
Learning Distributed Caching Strategies in Small
Cell Networks

Avik Sengupta†, SaiDhiraj Amuru‡, Ravi Tandon†, R. Michael Buehrer‡, T. Charles Clancy†
†Hume Center for National Security and Technology, ‡Wireless@VT,

Virginia Tech, Blacksburg, VA USA
Email: {aviksg, adhiraj, tandonr, rbuehrer, tcc}@vt.edu

Abstract—Caching has emerged as a vital tool in modern

communication systems for reducing peak data rates by allowing

popular files to be pre-fetched and stored locally at end users’

devices. With the shift in paradigm from homogeneous cellular

networks to the heterogeneous ones, the concept of data offload-

ing to small cell base stations (sBS) has garnered significant

attention. Caching at these small cell base stations has recently

been proposed, where popular files are pre-fetched and stored

locally in order to avoid bottlenecks in the limited capacity

backhaul connection link to the core network. In this paper, we

study distributed caching strategies in such a heterogeneous small

cell wireless network from a reinforcement learning perspective.

Using state of the art results, it can be shown that the optimal

joint cache content placement in the sBSs turns out to be a NP-

hard problem even when the sBS’s are aware of the popularity

profile of the files that are to be cached. To address this problem,

we propose a coded caching framework, where the sBSs learn

the popularity profile of the files (based on their demand history)

via a combinatorial multi-armed bandit framework. The sBSs

then pre-fetch segments of the Fountain-encoded versions of

the popular files at regular intervals to serve users’ requests.

We show that the proposed coded caching framework can be

modeled as a linear program that takes into account the network

connectivity and thereby jointly designs the caching strategies.

Numerical results are presented to show the benefits of the

joint coded caching technique over naive decentralized cache

placement strategies.

I. INTRODUCTION

Caching has emerged as an important tool in wireless
content distribution networks and has garnered significant
attention in the paradigm of video distribution and streaming.
Caching has the potential to reduce network load by storing
content at local caches during times of low network load so
that users can be served directly from these caches when the
traffic volume is high. Different aspects of caching networks
have recently been studied in literature [1]–[4]. Optimal cache
placement which accounts for the network topology has been
studied in [5], [6] and references therein. In [5], the authors
addressed a distributed cache placement problem with an aim
to reduce the delay in delivering the files to the end users. A
single sBS cache content placement problem was addressed in
[6] from a reinforcement learning perspective.

In this work, we study distributed caching strategies in a
small cell wireless network from a reinforcement learning
perspective. Specifically we use a distributed caching model
similar to [5] and present novel caching strategies by using
a multi-armed bandit (MAB)-based framework which was

earlier used in [6]. The files to be cached are modeled as
the arms of the MAB problem. Since, multiple files can be
cached at any given time, a more relevant framework is the
combinatorial MAB framework [7]. The goal of the caching
strategy is to pick the best set of files at any time t based on
their popularity so that the requests from users can be directly
served by the caches without accessing the core network.
Even if the file popularity is known a priori, we show that
the optimal distributed cache content placement turns out to
be NP-hard. However, in reality the file popularity profile
could change over time and hence it is necessary to learn
it dynamically during the caching procedure. As it is well
known in the MAB literature, there is a tradeoff between the
exploration of new arms (i.e., caching new files to estimate
their popularity) versus the exploitation of the known arms
(caching files that are known to have high popularity and
hence give higher rewards). We thus use a UCB-type algorithm
[8] to learn the file popularity, where we also take into
consideration the fact that the file popularity is modeled by
a Zipf distribution [6].

We then present a novel caching strategy that uses the
learned file popularity profile to optimize the cache content
placement by taking into account the users’ connectivity to
the small cell base stations (sBS). Specifically, we present an
optimal joint cache placement policy by storing segments of
the files in the caches and show that it is a convex relaxation
of the previously mentioned uncoded problem. This is realized
in practice by using rateless codes (for example, fountain
codes) [9], that can produce endless streams of coded symbols
and ensure complete decoding of the original files when a
fixed fraction of these coded symbols are collected. Using
numerical simulations, we show that the proposed distributed
caching strategy holds an advantage over naive strategies that
locally optimize their cache contents without accounting for
the network topology. We also show that in a realistic scenario
where each user is only connected to few sBSs in the network,
the proposed coded cache placement outperforms both the
naive coded and uncoded solutions.

