/R| < ﬁK)eﬁ

(c)

< Vin R [Pr(IC = A_4|IR — pr| < BK)

— ViR Pr(Y_y € S||R — pur| < BK) + 0 (34)

where (a) and (b) follows the similar argument as the one used
in (31), distributive property of multiplication and the fact that
the probability multiplied with J, sums up to one. From the
condition on the cardinality of the set R, we know that R =
|A| and pr — BK < |A| < pur + BK. Therefore, (c) follows
from using the lower bound on | A|. Then, by combining (30),
(31) and (34), we have
Pr(Y € S||R — pr| < BK)
< preVrr K Pr(Y_y, € S||R — pir| < BK) + prde
—I—(l—ﬁk)Pr(Y_k ES||R—MR| < BK). (35)

Rearranging the above inequality, we recover the result of
Lemma 4. |

APPENDIX C
PROOF OF LEMMA 1

In this section, we find the optimal sampling probability p;
that minimizes the central privacy level ¢, for the wireless
FedSGD scheme. For the per-iteration analysis, we drop the
iteration index for brevity. We minimize €. as follows:

€. = log [% (eﬁ _1) +1}

< _P
1=

(eﬁ - 1) . (36)

We assume that p takes the form of IQ/K, ie., p = %

where we assume that p > [, so that the exponent term is
non negative. Then,

k _c
ik —
“= K1-09) (V7 -1)
(a) ]~f c A~
< =&, (37)
KO=9)" i ox
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where in step (a) for large K, we assume that the exponent
is less than 1, and we use the fact that ¢ — 1 < z,Vz < 1.
Taking the derivative of the right-hand side w.r.t. k and setting
it to zero yields the following:

5‘€C C ]’;}~ =3 ~ —1
oF ~ K(1-9) [—5(/@—5K)2 +(k—ﬁK)2] =0

= k= 23K.

We then check the second derivative of the right-hand side
and obtain,
0%, -1
— o — X
Ok? 2

[—%/%ué — BK) ™% 4 2(k - ﬂK)—W] :

It can be readily shown that 825; < 0 when k > 20K.
To this end, the optimal sampling probability that minimize

€. is p* 20. Using Lemma 3, we know that f3

\/—%, /4 1log (). By plugging p* and § into (36), we get:

2log (7) T3y 1
m(e —1)+1—0< )

This completes the proof of Lemma 1.

€. =log 5
4

APPENDIX D
PROOF OF LEMMA 2

The final received signal at the PS from (10) can be
expressed as: y; = Eke,ct hitak18r(We) + z; and the
variance of the effective Gaussian noise z; is

2 2 _ 2 2 2 @)
0" =0, = § hk,tak,tgk,t + NO 'Yt § Jkt + No,
kERK: kEK:

where step (a) follows from the alignment condition in (6).
In order to invoke the result of the Gaussian mechanism
(Appendix A), we next obtain a bound on the sensitivity for
user k. To bound the local sensitivity of user k, we fix the
gradients of the remaining K¢ \k users. The local sensitivity
of user k can then be bounded as

Apy = nax lye — yill2
= max [|hk, okt (8k(Wi) — &' (We))l[2
k7Dk
<

hy,po,e max ||gr(we)ll2 + 118" x (we)l]2
Dy, D),

(@ ®)
< 2hg oL = 2L, (38)

where (a) follows from the fact that ||gx(w¢)||2 < L, Vk; and
(b) follows from the channel inversion transmission scheme.
We next show the guarantee on the local DP of user k£ when
user k is a participant. Following similar steps used for proving
(27), it can be shown that,

Pr(Y " € S|&) < 8 + 6 + et Pr(Y P e S|€ )

< '+ op+e VH”‘R VithR-BK PI“( E S|gk)

(39)

3833

where pp = Efi“ 2 Pi and egct) is the effective local

privacy level of user k& due to sampling and wireless
aggregation. Step (a) follows from applying the Gaussian
mechanism, i.e.,

2L 1.25
M < ot 2log —
&t tpn—BK B
\/Z §r- 'YEUI%,t + No ¢

2y L / 12
\/(1+uR—5K)X'yt2mink,taﬁt ¢
1 2L 1.25
= X 2log ——.
V1+pr — K Omin ¢

Note that (39) is conditioning on the event when user k
participates. We next use the total probability theorem and
obtain the following set of steps:

Pr(v,® e S)

= pi Pr(Y} (1 — pr) Pr(Y;!

