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Abstract—We consider diamond channels with a general
broadcast channelp(y, z|x), with outputs Z and Y at relays 1 and
2, respectively, and where the relayd and 2 have noiseless links
of capacitiesR. and R,, respectively, to the decoder. For the case
whenY and Z are deterministic functions of X, we establish the M, X py, o)
capacity. We next give an upper bound for the capacity of the

class of diamond channels with a physically degraded broadst

channel, i.e., whenX — Y — Z forms a Markov chain. We show

Decoder

that this upper bound is tight, if in addition to X — Y — Z,

the output of relay 2, i.e., Y, is a deterministic function of X. Y -

We finally consider the diamond channel with partially sepaated

relays, i.e., when the output of relay2 is available at relay 1. We Fig. 1. The diamond channel.

establish the capacity for this model in two cases, a) when ¢h ;
broadcast channel is physically degraded, i.e., Whel — Y —» Z the relays. We next consider the case when the broadcast

forms a Markov chain, and b) when the broadcast channel is channelis physically degraded, i.e., wh&n— Y — Z forms
semi-deterministic, i.e, whenY = f(X). For both of these cases, & Markov chain. We provide an upper bound on the capacity
we show that the capacity is equal to the cut-set bound. This of this class of diamond channels and show that this bound
final result shows that even partial feedback from the decode yields the capacity when in addition tf — Y — Z, the
to relays strictly increases the capacity of the diamond cheanel. channel model is such that, = f(X) for any deterministic

|. INTRODUCTION function f. Note that whenY = X, we recover the result

The parallel relay network or the diamond channel consigt¥tained in [3].
of a transmitter connected to two relays through a broadcasiVe finally consider this class of diamond channel with
channelp(y, z|x), where Z is the output of relayl andYy partially separated relays, i.e., when the output of relay
is the output of relay2. The relays are connected to thedvailable to relayl. This channel model is equivalent to the
receiver through a multiple access channel. The diamohtpdel when there is feedback from the receiver to relay
channel differs from the classical relay channel [1] in taese  One of the main contributions of this paper is to establish
that there is no direct link between the transmitter and tfiee capacity of this model, when a) the broadcast channel is
receiver. The diamond channel was introduced by Schein apfaysically degraded, i.e, wheki — Y — Z forms a Markov
Gallager in [2], where several cases of the diamond chan§8gin, and b) the broadcast channel is semi determinisgic, i
were studied. whenY = f(X). For both these cases, we show that the
In [3], a special class of diamond channel was consideré@pacity is given by the cut-set bound. These two results als
where relay? receives the inpufX and relayl receivesZ show the fact that even feedback to one of the relays strictly
through a noisy channel(z|). Moreover, the relays are con-increases the capacity of the diamond channel.
nected to the receiver through an orthogonal multiple acces 1. DIAMOND CHANNEL
channel. In other words, relayisand 2 have finite capacity, . .
orthogonal links of capacitie®, and R,, respectively, to the A diamond channel with a general broadcast channel and

receiver. The capacity of this class of diamond channels wal c:rtf;ogogal)(mijltlple ?cctesls hcht?rlnelzls dzsf[:”beqt. by an
characterized in [3] and was shown to be strictly less than tf/PUt @lPhabett’, two output alphabety/, 2, and transition
cut-set upper bound [4]. probabilitiesp(y, z|x). o .

In this paper, we consider the diamond channel with a” (/> f1,f2,g) code for this diamond channel is de-

general broadcast channel and an orthogonal multiple acc%%”bed by,

channel as in [3] (see Figure 1). For this class of diamond AL o M- X" (2)
channels, we establish the capacity when the broadcastehan 2 S LD )
is deterministic, i.e., wheli andZ are deterministic functions "

of X. We show that the capacity is given by the cut-set Jo 2 Y= AL fol) 3)

bound and is achieved by Gelfand-Pinsker-Marton coding to ¢ : {1,...,[f1l} x {1,...,[fa|} = {1,...,. M} (4)

This work was supported by NSF Grants CCF47613, CCF 05-14846, Wheref is the ?nCOding funCtiO.n at the tran;mitt¢{, i§ the
CNS07-16311 and CCF07-29127. encoding function at relay, f> is the encoding function at



relay 2, andg is the decoding function at the receiver.