The paper is organized as follows: the system model is
detailed in Section II, followed by the formulation of the
uncoded cache placement as an integer assignment problem
in Section III. A learning-based coded caching framework is
described in Section IV, the numerical results are presented in
Section V and finally Section VI concludes the paper.

978-1-4799-5863-4/14/$31.00 © 2014 IEEE

sBS 1 sBS 2 sBS 3

User 1 User 2 User 3 User 4 User 5

Central Base
Station

Fig. 1. System Model for Distributed Caching with number of sBSs, N = 3
and the number of users, U = 5.

II. SYSTEM MODEL

We consider a set of users u 2 U = {1, 2, . . . , U} in an
area served by a central base station (BS) and a set, S =

{1, 2, . . . , N}, of sBS’s. Users can make random requests from
a directory of files F = {1, 2, . . . , F} where each file f has
size Sf bits. The central BS is considered to have a cache
memory large enough to store the entire file directory. Each
sBS has a cache memory that can store M bits of data. Each
user can be served from the cache of either the cellular BS or
one or more sBSs in the network. If a user’s request cannot be
serviced from the caches of the sBS’s to which it is connected,
then it can be downloaded directly from the central BS. This
ensures that all the users’ requests are serviced. However,
downloading content from a sBS is much more cost effective
than downloading the content directly from the central BS and
thus the optimal cache placement should minimize the need
for servicing user requests directly from the central BS. An
example small cell wireless network architecture is shown in
Fig. 1. The link from the central BS to the sBSs represents
the backhaul links in the wireless network.

The connectivity of the users and sBS can be modeled as a
bipartite graph G = (S,U , E), where the edges (Sn, u) 2 E
if there exists a communication link between user u and
the n-th sBS. N (u) ✓ S denotes the neighborhood of user
u i.e., the sBSs that can serve the user. For example, from
Fig. 1, N (1) = {S

1

} while N (2) = {S
1

,S
2

}. On the other
hand, the neighborhood of the nth sBS i.e., the number
of users connected to sBS n is denoted by U(Sn). For
example, in Fig. 1, U(S

1

) = {1, 2} and U(S
2

) = {2, 3}. Let
d

t
f,n denote the number of requests for file f from the users

u 2 U(Sn) at a time t. The instantaneous demand d

t
f,n is

an independent and identically distributed random variable
with a mean ✓f,n 2

⇥

0, |U(Sn)|
⇤

, where |U(Sn)| indicates the
cardinality of the set U(Sn). In other words, the mean ✓f,n

signifies the popularity of the f -th file at the n-th sBS i.e.,
the average number of requests for the file f at Sn (from the
users in U(Sn)) at time t. Thus, based on the user requests
up to time (t� 1), the files have a popularity distribution
⇥n = {✓

1,n, ✓2,n, . . . , ✓F,n}. The true popularity distribution
of files in a multimedia network is generally modeled as a

ZipF distribution [10], [11]. Thus the mean demand is:

✓f,n =

|U(Sn)|
f

�
PF

k=1

k

��
, (1)

where � models the skewness of the popularity profile. For
example, � = 0 models a uniform file popularity profile and
as � increases the skewness increases. We ask the following
question in this work: Given a network topology, sBS cache
memory capacity and random file requests from users, what
is optimal caching strategy such that a maximum number of
requests can be served directly from these caches without
accessing the BS? To answer this question, we formulate
the joint cache placement as a reward maximization problem
and discuss a reinforcement learning-based coded caching
framework.

