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Abstract—We consider diamond channels with a general
broadcast channelp(y, z|x), with outputs Z and Y at relays1 and
2, respectively, and where the relays1 and 2 have noiseless links
of capacitiesRz and Ry, respectively, to the decoder. For the case
when Y and Z are deterministic functions of X, we establish the
capacity. We next give an upper bound for the capacity of the
class of diamond channels with a physically degraded broadcast
channel, i.e., whenX → Y → Z forms a Markov chain. We show
that this upper bound is tight, if in addition to X → Y → Z,
the output of relay 2, i.e., Y , is a deterministic function of X.
We finally consider the diamond channel with partially separated
relays, i.e., when the output of relay2 is available at relay 1. We
establish the capacity for this model in two cases, a) when the
broadcast channel is physically degraded, i.e., whenX → Y → Z
forms a Markov chain, and b) when the broadcast channel is
semi-deterministic, i.e, whenY = f(X). For both of these cases,
we show that the capacity is equal to the cut-set bound. This
final result shows that even partial feedback from the decoder
to relays strictly increases the capacity of the diamond channel.

I. I NTRODUCTION

The parallel relay network or the diamond channel consists
of a transmitter connected to two relays through a broadcast
channelp(y, z|x), whereZ is the output of relay1 and Y
is the output of relay2. The relays are connected to the
receiver through a multiple access channel. The diamond
channel differs from the classical relay channel [1] in the sense
that there is no direct link between the transmitter and the
receiver. The diamond channel was introduced by Schein and
Gallager in [2], where several cases of the diamond channel
were studied.

In [3], a special class of diamond channel was considered
where relay2 receives the inputX and relay1 receivesZ
through a noisy channelp(z|x). Moreover, the relays are con-
nected to the receiver through an orthogonal multiple access
channel. In other words, relays1 and 2 have finite capacity,
orthogonal links of capacitiesRz andRy, respectively, to the
receiver. The capacity of this class of diamond channels was
characterized in [3] and was shown to be strictly less than the
cut-set upper bound [4].

In this paper, we consider the diamond channel with a
general broadcast channel and an orthogonal multiple access
channel as in [3] (see Figure 1). For this class of diamond
channels, we establish the capacity when the broadcast channel
is deterministic, i.e., whenY andZ are deterministic functions
of X . We show that the capacity is given by the cut-set
bound and is achieved by Gelfand-Pinsker-Marton coding to
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Fig. 1. The diamond channel.

the relays. We next consider the case when the broadcast
channel is physically degraded, i.e., whenX → Y → Z forms
a Markov chain. We provide an upper bound on the capacity
of this class of diamond channels and show that this bound
yields the capacity when in addition toX → Y → Z, the
channel model is such that,Y = f(X) for any deterministic
function f . Note that whenY = X , we recover the result
obtained in [3].

We finally consider this class of diamond channel with
partially separated relays, i.e., when the output of relay2 is
available to relay1. This channel model is equivalent to the
model when there is feedback from the receiver to relay2.
One of the main contributions of this paper is to establish
the capacity of this model, when a) the broadcast channel is
physically degraded, i.e, whenX → Y → Z forms a Markov
chain, and b) the broadcast channel is semi deterministic, i.e.,
when Y = f(X). For both these cases, we show that the
capacity is given by the cut-set bound. These two results also
show the fact that even feedback to one of the relays strictly
increases the capacity of the diamond channel.

II. D IAMOND CHANNEL

A diamond channel with a general broadcast channel and
an orthogonal multiple access channel is described by an
input alphabetX , two output alphabetsY,Z, and transition
probabilitiesp(y, z|x).

