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Abstract—Caching is a viable solution for alleviating the severe
capacity crunch in modern content centric wireless networks.
Parts of popular files are pre-stored in users’ cache memories
such that at times of heavy demand, users can be served
locally from their cache content thereby reducing the peak
network load. In this work, we consider a central server assisted
caching network where files are jointly delivered to users through
multicast transmissions. For such a network, we develop a new
information theoretic lower bound on the fundamental cache
storage vs. transmission rate tradeoff, which strictly improves
upon the best known existing bounds. The new bounds are used to
establish the approximate storage vs. rate tradeoff of centralized
caching to within a constant multiplicative factor of 8.

I. INTRODUCTION

The dynamics of traffic over wireless networks has under-
gone a paradigm shift to become increasingly content cen-
tric with multimedia content distribution holding precedence.
Hence, it is imperative to improve the efficiency of capacity
utilization in such networks. Caching is an important tool for
facilitating efficient spectrum utilization and reducing network
loads at times of peak demand. Parts of popular files are pre-
stored at end users’ device memories such that at times of high
network load, the local content can be leveraged to reduce the
over-the-air transmission rates. Caching and complimentary
file delivery in wireless networks has been the subject of a
wealth of recent research as evidenced by the results in [1]–
[13]. Caching has two phases - (1) the storage phase where
parts of popular content is placed in users’ cache memories and
(2) the delivery phase, where requested content is delivered
by exploiting the local cache storage of users. Consider a
caching system with K users and a central server which has
a library of N files (denoted by (F1, F2, . . . , FN ), each of
size B bits). Each user k ∈ 1, . . . ,K, has a cache storage
Zk of size MB bits. The caches of the users are populated
with some function of files based on available cache storage.
Once the user requests are revealed, the server delivers content
via a shared link to the users. The received transmission in
conjunction with the user cache content is capable of decoding
the requested files. Figure 1 shows the system model. The
fundamental tradeoff for this system is that of cache storage
vs. transmission rate (referred to as (M,R) tradeoff).

Recently, Maddah-Ali and Niesen [1]–[4] showed that by
jointly designing the storage and delivery phase, and using
multicast transmissions to simultaneously deliver content to
users, order-wise improvement in the (M,R) tradeoff can

Fig. 1. System Model for Caching in Wireless Networks.

be achieved. A novel caching and multicast delivery scheme
based on shared content in user caches was presented, whereby
a global caching gain was extracted from the system in
addition to the traditional local gains. The authors used cut-set
based arguments to derive lower bounds on the optimal (M,R)
tradeoff and characterized it to within a constant multiplicative
factor of 12. Recently, [13] presented an improved achievable
scheme for the centralized caching problem in the case of
K > N and M ≤ 1/K i.e., for very small cache sizes.

In this work, we develop a new converse (lower bound)
for the caching problem which better accounts for the con-
tent sharing across user caches and file decodability of the
multicast transmissions. For this system, we observe that the
cut-set based lower bound [1, Theorem 2] is loose expect
for very small values of cache storage (when shared content
is minimal) and very large values of cache storage (where
almost all files can be completely stored in each user’s cache).
We present a new information theoretic lower bound which is
generally tighter than the existing bound in [1] for all values of
problem parameters. Using the new lower bound along with
the achievable scheme (upper bound) from [1, Theorem 1],
we characterize the optimal (M,R) tradeoff for caching to
within a constant multiplicative factor of 8. This improves on
the current result of 12 in [1, Theorem 3] by a factor of 1.5.

Notation: Let Yi be a random variable. Y[a:b], where a < b
denotes the set of random variables {Yi : i = a, a+1, . . . , b−
1, b}. Also, Y[a,b] denotes the set {Yi : i = a, b}. Y[n] denotes a
set of any n arbitrary random variables Yi such that |Y[n]| = n.
N+ denotes the set of natural numbers; the function (x)+ =
max{0, x}; ⌈x⌉, ⌊x⌋ denotes the ceil, floor functions.



II. SYSTEM MODEL

The caching network has K users and a library of N files,
F1, . . . , FN , where each file is of size B bits, for some B ∈
N+. Formally, the files Fn are i.i.d and distributed as:

Fn ∼ Unif{1, 2, . . . , 2B}, ∀n = 1, . . . , N. (1)
We next define the key components of the caching problem:

Definition 1 (Storage). The cache storage phase consists of
K caching functions, which map the files (F1, . . . , FN ) into
the cache content

Zk , ϕk
(
F1, . . . , FN

)
, (2)

for each user k ∈ {1, 2, . . . ,K}. The maximum allowable size
of the contents of each cache Zk is MB bits.