The transmitter sendX™ = f(M) as the input to the
broadcast channel, wherd € {1,..., M} and the message ;
M is decoded as\f = g(f1(Z"), fo(Y™)). The probability Region C'|
of error is defined asP. = P(M # M). A rate triple RﬁH(Z)} 4
(R, R,, R.) is achievable if for even) < ¢ < 1, > 0, H(Z)peernnees 9., 1;,;%;1121)9
and sufficiently largen, there exists an, f, f1, f2,9) code '
such thatP, < ¢, and, ‘ . ;
H(ZY) R |

1

—lo >R- 5 :
n oM = n ©) Region A :  Region D
1 R, +R.: * R.+H(Y)
E|09|f1| <SR.+n (6) :

1 : |
E|09|f2| <Ry +1n () HY[Z) H(Y) AY,Z) I,

The capacityC(R,, R.) is defined as the largedt such that
(R, Ry, R.) is achievable.

A. Deterministic Broadcast

Fig. 2. Achievability for the diamond channel with deteristit broadcast.

CaseB: If (R, R.) are such that,

In this section, we consider diamond channels with deter- Ry > H(Y|Z) 17)
ministic broadcast channel, i.e., when the channel outputs R, > H(Z|Y) (18)
and Z are deterministic functions ok'. We characterize the R,+R.>H(Y,Z) (19)
capacity of this class of diamond channels in the following
theorem. then, we have>(p(z)) = H(Y, Z) and we can achieve a rate

Theorem 1: The capacity of the diamond channelof H(Y,Z) for the diamond channel by using a broadcast
C(R,, R.), with deterministic broadcast channel is given as¢hannel code with the rates,

C(Ry,Rz)zm(agcmin(H(Y, Z), Ry + R, Ry + H(Z), Ry =H(Z), Ry=H(Y|Z) (20)
p(x

R, +H(Y)) @8 OF alternatively,
The converse follows from the cut-set upper bound [4]. To Ry =H(Z|Y), Ry=H(Y) (21)

prove the achievability, we will make use of the capacity caqec: It (R, R.)
region of the deterministic broadcast channel without camm

messages [5], [6]. The capacity region of a deterministic R, < H(Y|Z) (22)
broadcast channel without common messages is given as the R,+R.<H(Y,Z) (23)
set of rate pairgR;, R2) satisfying,

are such that,

then, we haveG(p(z)) = R, + H(Z) and we can achieve

R < H(Z) (9) arate of R, + H(Z) for the diamond channel by using a
Ry < H(Y) (10) broadcast channel code with the rates,
Ri+ R, <H(Y,Z) (12) Ry =H(Z), Ry=R, (24)

Now, for any input distributiorp(x), consider the expression, casepn: If (R,, R.) are such that(p(z)) = R. + H(Y),
G(p(z)) = min(H (Y, Z), R, + R., R, + H(Z),R. + H(Y)) then, similar to Cas€’, we can achieve a rate &, + H(Y")
‘ ‘ (12) for the diamond channel by using a broadcast channel code

) with the rates,
Depending on the value ¢i?,, R.), we have four cases (see
Figure 2): Ri=R., Ry=H(Y) (25)

CaseA: If (Ry, R.) are such that,

R, <H(Y) (13) We remark here that the achievability is counterintuitive
R, < H(Z) (14) since one might have expected to use the general broadcast
- channel code with common messages [6], [7], but as our result
Ry +R. <H(Y,2) (15) shows this is not necessary. We also note here that the tut-se
then, we haveS(p(x)) = R, + R, and we can achieve a ratebound continues to hold when relays are partially sepayated

of R, + R. for the diamond channel by using a broadcaé€., the encoded output of reldyis available to both relay
channel code with the rates, 1 and the decoder. Our result also shows that the capacity of

this diamond channel remains the same even if the relays are
Ri=R., R2=Ry (16) partially separated.