A (n, f, f1, f2, g) code for this diamond channel is de-
scribed by,

f : {1, . . . ,M} → Xn (1)

f1 : Zn → {1, . . . , |f1|} (2)

f2 : Yn → {1, . . . , |f2|} (3)

g : {1, . . . , |f1|} × {1, . . . , |f2|} → {1, . . . ,M} (4)

wheref is the encoding function at the transmitter,f1 is the
encoding function at relay1, f2 is the encoding function at



relay 2, andg is the decoding function at the receiver.
The transmitter sendsXn = f(M) as the input to the

broadcast channel, whereM ∈ {1, . . . ,M} and the message
M is decoded asM̂ = g(f1(Z

n), f2(Y
n)). The probability

of error is defined asPe = Pr(M 6= M̂). A rate triple
(R, Ry, Rz) is achievable if for every0 < ǫ < 1, η > 0,
and sufficiently largen, there exists a(n, f, f1, f2, g) code
such thatPe ≤ ǫ, and,

1

n
logM ≥ R − η (5)

1

n
log|f1| ≤ Rz + η (6)

1

n
log|f2| ≤ Ry + η (7)

The capacityC(Ry, Rz) is defined as the largestR such that
(R, Ry, Rz) is achievable.

A. Deterministic Broadcast

In this section, we consider diamond channels with deter-
ministic broadcast channel, i.e., when the channel outputsY
and Z are deterministic functions ofX . We characterize the
capacity of this class of diamond channels in the following
theorem.

Theorem 1: The capacity of the diamond channel,
C(Ry, Rz), with deterministic broadcast channel is given as,

C(Ry, Rz) = max
p(x)

min(H(Y, Z), Ry + Rz, Ry + H(Z),

Rz + H(Y )) (8)

The converse follows from the cut-set upper bound [4]. To
prove the achievability, we will make use of the capacity
region of the deterministic broadcast channel without common
messages [5], [6]. The capacity region of a deterministic
broadcast channel without common messages is given as the
set of rate pairs(R1, R2) satisfying,

R1 ≤ H(Z) (9)

R2 ≤ H(Y ) (10)

R1 + R2 ≤ H(Y, Z) (11)

Now, for any input distributionp(x), consider the expression,

G(p(x)) = min(H(Y, Z), Ry + Rz, Ry + H(Z), Rz + H(Y ))
(12)

Depending on the value of(Ry, Rz), we have four cases (see
Figure 2):

CaseA: If (Ry, Rz) are such that,

Ry ≤ H(Y ) (13)

Rz ≤ H(Z) (14)

Ry + Rz ≤ H(Y, Z) (15)

then, we haveG(p(x)) = Ry + Rz and we can achieve a rate
of Ry + Rz for the diamond channel by using a broadcast
channel code with the rates,

R1 = Rz, R2 = Ry (16)
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Fig. 2. Achievability for the diamond channel with deterministic broadcast.

CaseB: If (Ry, Rz) are such that,

Ry ≥ H(Y |Z) (17)

Rz ≥ H(Z|Y ) (18)

Ry + Rz ≥ H(Y, Z) (19)

then, we haveG(p(x)) = H(Y, Z) and we can achieve a rate
of H(Y, Z) for the diamond channel by using a broadcast
channel code with the rates,

R1 = H(Z), R2 = H(Y |Z) (20)

or alternatively,

R1 = H(Z|Y ), R2 = H(Y ) (21)

CaseC: If (Ry, Rz) are such that,

Ry ≤ H(Y |Z) (22)

Ry + Rz ≤ H(Y, Z) (23)

then, we haveG(p(x)) = Ry + H(Z) and we can achieve
a rate ofRy + H(Z) for the diamond channel by using a
broadcast channel code with the rates,

R1 = H(Z), R2 = Ry (24)

CaseD: If (Ry, Rz) are such that,G(p(x)) = Rz +H(Y ),
then, similar to CaseC, we can achieve a rate ofRz +H(Y )
for the diamond channel by using a broadcast channel code
with the rates,

R1 = Rz, R2 = H(Y ) (25)

We remark here that the achievability is counterintuitive
since one might have expected to use the general broadcast
channel code with common messages [6], [7], but as our result
shows this is not necessary. We also note here that the cut-set
bound continues to hold when relays are partially separated,
i.e., the encoded output of relay2 is available to both relay
1 and the decoder. Our result also shows that the capacity of
this diamond channel remains the same even if the relays are
partially separated.