Definition 2 (Delivery). The content delivery phase consists
of NK encoding functions which map the files (F1, . . . , FN )
to the multicast transmission

X(R1,...,RK) , ψ(R1,...,RK)

(
F1, . . . , FN

)
, (3)

over the shared link in response to the requests
(R1, . . . , RK) ∈ {1, 2, . . . , NK}. Each such transmission has
a rate not exceeding RB bits.

Definition 3 (File Decoding). Once the multicast transmission
is received, KNK decoding functions map the received signal
over the shared link X(R1,...,RK) and the cache content Zk to
the estimate

F̂Rk
, µ(R1,...,RK),k

(
X(R1,...,RK), Zk

)
, (4)

of the requested file FRk
for user k ∈ {1, 2, . . . ,K}.

For the (M,R) caching scheme, the probability of error is
defined as:

Pe , max
(R1,...,RK)∈[N ]K

max
k∈[K]

P(F̂Rk
̸= FRk

). (5)

Definition 4 (Storage vs. Rate Tradeoff). The storage-rate
pair (M,R) is achievable if, for any ϵ > 0, there exists an
(M,R) caching scheme for which Pe ≤ ϵ. The storage vs.
rate tradeoff is defined as:

R∗(M) , inf {R : (M,R) is achievable} . (6)

This work focuses on the lower bound on the optimal (M,R)
tradeoff for the caching problem.

III. MAIN RESULTS AND DISCUSSION

We next present our first main result which gives a new
lower bound on the optimal (M,R) tradeoff.

Theorem 1. For any K users and N files, with each user
having cache storage size M , where 0 ≤M ≤ N , the optimal
content delivery rate R∗(M) is lower bounded by:
R∗(M) ≥ RLB(M) ,

max
s∈{1,...,K},

ℓ∈{1,...,⌈N
s ⌉}

1

ℓ

{
N − sM − µ(N − ℓs)+

s+ µ
− (N −Kℓ)+

}
,

(7)
where µ = min

(⌈
N−ℓs

ℓ

⌉
,K − s

)
∀s, ℓ .
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Fig. 2. (M,R) tradeoff for N = K = 3.

The proof of Theorem 1 is given in Appendix A. The ex-
pression in Theorem 1 has two parameters - s, which is related
to the number of user caches, and another parameter ℓ, related
to multicast transmissions. Compared to [1, Theorem 2], the
additional parameter ℓ adds further flexibility to the lower
bound expression and accounts for file decoding through the
interaction of caches and transmissions, yielding a generally
tighter lower bound for the caching problem. The cut-set based
lower bound of [1, Theorem 2] is tight only for very small and
large values of cache storage size M . As shown in the sequel,
for such values of M , the proposed bound yields the bound in
[1, Theorem 2] for specific choices of s and ℓ and is generally
tighter for all other values.

Next, we present our second main result which establishes
the optimal (M,R) tradeoff of the centralized caching problem
to within a constant multiplicative factor.

Theorem 2. Let RUB(M) be the achievable rate of the
centralized caching scheme given in [1, Theorem 1] and let
RLB(M) be the lower bound on the optimal rate given in
Theorem 1. For any K users, N files, and user cache storage
in the range 0 ≤M ≤ N , we have:

Gap =
RUB(M)

RLB(M)
≤ 8. (8)

The proof of Theorem 2 is omitted due to lack of space.
The gap achieved by the proposed converse improves on the
multiplicative gap of 12 presented in [1, Theorem 3], by a
factor of 1.5. In the next section, we present an example to
illustrate the new techniques used to obtain Theorem 1.