B. Physically Degraded Broadcast Z Relay 1

In this section, we consider diamond channels with phys-
ically degraded broadcast channel, i.e., when the channel

Pl sl s sueh that Pl [ Dot 24

p(y, z|z) = p(y|2)p(z|y) (26)
In the following theorem, we provide a new upper bound on @
the capacityC(R,, R.). g R,

Theorem 2: The capacity of the diamond channel,
C(Ry, R.), with physically degraded broadcast channel is

Fig. 3. The diamond channel with partially separated relays

upper bounded by the maximui such that, Fo i V" = {1, 1 fl} (39)
R, > H(Y|U,V) - H(Y|X) (28) g AL LA <AL R = {1 M (4D)
R. > 1(Z;V|U,Y) (29)

where f is the encoding function at the transmittgy, is the

R,+R.>R+1(Z;V|UY) (30) encoding function at relay, f» is the encoding function at
relay 2, andg is the decoding function at the receiver.

The transmitter sendX™ = f(M) as the input to the
p(z,u,y,z,v) = p(u, x)p(ylz)p(z|y)p(v]z, v) (31) broadcast channel, wherd € {1,..., M} and the message

M is decoded asM = g(f1(Z", f2(Y™)), fo(Y™)). The

vAvlhere|L_{| < [X+4, V] .S |11 2] +.4|X| +3. . robability of error is defined a®. = Pr(M # ]\Z/). A rate
ternatively, the capacity of the diamond channel is uppgr. ; . .
bounded as riple (R,_}_%y, R.) is achievable if for every <e<1l,n7>0,
' and sufficiently largen, there exists an, f, f1, f2,g) code

C(R,,R,) <maxmin(I(U; Z) + I(X;Y|U), such thatP, < ¢, and,

for joint distributions of the form,

R,+ R, - I(Z;V|U,Y)) (32) llogMzR—n (42)
such thatk, > H(Y|U,V) — H(Y|X), n
1
R.>1(Z;V|U,Y) ~loglfi] < R+ (43)
i 1
We next have the followmg theorem. _ —log|fs| < Ry +1 (44)
Theorem 3: The capacity of the diamond channel, n

C(Ry,R.), with degraded broadcast channel, whemhe capacityC”*(R,, R.) is defined as the largegt such

Y = f(X), is given by the maximunR such that, that (R, R,, R.) is achievable.
R<I(U;Z)+ I(X;Y|U) (33) _
R, > H(Y|U,V) (34) A. Physically Degraded Broadcast
R.>I(Z;V|U,Y) (35) In this section, we consider the case when the broadcast
R, +R.> R+ I(Z;V|U,Y) (36) channel of the diamond channel is physic_:ally degraded, i.e.
when,p(y, z|x) = p(y|z)p(z]y). In the following theorem, we
for joint distributions of the form, characterize the capacity of this class of channels.

(,w,, 2,v) = p(u, ©)p(y|2)p(z[y)p(v]|2, u) 37) Theorem 4: The capacity of the diamond channel,
P& Y2, P\, T/PIT/PEIYIPLYIZ, CP%(R,, R.), with physically degraded broadcast channel
As a corollary, by setting” = X in Theorem 3, we recover and partially separated relays is given as,

the capacity result obtained in [3]. The proofs of Theorem 24 B ) _ _

and 3 are omitted here due to space limitations and will be (Ry, R:) = Iﬁ%ﬁimln(l(X’Y)’Ry + R, By +1(X; 2))
provided in the journal version of this paper [8]. (45)

[1l. DIAMOND CHANNEL WITH PARTIALLY SEPARATED The converse follows from the cut-set upper bound [4]. We
RELAYS will prove the achievability as follows. Fix an input didtution

We will now consider a variation of the diamond channep(¥) and consider the function,
where the relayg are partially separated. In other words, th G(p(z)) = min(I(X;Y),R, + R., R, + I(X; Z)) (46)
output of relay2 is available to relayl (see Figure 3). _ o ‘

A (n, f, f1, f2,g) code for the diamond channel with parFigure 4 shows all possible cases for the paR,, 2.). It
tially separated relays is described by, suffices to show that reliable transmission is possible at th

. ratemin(/(X;Y), Ry+R., Ry+1(X; Z)) at the three corner
fAL M- X (38) points Py, P, and Ps.