III. UNCODED JOINT CACHE PLACEMENT

Based on the problem definition mentioned earlier, we
model the cache placement problem as follows. When the
popularity profile ⇥n of all files f 2 F is known at the sBSs
Sn, the average instantaneous reward for each user u in the
network is then defined as:

Ru =

|N (u)|
X

n=1

F
X

f=1

✓f,n · Sf ·

2

6

4

|N (u)|
Y

i=1

i 6=n

(1� x

i
f) · xn

f

3

7

5

, (2)

where x

n
f are the elements of the F ⇥N cache assignment

matrix X and x

n
f = 1 denotes that the file f is cached at the n-

th sBS. The expression
Q|N (u)|

i=1,i 6=n(1� x

i
f) · xn

f is an indicator
function (defined over the set of feasible assignment matrices
X) for the condition that the file f is placed in the cache
of the n-th sBS of the neighborhood N (u) of user u. This
condition ensures that the file that may be requested by a
user connected to several sBS’s needs to be placed at only
one sBS among the user’s neighbor set, so that the remaining
cache memory can be utilized to serve other users’ requests.
In other words, the reward formulation ensures that there is
minimal repetitive placement of a file f while concurrently
maximizing the number of requests served from the sBS
caches. Thus, the optimal joint cache placement maximizes
the average instantaneous reward of the users in the network.
The cache placement is formulated as the following integer
programming problem:

max

X

U
X

u=1

Ru s.t.
F
X

f=1

x

n
f · Sf M, 8n,

X 2 {0, 1}F⇥N
. (3)

The optimal cache placement in (3) encourages placement of
a file f only once in a given user’s neighborhood of sBSs
so that remaining space in the other caches can be used to
service more requests. However, this formulation also allows
replication of files in cases where the average instantaneous
reward for system, i.e., the amount of data downloaded from
the caches on an average is maximized by storing the file at
multiple caches. Following [5], it is easy to show that even
with knowledge of the popularity profile ⇥n at each sBS, the

2

Algorithm 1 Estimating File Popularity

1: for sBS Sn 2 {1, . . . , N} do

2: if file f is cached then

3: Update ¯

✓f,n =

Pt
i=1 di

f,n

t , where
Pt

i=1

d

i
f,n is the

cumulative sum of requests for file f from users u 2
U(Sn) until time t.

4: Compute ˆ

✓f,n=
¯

✓f,n+
|U(Sn)|·Sf

F�

q

3 log(|U(Sn)|t)
2|U(Sn)|Tf,n

where Tf,n is the number of times a fraction of file f is
cached in Sn up to time t, |U(Sn)| indicates cardinality
of the U(Sn).

5: end if

6: end for

integer assignment problem in (3) is a NP-hard problem. In
practice, the popularity profile can change with time and may
not be known at the sBS, i.e., it must be learnt over time.
Also, allowing only a {0, 1} file assignment is an assumption
which can be too restrictive. To this end, we next propose
a formulation which addresses these issues. We model this
problem from a reinforcement learning perspective using a
coded caching strategy to learn file popularity profile at each
sBS and the corresponding optimal cache placement strategy.

IV. LEARNING THE CODED JOINT CACHE PLACEMENT

In order to solve the optimal cache placement problem, we
introduce a convex relaxation of the uncoded cache placement
wherein file segments can be stored in the caches instead of
the entire files. As discussed in [5], this can be achieved in
practice by encoding files using a rateless code like Raptor
Codes [9]. The sBSs can then store the resulting coded
outputs (in other words, the file segments) which enable the
original file recovery when a user gathers enough number
of segments/fractions. The coded cache placement matrix is
denoted by an F ⇥N matrix L with [L]f,n = [�f,n] for f 2 F
and n = 1, . . . , N . The fraction �f,n (normalized by file size
Sf) is the fraction of coded outputs stored in the cache of Sn.

Since the file popularity profile is unknown at each sBS,
we introduce a reinforcement learning-based framework to
learn it jointly at each sBS, while accounting for the network
topology. To this end, we formulate a MAB problem [7],
where the files f 2 F are treated as the arms of the MAB
framework. Since each cache can choose several files at any
time t (assuming Sf M), it is appropriate to model it as
a CMAB problem [6]. At time t, sBS Sn learns the file
popularity distribution ¯

⇥n = {¯✓
1,n,

¯

✓

2,n, . . . ,
¯

✓F,n} based on
the history of instantaneous demands i.e., dtf,n as detailed in
Algorithm 1. An UCB-based algorithm [8] is used to perturb
¯