IV. INTUITION BEHIND PROOF OF THEOREM 1

We consider the case of K = 3 users, each with a cache
storage M , and N = 3 files which we denote by A,B,C.
Theorem 1 yields the following lower bounds for different
choices of s, ℓ:

R∗ + 3M ≥ 3, s = 3, ℓ = 1 (9)
3R∗ +M ≥ 3, s = 1, ℓ = 3 (10)
3R∗ + 6M ≥ 8, s = 2, ℓ = 1 (11)
4R∗ + 2M ≥ 5, s = 1, ℓ = 2. (12)

The existing lower bounds from [1, Theorem 2] are given by
(9) and (10). Theorem 1 provides the additional bounds (11)
and (12). Fig. 2 shows that the proposed bound is strictly



tighter than the bound in [1, Theorem 2].
Next, we detail the derivation of one of the new bounds,

i.e., (11) highlighting the new aspects and techniques. To this
end, we consider the requests (R1, R2, R3) = (A,B,C) and
(R1, R2, R3) = (B,C,A). It is clear that the first s = 2
caches Z1, Z2 along with two corresponding transmissions
XABC , XBCA from the central server suffice to decode all
the 3 files. We upper bound the entropy of ℓ = 1 multicast
transmission by the optimal rate R∗ and use the other trans-
mission’s decoding capability with the caches to derive the
bound:

3 ≤ H(Z[1,2], XABC , XBCA) (13)
≤ H(Z[1,2]) +H(XABC , XBCA|Z[1,2]) (14)
≤ 2M +H(XABC) +H(XBCA|Z[1,2], XABC) (15)
≤ 2M +R∗ +H(XBCA|Z[1,2], XABC , A,B) (16)
≤ 2M +R∗ +H(XBCA, Z3|Z[1,2], XABC , A,B) (17)
≤ 2M +R∗ +H(Z3|Z[1,2], XABC , A,B)

+H(XBCA|Z[1:3], XABC , A,B) (18)
≤ 2M +R∗ +H(Z3|Z[1,2], A,B)

+H(XBCA|Z[1:3], XABC , A,B,C) (19)
≤ 2M +R∗ +H(Z3|Z[1,2], A,B), (20)

where (16) follows from the fact that Z[1,2] along with XABC

can decode files A,B and (20) follows from the fact that
H(XBCA|Z[1:3], XABC , A,B,C) = 0. This is due to the
fact that XBCA = ψ(B,C,A)(A,B,C). Considering the term
H(Z3|Z[1,2], A,B) in (20), we have:
H(Z3|Z[1,2], A,B) = H(Z[1:3]|A,B)−H(Z[1,2]|A,B).

(21)
Using (21) in (20), we have:

3 ≤ 2M +R∗ +H(Z[1:3]|A,B)−H(Z[1,2]|A,B). (22)
Now considering all possible subsets of Z[1:3] having cardi-
nality 2, in the RHS of (22), we have:

3 ≤ 2M +R∗ +H(Z[1:3]|A,B)−H(Z[2,3]|A,B) (23)

3 ≤ 2M +R∗ +H(Z[1:3]|A,B)−H(Z[1,3]|A,B). (24)
Summing up (22), (23), (24), and normalizing by 3, we have:

3 ≤ 2M +R∗ +H(Z[1:3]|A,B)−
3∑

i,j=1,
i ̸=j

H(Z[i,j]|A,B)

3
. (25)

We next state Han’s Inequality [14, Theorem 17.6.1] on sub-
sets of random variables, which we use for further bounding
(25) and deriving the proposed lower bound.
Han’s Inequality: Let {X1, X2, . . . , Xn} denote a set of ran-
dom variables. Further, let X[s] ⊆ {X1, X2, . . . , Xn} denote
a subset of cardinality s. Then given two subsets X[r],X[m]

where r ≥ m, Han’s Inequality states that:
1(
n
r

) ∑
X[r]:|X[r]|=r

H
(
X[r]

)
r

≤ 1(
n
m

) ∑
X[m]:|X[m]|=m

H
(
X[m]

)
m

,

(26)
where the sums are over all subsets of size r,m respectively.
Next, returning to the proof of (25), consider the set of

random variables Z[1:3] = (Z1, Z2, Z3) and its subsets Z[i,j] ⊆
Z[1:3] : i ̸= j, ∀i, j = 1, 2, 3 of cardinality 2. Applying Han’s
Inequality for these random variables, with n = r = 3 and
m = 2, we have:

1(
3
3

)H (
Z[1:3]|A,B

)
3

≤ 1(
3
2

) ∑
i,j=1,
i ̸=j

H
(
Z[i,j]|A,B

)
2

(27)

⇒ 2

3
H

(
Z[1:3]|A,B

)
≤ 1

3

3∑
i,j=1,i ̸=j

H
(
Z[i,j]|A,B

)
. (28)

Substituting (28) into (25), we have:

3 ≤ 2M +R∗ +H(Z[1:3]|A,B)−
2H(Z[1:3]|A,B)

3
(29)

≤ 2M +R∗ +
1

3
H(Z[1:3]|A,B) (30)

≤ 2M +R∗ +
1

3
H(Z[1:3], C|A,B) (31)

≤ 2M +R∗ +
1

3

(
H(C|A,B)︸ ︷︷ ︸

≤1

+H(Z[1:3]|A,B,C)︸ ︷︷ ︸
=0

)
(32)

≤ 2M +R∗ +
1

3
(33)

⇒ 3R∗ + 6M ≥ 8, (34)
which is the new bound in (11).