(@) .

< pee Pr(Y'P) € 81&) + (6 + 6')
+ (1= pr)e Pr(Y," € S|&7)

= e Pr(YF € 8) + pr(d + &),

) e S|&) + ) e S|EF)

where step (a) follows from (39) and the fact that when user
k is not participating, we have

Pr(Y® € 5l&) = 2 Pr(Y P € 51&)

< e Pr(Yz(, ) € S|€Y), V.

We arrive at the proof of Lemma 2.

APPENDIX E
PROOFS OF THEOREM 2 AND THEOREM 3

When the data is i.i.d., we can invoke a slightly modified
version of the result of [44] on convergence of SGD for
p-smooth and A-strongly convex loss, which states

E[F(wr)] - F(w") < AQT (Z GQ/T> (40)

where G? is the upper bound on the second moment of the
gradient estimate, i.e., E [||g|3] < G?.

A. |KC¢| Is Unknown at the PS

To prove the convergence rate of the proposed algorithm,
we recall that the gradient estimate at the PS in (8) needs
to satisfy: (a) Unbiasedness, i.e., IE [g;] = g, since the total
additive noise is zero mean; and (b) Bounded second moment,
E [[|&:]13] < G, which we prove as follows. Recall that the
estimated gradient at the PS is

B= - Yu L,

|K:t| kEK ’ytulKitl
1
=Y Y Vawe o) ¢ g,
K| ke, zeBk TEHIK|
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By taking the expectation over the randomness of SGD, user
sampling and noise, we have

E[g] = 3N Vilwe (oM

“"Cf‘b keK: i€By
1
= — B[] bt = &
M’Ct\b
Therefore, the estimated gradient is unbiased. We next
obtain the bound on the second moment of the estimated

gradient. We have

E[Ilétllg]
=E g 2|2
%mm k; IR
(@ 1 E 2l L 2
= 55— 1) ge(woll3| + B [llzll3]
Vi HK,| KEK,
1
= 55— E[llzl3
Vi e, [z
+E D w3+ > Y grlwe) gr(we)
ke, ke k'eky
® 1
< 5 EBllzl3] + B | Y lex(wi)l3
Tk, ke,

+ Y lgrwollzllgr (we)ll:

keER: k' €Ky
1

(© E [
< B [|Ki| L? + K| (1Ko = 1) L] + M
|K:t| 'Yt/-‘\lct\
_PE(KP] B[l
Vi, Ve,
L (3. | + o2
< DT | o Bl + o
Ve M| Tikieg LR
L*(pde  +0be ) d
K T Tk [ ;
_ + max oy, ;[ i, +N0]
7t2ﬂ|2;ct| 7t2ﬂ|2;ct| AX Okt HIK4|
ce (41)

where (a) follows from the fact that |E [ng zt} =0, (b) follows
from Cauchy-Schwarz inequality, and (c) from the assumption
that ||gr(w¢)||2 < L, i.e., the Lipschitz constant Vk. Plugging
G? from (41) in (40), we arrive at the proof of Theorem 2.

B. |K¢| Is Known at the PS

We then move to the case when |K;| is known at the PS.
Recall that the estimated gradient at the PS for the known |/C; |
case is

. 1 1
& =7 D gk(wi) +

—
Ct| t|k€,C WGlKe|

= e 3 1Y Vw0 o)+ e,
<1t|lct|k€,C iEBy, ’YtCt|’Ct|

where (; is used for maintaining unbiasedness of the estimated
gradient and will be specified later. By taking the expectation

over the randomness of SGD, user sampling and additive
noise, we have

E (]
w Pr(JK] = O)E [&] | = O

- Pr(i — KBl il — V)

k'=1

(b)O—I—ZPr (1| = &)

k.l_
v (k) (k) ICl =K
Wg; p 3 Tt
© s
C&ZPme> L= [ -pes), @2
C k'=1 C k'=1

where (a) follows from total probability theorem; (b) follows
from the fact that when |K;| = 0, g; = 0; and (c) follows from
the i.i.d. assumption so that the conditional expectation is g;.
In order get unbiased estimate for gy, (; is chosen as (; =
1— 15, (1 = pr.s). To bound the second moment, the proof
follows similar steps as the unknown || case, and is omitted
due to space limitation.
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