Reliable transmission is possible at a rd{e¥;Y) at the
corner pointP;, whenR, = I(X;Y) andR, = 0 by using a
single-user channel code for rel2yt a rate/ (X; Y'). Reliable
transmission is possible at a rateX; Z) at the corner point
Ps;, whenR, =0 andR, = I(X; Z), by using a single-user
channel code for relay at a ratel (X; 7).

***********************************

Region C' |
R, +1(X;Z)
Region B
., I(X:;Y)

Therefore, to complete the achievability, we need to show RN
that reliable transmission is possible at the Ht&;Y") when, ‘ .
R, =1(X;Y|2) 47

— I(X, Y) _ I(X, Z) (48) Region A .

R, +R. .
R.=1(X;2) (49)

|
|
.‘.API

The encoder generatgs!(X3Y) - sequences;(w), according AN
) Y

to [T, p(zi(w)), where,w = 1,...,2"1%Y) and bins
these sequences ia"(/(X;Y)—I(X;2)) bins uniformly and
independently. Denote the bin index ofw) as b;(z(w)),
wherej = 1,...,2"1(X;Y12) and the sub-index number of
z(w) asly(x(w)), wheres = 1,..., 2" (X:2) To transmit the
messagev, the encoder puts(w) as the input to the channel.

Relayl2 can reliably dgcode the ‘message \fwth high at the four corner point®,, Py, P and P;.
probability. Relay2 transmits the bin indexy; (z(w)) of the : o :

Reliable transmission is possible at a rd{eX; Z) at the

decoded codeword. Relayuses the channel output sequence

S o corner pointP;, whenR, = I(X; Z) and R, = 0 by using a
zand the bin index; ((w0)) to decode t_he message Re_lf_;\y single-user channel code for relayt a ratel (X ; Z). Reliable
1 can decode the correct messagewith high probability

since the number ofc sequences in each bin is at mosttransmlssmn Is possible at a ra(Y’) at the corner point,

2n1(X:Z) Relay 1 transmits the sub-index numbés(z(i)) whenR. =0 and R, = I(X;V) = H(Y), by using a single-
user channel code for rel@at a ratel (X;Y).
of the decoded message.

Decoder receives the bin indéx(w) from relay2 and the Now, consider the comer poirit;, where we have,

I(X;Y|Z)

Fig. 4. Achievability for the diamond channel with degradedadcast.
rate

min(I(X;Z)+ H(Y|Z),R,+ R., R, + I(X; 2),

R.+H(Y)) (51)

sub-index numbel; (z(w)) from relayl. The decoder decodes R,=H(Y|Z) (52)
the sub-index, (x(w)) in the received bib; («w) as the correct R, =I(X;Z2) (53)
message. _ _

We remark here that this achievability scheme is closely =I(X;2|Y) + [(Z;Y) (54)
related to the scheme for successive encoding of correlated =[(X;2,Y) - I(X;Y)|+ 1(Z;Y) (55)

sources [9]. It was shown in [9] for the case of lossless WUICL o (54) follows from the fact that — f(X)
coding with partially connected encoders, that the raggere The encoder generates!(X:¥:2) +(w) sequences, where
can be strictly improved upon the case of separated encode !

rs_ nl(X;Y,Z) ;
X . wo= 1,...,2 . The encoder also bins the(w)
[10], [11]. It is also evident that due to the fact that relays s?uences in2nI(X:Z1Y) pins, where the bin index of

partially separated, we can achieve the cut-set upper bOL{H sequencer(w) is denoted ash;(x(w)), where j =

which is not always achievable when the relays are separat? 2n1(X:iZIY) To transmit the message, the encoder
B. Semi-Deterministic Broadcast

putsz(w) as the input to the channel.