Remark 1. We note that the key distinction from the cut-
set bounds is the mechanism of bounding the joint entropy of
random variables representing the multicast transmissions and
the stored contents. Specifically, considering the step in (15),
a naive upper bound on the term H(XBCA|Z[1,2], XABC)
would be R∗, which would lead to 3 ≤ 2M + 2R∗, which
is a loose bound. The main idea is to first observe that given
Z[1,2] = (Z1, Z2) and the multicast transmission XABC , the
files A,B can be recovered. Hence, we expect a dependence
between XBCA and the random variables in the conditioning.
In order to capture this dependency, we consider multiple such
requests over time, allowing us to write (23), and (24), similar
to (22). This symmetrization argument directly leads to the
use of Han’s inequality subsequently leading to the new lower
bound. This is the key approach behind Theorem 1 which is a
general result and holds for all problem parameters. ⋄

Remark 2. Recently, [13] showed that for K ≥ N , in the
small buffer region of M = 1/K, the achievable rate is
given by N(1 −M) which improves on the achievable rate
in [1, Theorem 1]. For N = K = 3, the new achievable
point (M,R) = (1/3, 2) is highlighted in Figure 2. The lower
bound in [1, Th, 2] is shown to be tight only in the regime
0 ≤ M ≤ 1/K for K ≥ N in [13]. The lower bound
presented in Theorem 1 shows that this is indeed the case
and that the new converse is tighter than the cut-set based
lower bound for M > 1/K. This fact is highlighted in Figure
2, where the proposed lower bound is tighter than the cut-set
bound for M > 1/3. ⋄

Remark 3. In [1], the authors characterize the capacity
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Fig. 3. (M,R) tradeoff for N = K = 2.

region for the case of N = K = 2 and show that their
lower bound, given by R∗ + 2M ≥ 2 and 2R∗ +M ≥ 2, is
indeed loose. Our proposed lower bound yields the additional
bound, 2R∗ + 2M ≥ 3, which makes it tighter than the
existing bound. From Figure 3 and [1] it can be seen that
the proposed converse is equal to the optimal rate for the
case of N = K = 2. ⋄

Remark 4. We would also like to acknowledge recent inde-
pendent works of [15]–[17] on the same problem. In partic-
ular, [15], [17] also obtain improvements over cut-set bound
through different approaches. Moreover, Tian [16] has recently
obtained improvements for the specific case of N = K = 3
using a computer aided approach.

V. CONCLUSION

In this paper, we presented a new information theoretic
lower bound for the caching problem in wireless networks. We
leveraged Han’s Inequality to better model the interaction of
user caches and file decoding capability of multicast transmis-
sions to derive lower bounds which are generally tighter than
the existing cut-set based bounds. Using the new lower bound,
we characterized the cache storage vs. rate tradeoff of the
centralized caching problem to within a constant multiplicative
factor of 8 for all possible values of problem parameters,
thereby improving on the existing result by a factor of 1.5.

APPENDIX A
PROOF OF THEOREM 1

Let there be a library of N ∈ N+ files {F1, F2, . . . , FN},
each of size B bits and K ∈ N+ users in the con-
tent distribution system, with caches {Z1, Z2, . . . , ZK}. Let
s be an integer such that s ∈ {1, 2, . . . ,K}. Con-
sider the first s caches Z1, Z2, . . . , Zs and a request vec-
tor (R1, R2, . . . , Rs, Rs+1, . . . , RK) = (1, 2, . . . , s, ϕ, . . . , ϕ),
where the first s requests are for unique files and last K − s
requests can be for arbitrary files. To service this request,
the central server makes a multicast transmission X1 =
ψ(F1, F2, . . . , Fs,F[K−s]), where the first s files are unique
and the remaining set of files, F[K−s], to service the remaining
(K − s) requests can be arbitrary. This transmission along
with the s caches decodes the files F1, F2, . . . , Fs. Similarly
consider another request, (R1, R2, . . . , Rs, Rs+1, . . . , RK) =