B. Physically Degraded Broadcast

In this section, we consider diamond channels with phys-
ically degraded broadcast channel, i.e., when the channel
p(y, z|x) is such that

p(y, z|x) = p(y|x)p(z|y) (26)

In the following theorem, we provide a new upper bound on
the capacityC(Ry, Rz).

Theorem 2: The capacity of the diamond channel,
C(Ry, Rz), with physically degraded broadcast channel is
upper bounded by the maximumR such that,

R ≤ I(U ; Z) + I(X ; Y |U) (27)

Ry ≥ H(Y |U, V ) − H(Y |X) (28)

Rz ≥ I(Z; V |U, Y ) (29)

Ry + Rz ≥ R + I(Z; V |U, Y ) (30)

for joint distributions of the form,

p(x, u, y, z, v) = p(u, x)p(y|x)p(z|y)p(v|z, u) (31)

where|U| ≤ |X | + 4, |V| ≤ |X ||Z| + 4|X | + 3.
Alternatively, the capacity of the diamond channel is upper
bounded as,

C(Ry, Rz) ≤maxmin(I(U ; Z) + I(X ; Y |U),

Ry + Rz − I(Z; V |U, Y )) (32)

such thatRy ≥ H(Y |U, V ) − H(Y |X),

Rz ≥ I(Z; V |U, Y )

We next have the following theorem.
Theorem 3: The capacity of the diamond channel,

C(Ry, Rz), with degraded broadcast channel, when
Y = f(X), is given by the maximumR such that,

R ≤ I(U ; Z) + I(X ; Y |U) (33)

Ry ≥ H(Y |U, V ) (34)

Rz ≥ I(Z; V |U, Y ) (35)

Ry + Rz ≥ R + I(Z; V |U, Y ) (36)

for joint distributions of the form,

p(x, u, y, z, v) = p(u, x)p(y|x)p(z|y)p(v|z, u) (37)

As a corollary, by settingY = X in Theorem 3, we recover
the capacity result obtained in [3]. The proofs of Theorem 2
and 3 are omitted here due to space limitations and will be
provided in the journal version of this paper [8].

III. D IAMOND CHANNEL WITH PARTIALLY SEPARATED

RELAYS

We will now consider a variation of the diamond channel,
where the relays are partially separated. In other words, the
output of relay2 is available to relay1 (see Figure 3).

A (n, f, f1, f2, g) code for the diamond channel with par-
tially separated relays is described by,

f : {1, . . . ,M} → Xn (38)

Decoder
XM M̂

Z

Relay 2

Relay 1

Y

Encoder p(y, z|x)

Rz

Ry

Fig. 3. The diamond channel with partially separated relays.

f2 : Yn → {1, . . . , |f2|} (39)

f1 : Zn × {1, . . . , |f2|} → {1, . . . , |f1|} (40)

g : {1, . . . , |f1|} × {1, . . . , |f2|} → {1, . . . ,M} (41)

wheref is the encoding function at the transmitter,f1 is the
encoding function at relay1, f2 is the encoding function at
relay 2, andg is the decoding function at the receiver.

The transmitter sendsXn = f(M) as the input to the
broadcast channel, whereM ∈ {1, . . . ,M} and the message
M is decoded asM̂ = g(f1(Z

n, f2(Y
n)), f2(Y

n)). The
probability of error is defined asPe = Pr(M 6= M̂). A rate
triple (R, Ry, Rz) is achievable if for every0 < ǫ < 1, η > 0,
and sufficiently largen, there exists a(n, f, f1, f2, g) code
such thatPe ≤ ǫ, and,

1

n
logM ≥ R − η (42)

1

n
log|f1| ≤ Rz + η (43)

1

n
log|f2| ≤ Ry + η (44)

The capacityCPS(Ry, Rz) is defined as the largestR such
that (R, Ry, Rz) is achievable.