We will now consider the case when the broadcast channeldPon observing the channel outpyt relay 2 compresses
of the diamond channel is such that= f(X) for any deter- they sequences at a rafé(Y'|Z) with Z as side-information
ministic functionf. In the following theorem, we characterize2nd transmits the compression bin-index, where the binxinde
the capacity of this class of diamond channels. of y sequence is denoted &g (y). The rate needed by relay

Theorem5: The capacity of the diamond channel2is H(Y|Z).

CP3(R,, R.) with semi-deterministic broadcast channel and Upon observing the: sequence from the channel and the
partially separated relays is given as, bin index by (y) from relay 2, relay 1 first estimates the,

Ps . sequence. It can estimate the corrgcsequence with high
C™7(Ry, R.) = I;l(giimln(f(X; Z)+ H(Y|Z), Ry + R-, probability since the number af sequences in each bin is at
most 271(Z:Y) et the sub-index of the estimated sequence
y in the binby (y) be denoted a&y (by (y), z). Relay1 then
The converse follows from the cut-set upper bound [4]. Waroceeds to decode the message by decadimgusingz and
will prove the achievability as follows. the estimated, sequence. Relay transmits the bin index of

Figure 5 shows all possible cases for the paR,, R.). It the decoded: sequenced;(z(w)) and the sub-index of the
suffices to show that reliable transmission is possible at tbecodedy sequencely (by (y), z). The total rate needed by

Ry+I1(X;Z),R.+H(Y)) (50)



R. Physically Degraded  Semi-Deterministic

I(X;2) 4 H(Y|Z)| =gy

Region C'|
R, +I1(X;Z)

I(X: Z)®onnnnnnn LP; Region B
(*:2) 9., I(X:2) + H(Y|Z)

“ 1
1(X; Z]Y) R ! ’

Region A * Region D

R, +R. CORPHY) | L
1P 3 R, Fig. 6. lllustration of some classes of diamond channels.
HXYZ)  H(y) I(X:2)+HY|Z) component, since&X — Y — Z forms a Markov chain. To

) N ) _ ... observe these inclusions, see FigaréNow, note that for this
E:%éc?éast.AChlevablllty for the diamond channel with semilainistic channel, it was shown in [3] that the cut-set upper bound is
relay 1 is I(X; Z|Y) + I(Z;Y) = I(X; Z). strictly sub-optimal when the relays are separated. Onttero

hand, when the relays are partially separated, we have from

oo : : Theorems 4 and 5, that the cut-set upper bound is optimal.
(ly (by (y), 2), b (x(0))) from relay 1, the decoder first finds Since the case of partially separated relays is equivatent t

the correcty sequence as thig-(by (y), z)th sub-index in the :
bin by (y). It next decodes the message by searching forhgvmg feedback from the decoder to reldy our results

. . : therefore show that feedback to even one of the relayslgtrict
uniquez(w) in the binb; (z(w)) such tha{z(w), y) are jointly . . )
typical. This is possible since the number ﬂfsequences impraves the capacity of the diamond channel.

in each 2-bin is approximately2n!(X;Y,2) /onl(X;2]Y) _ IV. CONCLUSIONS .
9nI(X:Y) Therefore, the decoder can decode the message an e considered several variations of the diamond channel

reliable transmission is possible at a ratex; Z) + H(Y|Z). with an orthogonal multiple access component. We estadadish
. . the capacity for the case when the broadcast channel is de-
Now, consider the corner poirity, where we have, o . .
terministic. We next provided an upper bound on the capacity
R,=H(Y) (56) when the broadcast channel is physically degraded. Thisrupp
R.=I(X;Z|Y)=I(X;2,Y) - I(X;Y) (57) bound was shpwn to be tigh'F fqr a sub-_class of such channels.
_ _ We next considered the variation of diamond channel where
For this case, relag can describe the) sequence to both the relays are partially separated and established thecitapa
relay 1 and the decoder. Relay usesz andy to correctly when the broadcast channel is a) physically degraded and b)
decode the message and transmits the bin-indgi;(w))  semi-deterministic. For both of these cases, we showed that
of the decodedr sequence. The total rate needed by relayie cut-set bound is tight.
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