(s + 1, S + 2, . . . , 2s, ϕ, . . . , ϕ), and a resultant multicast
transmission X2 = ψ(Fs+1, Fs+2, . . . , F2s,F[K−s]), where
the contents of the set F[K−s] are again arbitrary. This
transmission along with the s caches helps in decoding
the files Fs+1, Fs+2, . . . , F2s. Thus considering the trans-
missions X1, X2, . . . , X⌈N/s⌉ along with the first s caches
Z1, Z2, . . . , Zs, the whole library of files F1, F2, . . . , FN can
be decoded. In the sequel, we consider B = 1 without loss of
generality. We have:
N ≤ H

(
Z[1:s], X[1:⌈N/s⌉]

)
(35)

≤ H
(
Z[1:s]

)
+H

(
X[1:⌈N/s⌉]|Z[1:s]

)
(36)

≤ sM +H
(
X[1:⌈N/s⌉]|Z[1:s]

)
(37)

≤ sM +H
(
X[1:ℓ]|Z[1:s]

)
+H

(
X[ℓ+1:⌈N/s⌉]|Z[1:s], X[1:ℓ]

)
(38)

≤ sM + ℓR∗(M) +H
(
X[ℓ+1:⌈N/s⌉]|Z[1:s], X[1:ℓ]

)
(39)

≤ sM + ℓR∗(M) +H
(
X[ℓ+1:⌈N/s⌉]|Z[1:s], X[1:ℓ], F[1:ℓs]

)
(40)

≤ sM + ℓR∗(M)

+H
(
X[ℓ+1:⌈N/s⌉], Z[s+1:s+µ]|Z[1:s], X[1:ℓ], F[1:ℓs]

)
(41)

≤ sM + ℓR∗(M) +H
(
Z[s+1:s+µ]|Z[1:s], X[1:ℓ], F[1:ℓs]

)︸ ︷︷ ︸
,δ

+H
(
X[ℓ+1:⌈N/s⌉]|Z[1:s+µ], X[1:ℓ], F[1:ℓs]

)︸ ︷︷ ︸
,λ

, (42)

where (39) results from bounding the entropy of ℓ ∈
{1, 2, . . . , ⌈N/s⌉} transmissions given the caches Z1, . . . , Zs

by ℓR∗(M), where each transmission is of rate R∗(M). (40)
follows from the fact that caches Z1, . . . , Zs with transmis-
sions X1, . . . , Xℓ can decode files F1, . . . , Fℓs. In (41), µ
number of caches are introduced into the entropy, where µ
is the number of remaining caches which along with caches
Z1, . . . , Zs and transmissions X1, . . . , Xℓ, can decode the
remaining N − ℓs files. It is to be noted that all the remaining
K − s caches might not be required for decoding all files.
Thus we have:

µ = min

{⌈
N − ℓs

ℓ

⌉
,K − s

}
. (43)

Upper Bound on δ: We consider the factor δ, from (42) and
upper bound it as follows:

δ = H
(
Z[s+1:s+µ]|Z[1:s], X[1:ℓ], F[1:ℓs]

)
(44)

≤ H
(
Z[s+1:s+µ]|Z[1:s], F[1:ℓs]

)
(45)

= H
(
Z[1:s+µ]|F[1:ℓs]

)
−H

(
Z[1:s]|F[1:ℓs]

)
. (46)

Considering all possible subsets of Z[1:s+µ] having cardinality
s, i.e., all possible combination of s caches in (35), and all
possible combinations of files in the set F[K−s] for each
transmission X[1:ℓ] in (39), we can obtain

(
s+µ
s

)
different

inequalities of the form of (46). Symmetrizing over all the
inequalities, we have:

δ ≤ H
(
Z[1:s+µ]|F[1:ℓs]

)
−
(s+µ

s )∑
i=1

H
(
Zi
[s]|F[1:ℓs]

)
(
s+µ
s

) , (47)

where, Zi
[s] is the i-th size-s subset of Z[1:s+µ].