⇥n to obtain b

⇥n that are used to determine the optimal
cache placement. The perturbation factor in Algorithm 1 is
|U(Sn)|·Sf

F�

q

3 log(|U(Sn)|t)
2|U(Sn)|Tf,n

, where |U(Sn)| is the number of
users connected to Sn and accounts of the network topology
as opposed to the formulation in [6] which only accounts for
a single BS. This factor is based on a modified combinatorial
UCB algorithm that promotes exploitation-exploration based
on the Zipf distribution i.e., it places files in the caches by

artificially increasing the popularity measure of files that are
less often cached. The factor Tf,n denotes the number of times
a file f 2 F has been cached in Sn until time t and is updated
if at time t, a fraction �f,n > 0 is stored in Sn.

The optimal cache placement problem is again modeled as
a reward maximization problem. Given that a user requests
a file f at time t, we first order the sBSs, n 2 N (u), in
descending order of the file popularity profile estimate upto
time t� 1, with the first sBS being the one with the highest
ˆ

✓f,n, n 2 N (u). The fraction of file f that a user is able
to download from Sn is denoted by �f,nSf . Similar to (3),
a reward measure for this download is given by �f,n

ˆ

✓f,nSf .
The instantaneous reward for a user u that can download file
f from the first k sBS’s in the ordered list is given by,

R

f,k
u =

k�1

X

i=1

�f,i
b

✓f,iSf +

1�
k�1

X

i=1

�f,i

!

b

✓f,kSf

=

"

b

✓f,k �
k�1

X

i=1

�f,i(
b

✓f,k � b✓f,i)
#

Sf

8k 2 {1, 2, . . . , |N (u)|} . (4)

The reward function is linear (affine) in terms of the
placement variables �f,n. The file f can be fully downloaded
from the k best caches in the list if and only if

Pk
i=1

�f,i � 1.
If the whole file cannot be downloaded from all the caches in
the list i.e.,

P|N (u)|
i=1

�f,i < 1, then the remaining fraction can
be downloaded from the central BS. The reward for a user u
for downloading the file f is thus a piecewise-defined affine
function of the placement variables �f,n:

R

f
u =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

R

f,1
u if �f,1 � 1

...

R

f,j
u if

Pj�1

i=1

�f,i < 1

Pj
i=1

�f,i � 1

...

R

f,|N (u)|
u if

P|N (u)|�1

i=1

�f,i < 1

(5)

We aim to maximize the sum of minimum average rewards for
all users and files to determine the optimal cache placement.
Thus the average instantaneous reward is defined as the point-
wise minimum of the piecewise-defined affine function:

¯

R

f
u = min

k2{1,2,...,|N (u)|}
¯

R

f,k
u , (6)

which is a concave function [12] of the placement matrix L.
Next we prove that the expression in (6) is a concave

function of L. Suppose that the user downloads the entire file
from the first j caches in the list i.e., ¯

R

f
u =

¯

R

f,j
u . We have to

show that ¯

R

f,j
u ¯

R

f,j
0

u 8j 6= j

0
. Using (5), the condition is

given by:

b

✓f,j �
j�1

X

i=1

�f,i(
b

✓f,j � b✓f,i) b✓f,j0 �
j
0
�1

X

i=1

�f,i(
b

✓f,j0 � b✓f,i)

(7)

Considering the case for j
0
> j, we can re-write (7) as:

3

j
X

i=1

�f,i � 1

!

⇣

ˆ

✓f,j � ˆ

✓f,j0

⌘

+

j
0
�1

X

i=j+1

�f,i

⇣

ˆ

✓f,i � ˆ

✓f,j0

⌘

� 0 (8)

This is easily verified as
Pj

i=1

�f,i � 1 and for all j
0
> j, we

have (

ˆ

✓f,j � ˆ

✓f,j0) � 0. Also since i < j

0
and (

ˆ

✓f,i � ˆ

✓f,j0) �
0. Therefore (8) is satisfied. The proof for j

0
< j is similar.

Thus, we have shown that ¯

R

f
u is a concave function of L.