A. Physically Degraded Broadcast

In this section, we consider the case when the broadcast
channel of the diamond channel is physically degraded, i.e.,
when,p(y, z|x) = p(y|x)p(z|y). In the following theorem, we
characterize the capacity of this class of channels.

Theorem 4: The capacity of the diamond channel,
CPS(Ry, Rz), with physically degraded broadcast channel
and partially separated relays is given as,

CPS(Ry, Rz) = max
p(x)

min(I(X ; Y ), Ry + Rz, Ry + I(X ; Z))

(45)

The converse follows from the cut-set upper bound [4]. We
will prove the achievability as follows. Fix an input distribution
p(x) and consider the function,

G(p(x)) = min(I(X ; Y ), Ry + Rz , Ry + I(X ; Z)) (46)

Figure 4 shows all possible cases for the pair(Ry , Rz). It
suffices to show that reliable transmission is possible at the
ratemin(I(X ; Y ), Ry +Rz, Ry +I(X ; Z)) at the three corner
pointsP1, P2 andP3.



Reliable transmission is possible at a rateI(X ; Y ) at the
corner pointP1, whenRy = I(X ; Y ) andRz = 0 by using a
single-user channel code for relay2 at a rateI(X ; Y ). Reliable
transmission is possible at a rateI(X ; Z) at the corner point
P3, whenRy = 0 andRz = I(X ; Z), by using a single-user
channel code for relay1 at a rateI(X ; Z).

Therefore, to complete the achievability, we need to show
that reliable transmission is possible at the rateI(X ; Y ) when,

Ry = I(X ; Y |Z) (47)

= I(X ; Y ) − I(X ; Z) (48)

Rz = I(X ; Z) (49)

The encoder generates2nI(X;Y ) x sequences,x(w), according
to

∏n

i=1 p(xi(w)), where, w = 1, . . . , 2nI(X;Y ) and bins
these sequences in2n(I(X;Y )−I(X;Z)) bins uniformly and
independently. Denote the bin index ofx(w) as bj(x(w)),
where j = 1, . . . , 2nI(X;Y |Z) and the sub-index number of
x(w) asls(x(w)), wheres = 1, . . . , 2nI(X;Z). To transmit the
messagew, the encoder putsx(w) as the input to the channel.

Relay 2 can reliably decode the messagew with high
probability. Relay2 transmits the bin index,bj(x(ŵ)) of the
decoded codeword. Relay1 uses the channel output sequence
z and the bin indexbj(x(ŵ)) to decode the messagew. Relay
1 can decode the correct messagew with high probability
since the number ofx sequences in each bin is at most
2nI(X;Z). Relay 1 transmits the sub-index numberls(x(ŵ))
of the decoded message.

Decoder receives the bin indexbj(ŵ) from relay2 and the
sub-index numberls(x(ŵ)) from relay1. The decoder decodes
the sub-indexls(x(ŵ)) in the received binbj(ŵ) as the correct
message.

We remark here that this achievability scheme is closely
related to the scheme for successive encoding of correlated
sources [9]. It was shown in [9] for the case of lossless source
coding with partially connected encoders, that the rate-region
can be strictly improved upon the case of separated encoders
[10], [11]. It is also evident that due to the fact that relaysare
partially separated, we can achieve the cut-set upper bound
which is not always achievable when the relays are separated.

B. Semi-Deterministic Broadcast

We will now consider the case when the broadcast channel
of the diamond channel is such thatY = f(X) for any deter-
ministic functionf . In the following theorem, we characterize
the capacity of this class of diamond channels.

Theorem 5: The capacity of the diamond channel,
CPS(Ry, Rz) with semi-deterministic broadcast channel and
partially separated relays is given as,

CPS(Ry, Rz) = max
p(x)

min(I(X ; Z) + H(Y |Z), Ry + Rz ,

Ry + I(X ; Z), Rz + H(Y )) (50)

The converse follows from the cut-set upper bound [4]. We
will prove the achievability as follows.