Next, consider Z[1:s+µ] as the set of random variables



{Zk : k ∈ 1, . . . , s+ µ} and the subsets Zi
[s] ⊆ Z[1:s+µ] ∀i =

1, . . . ,
(
s+µ
s

)
. Applying Han’s Inequality, from (26), using the

conditional entropy of the sets, we have:

1(
s+µ
s+µ

) (s+µ
s+µ)∑
i=1

H
(
Z[1:s+µ]|F[1:ℓs]

)
s+ µ

≤ 1(
s+µ
s

) (s+µ
s )∑

i=1

H
(
Zi
[s]|F1, . . . , Fℓs

)
s

(48)

⇒ s

s+ µ
H

(
Z[1:s+µ]|F[1:ℓs]

)
≤ 1(

s+µ
s

) (s+µ
s )∑

i=1

H
(
Zi
[s]|F[1:ℓs]

)
.

(49)
Substituting (49) into (47), we have:

δ ≤ H
(
Z[1:s+µ]|F[1:ℓs]

)
− s

s+ µ
H

(
Z[1:s+µ]|F[1:ℓs]

)
(50)

=
µ

s+ µ
H

(
Z[1:s+µ]|F[1:ℓs]

)
(51)

≤ µ

s+ µ
H

(
Z[1:s+µ], F[ℓs+1:N ]|F[1:ℓs]

)
(52)

=
µ

s+ µ
H

(
F[ℓs+1:N ]|F[1:ℓs]

)
+H

(
Z[1:s+µ]|F[1:N ]

)︸ ︷︷ ︸
=0

(53)

≤ µ

s+ µ
(N − ℓs)+, (54)

where (53) follows from the fact that the caches are functions
of all the N files in the library.
Upper Bound on λ: To upper bound λ, we consider two
cases.
Case 1: N ≤ ℓs+ ℓµ: All files are decoded by the caches
Z[1:s+µ] and transmissions X[1:ℓ] within the conditioning in
(42). We have:
λ = H

(
X[ℓ+1:⌈N/s⌉]|Z[1:s+µ], X[1:ℓ], F[1:ℓ(s+µ)]

)
= 0, (55)

In the case when, for N > K, fewer than K caches suffices to
decode all files with the transmissions within the conditioning
in λ i.e. s+ µ ≤ K, we have:

µ ≤ K − s

⇒
⌈
N − ℓs

ℓ

⌉
≤ K − s

⇒ N ≤ Kℓ

⇒ λ = (N −Kℓ)+ = 0. (56)
It can also be easily seen that for the case of K ≥ N , λ =
(N −Kℓ)+ = 0 since ℓ ≥ 1.
Case 2: N > ℓs+ ℓµ: The case when, even with s+ µ = K
caches, all files are not decoded by the caches and transmis-
sions within the conditioning. In this case, λ ̸= 0 and we
have:
λ ≤ H

(
X[ℓ+1:⌈N/s⌉]|Z[1:s+µ], X[1:ℓ], F[1:ℓs+ℓµ]

)
(57)

≤ H
(
X[ℓ+1:⌈N/s⌉], F[ℓK+1:N ]|Z[1:s+µ], X[1:ℓ], F[1:ℓK]

)
(58)

≤ H
(
F[ℓK+1:N ]|Z[1:s+µ], X[1:ℓ], F[1:ℓK]

)
+H

(
X[ℓ+1:⌈N/s⌉]|Z[1:s+µ], X[1:ℓ], F[1:N ]

)︸ ︷︷ ︸
=0

(59)

≤ H
(
F[ℓK+1:N ]

)
≤ (N −Kℓ), (60)

where (58) follows from the fact that µ = K − s and (59)
follows from the fact that the transmissions are functions of
the N files. Thus combining (55) and (60), we have:

λ ≤ (N −Kℓ)+. (61)
Substituting (54) and (61) into (42), we have:

N ≤ sM + ℓR∗(M) +
µ(N − ℓs)+

s+ µ
+ (N −Kℓ)+

⇒ R∗(M) ≥ 1

ℓ

{
N − sM − µ(N − ℓs)+

s+ µ
− (N −Kℓ)+

}
.

Optimizing over all parameter values of s, ℓ, µ, we have:
R∗(M) ≥ RLB(M) ,

max
s∈{1,...,K},

ℓ∈{1,...,⌈N
s ⌉}

1

ℓ

{
N − sM − µ(N − ℓs)+

s+ µ
− (N −Kℓ)+

}
,

which completes the proof of Theorem 1.
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