The optimal coded cache placement problem can then be
formulated as the following convex optimization1 problem:

max

L

U
X

u=1

F
X

f=1

min

k2{1,2,...,|N (u)|}

n

R

f,k
u

o

s.t.
F
X

f=1

�

n
f · Sf M, 8n,

L 2 [0, 1]

F⇥N
. (9)

Similar to [5], the optimization in (9) can be reduced to the
following LP by introducing the auxiliary variable yfu and the
resulting optimization problem is given by,

max

L

U
X

u=1

F
X

f=1

yfu

s.t. yfu R

f,k
u 8k 2 {1, 2, . . . , |N (u)|}

F
X

f=1

�

n
f · Sf M, 8n,

L 2 [0, 1]

F⇥N
. (10)

The average instantaneous reward obtained with the coded
cache placement is an improvement over the uncoded case
as the {0, 1} binary assignment of the uncoded scheme is also
a feasible solution to the coded caching problem [5]. Thus
the coded caching is a convex relaxation of the uncoded case.
The reward value is however also dependent on the learning
problem, the UCB perturbation and also the network connec-
tivity. In the next section, numerical results are presented for
the proposed coded caching framework.

V. NUMERICAL RESULTS

The performance of the proposed joint learning and cache
placement strategy is compared against two naive schemes
which give further insight into the behavior of the small cell
caching network. The two naive schemes are as follows:

• Uncoded Local Learning Scheme: In this scheme, un-
coded cache placement is performed locally at each sBS.
In this procedure, every sBS learns the file popularity
profile from its own set of connected users without taking
into account the overall network connectivity. In other

1Maximizing a concave function subject to constraints is equivalent to
minimizing a convex function subject to the same constraints [12].

words, the exploration-exploitation based perturbation in
this naive scheme is based only on the local cache
placement. This scheme entails the solving the following
knapsack problem at each sBS:

max

X

F
X

f=1

ˆ

✓fSfxf s.t.
F
X

f=1

xf · Sf M, 8n,

X 2 {0, 1}F⇥1

. (11)

• Coded Local Learning Scheme: In this case the learning
process is similar to the previous case. However, the file
placement is relaxed to store fractions of the rateless
encoded files entailing the solution of the following linear
optimization problem at each sBS:

max

L

F
X

f=1

ˆ

✓fSf�f s.t.
F
X

f=1

�f · Sf M, 8n,

L 2 [0, 1]

F⇥1

. (12)

For the simulations, a network of 5 sBSs, 30 users, 50 files and
a cache size of M = 30 was used. The files are chosen to have
sizes Sf 2 {1, 3, 5, 7, 9}. The users’ requests were randomly
generated by sampling a Zipf file popularity distribution with
� = 2. Each sBS then used the learning procedure pertinent to
the caching scheme in order to estimate � [6] and subsequently
the popularity profile. The coded distributed (joint learning)
cache placement scheme is compared against the naive coded
and uncoded local learning based schemes in Fig. 2. The
metric which is observed is the instantaneous reward i.e., the
amount of data downloaded from the caches at a given time
instant. It can be seen that the solutions converge quickly

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Learning Iterations

In
st

a
n

ta
n

e
o

u
s

R
e

w
a

rd

Coded Joint Learning

Coded Local Learning

Uncoded Local Learning

Fig. 2. Instantaneous rewards for the Coded Caching schemes . The param-
eters used in the simulations are N = 5, U = 30, F = 30,M = 30, Sf 2
{1, 3, 5, 7, 9}, � = 2.

and the coded joint placement outperforms the coded and
uncoded local learning based schemes. This is expected as
the joint learning accounts for the connectivity and topology
of the network while optimally placing file segments in the
sBS caches. This policy ensures that minimal replication of
file fragments occur in those caches which have common
users in the underlying wireless network. The connectivity

4

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Learning Iterations

In
st

a
n
ta

n
e
o
u
s

R
e
w

a
rd

Coded Joint Learning

Coded Local Learning

Fig. 3. Instantaneous rewards for the case of sparsely connected network.
The parameters used in the simulations are N = 5, U = 30, F = 30,M =
30, Sf 2 {1, 3, 5, 7, 9}, � = 2.

matrix of the network, C 2 {0, 1}U⇥N , defines the wireless
communication links in G = (S,U , E). The sparsity of the
connectivity matrix has interesting implications on the instan-
taneous reward. For the simulation in Fig. 2, a relatively non-
sparse connectivity matrix was used. This is the most realistic
scenario where each user is connected to a small subset of
sBSs in the network. Under such a network topology, the joint
learning holds a clear advantage.

In a sparsely connected network, the advantage of joint
learning diminishes as the joint optimization problem repre-
sents a decoupled situation i.e. it reduces to the local learning
problem. It can be seen from Fig. 3 the rewards for the
two cases under this network topology are almost identical.
In fact the local learning holds an edge in this case as the
exploration-exploitation in the joint learning case leads to
falsely optimistic estimates of popularity and the few users
with multiple connectivity tend to adversely influence the
cache placement.

The other extreme is the case of a very densely connected
network, where almost all the users are connected to almost
all the sBSs in the network. In such a scenario, each sBS sees
almost an identical set of requests and the popularity estimates
across the sBSs are almost identical. In this case the ordering
of caches for file placement based on ˆ

✓f,n as discussed in
Section IV becomes close to uniform. Thus it is expected that
the performance of the joint and the local scheme will again be
close to each other. This behavior is observed in Fig. 4. How-
ever in the densely connected case, the joint learning holds
an advantage as the joint exploration-exploitation procedure
yields higher dividends as more caches share common users
and hence the joint learning better optimizes the placement
(for example, by minimizing the file replication).

VI. CONCLUSIONS

In this paper, we addressed the problem of distributed
cache placement in a small cell network from a reinforcement
learning perspective. The optimal uncoded cache placement

0 10 20 30 40 50 60 70 80 90 100
60

70

80

90

100

110

120

130

140

Learning Iterations

In
st

a
n
ta

n
e
o
u
s

R
e
w

a
rd

Coded Joint Learning

Coded Local Learning

Fig. 4. Instantaneous rewards for the case of densely connected network.
The parameters used in the simulations are N = 5, U = 30, F = 30,M =
30, Sf 2 {1, 3, 5, 7, 9}, � = 2.

problem was shown to be NP hard even with the knowledge
of the file popularity distribution. A convex relaxation to
the uncoded problem, namely, the distributed coded cache
placement problem was formulated. It was shown to be
reducible to a linear program form yielding efficient solutions.
Through numerical simulations, distributed coded cache place-
ment was shown to outperform the naive local learning based
schemes for relatively densely connected network topologies.
The network topology, for example sparse networks and dense
networks, was also shown to have an effect on the MAB based
learning which directly effects the cache placement strategies.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, May 2014.

[2] M. A. Maddah-Ali and U. Niesen, “Decentralized Coded Caching
Attains Order-Optimal Memory-Rate Tradeoff,” to appear in IEEE/ACM
Trans. on Networking, 2014.

[3] M. Ji, G. Caire, and A. F. Molisch, “Optimal throughput-outage trade-off
in wireless one-hop caching networks,” arXiv : 1302.2168, Feb 2013.

[4] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” arXiv : 1305.5216,
May 2013.

[5] N. Golrezaei, K. Shanmugam, A. Dimakis, A. F. Molisch, and G. Caire,
“FemtoCaching: Wireless Video Content Delivery through Distributed
Caching Helpers,” IEEE Transactions on Information Theory, vol.
59(12), pp. 8402–8413, Dec. 2013.

[6] P. Blasco and D. Gündüz, “Learning-Based Optimization of Cache
Content in a Small Cell Base Station,” in IEEE ICC, Jun. 2014.

[7] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in ICML, 2013, pp. 151–159.

[8] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[9] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.

[10] M. Hefeeda and O. Saleh, “Traffic modeling and proportional
partial caching for peer-to-peer systems,” IEEE/ACM Transactions on
Networking, vol. 16, no. 6, pp. 1447–1460, Dec. 2008.

[11] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and zipf-like distributions: evidence and implications,” in IEEE
INFOCOM, vol. 1, 1999, pp. 126–134.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

5