Figure5 shows all possible cases for the pair(Ry, Rz). It
suffices to show that reliable transmission is possible at the
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Rz
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Fig. 4. Achievability for the diamond channel with degradedbroadcast.
rate

min(I(X ; Z) + H(Y |Z), Ry + Rz, Ry + I(X ; Z),

Rz + H(Y )) (51)

at the four corner pointsP1, P2, P3 andP4.
Reliable transmission is possible at a rateI(X ; Z) at the

corner pointP1, whenRz = I(X ; Z) andRy = 0 by using a
single-user channel code for relay1 at a rateI(X ; Z). Reliable
transmission is possible at a rateH(Y ) at the corner pointP2,
whenRz = 0 andRy = I(X ; Y ) = H(Y ), by using a single-
user channel code for relay2 at a rateI(X ; Y ).

Now, consider the corner pointP3, where we have,

Ry = H(Y |Z) (52)

Rz = I(X ; Z) (53)

= I(X ; Z|Y ) + I(Z; Y ) (54)

= [I(X ; Z, Y ) − I(X ; Y )] + I(Z; Y ) (55)

where (54) follows from the fact thatY = f(X).
The encoder generates2nI(X;Y,Z) x(w) sequences, where

w = 1, . . . , 2nI(X;Y,Z). The encoder also bins thex(w)
sequences in2nI(X;Z|Y ) bins, where the bin index of
the sequencex(w) is denoted asbj(x(w)), where j =
1, . . . , 2nI(X;Z|Y ). To transmit the messagew, the encoder
putsx(w) as the input to the channel.

Upon observing the channel outputy, relay 2 compresses
they sequences at a rateH(Y |Z) with Z as side-information
and transmits the compression bin-index, where the bin index
of y sequence is denoted asbY (y). The rate needed by relay
2 is H(Y |Z).

Upon observing thez sequence from the channel and the
bin index bY (y) from relay 2, relay 1 first estimates they
sequence. It can estimate the correcty sequence with high
probability since the number ofy sequences in each bin is at
most 2nI(Z;Y ). Let the sub-index of the estimated sequence
y in the bin bY (y) be denoted aslY (bY (y), z). Relay1 then
proceeds to decode the message by decodingx by usingz and
the estimatedy sequence. Relay1 transmits the bin index of
the decodedx sequence,bj(x(ŵ)) and the sub-index of the
decodedy sequence,lY (bY (y), z). The total rate needed by
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broadcast.

relay 1 is I(X ; Z|Y ) + I(Z; Y ) = I(X ; Z).
Upon observing bY (y) from relay 2 and the pair

(lY (bY (y), z), bj(x(ŵ))) from relay1, the decoder first finds
the correcty sequence as thelY (bY (y), z)th sub-index in the
bin bY (y). It next decodes the message by searching for a
uniquex(w) in the binbj(x(ŵ)) such that(x(w), y) are jointly
typical. This is possible since the number ofx sequences
in each x-bin is approximately2nI(X;Y,Z)/2nI(X;Z|Y ) =
2nI(X;Y ). Therefore, the decoder can decode the message and
reliable transmission is possible at a rateI(X ; Z)+ H(Y |Z).

Now, consider the corner pointP4, where we have,

Ry = H(Y ) (56)

Rz = I(X ; Z|Y ) = I(X ; Z, Y ) − I(X ; Y ) (57)

For this case, relay2 can describe they sequence to both
relay 1 and the decoder. Relay2 usesz and y to correctly
decode the message and transmits the bin-index,bj(x(ŵ))
of the decodedx sequence. The total rate needed by relay
1 is I(X ; Z|Y ). Upon receivingy sequence from relay2
and bj(x(ŵ)) from relay 1, the decoder decodes the mes-
sage by searching for a uniquex(w) in the bin bj(x(ŵ))
such that(x(w), y) are jointly typical. This is possible since
the number ofx sequences in eachx-bin is approximately
2nI(X;Y,Z)/2nI(X;Z|Y ) = 2nI(X;Y ). Therefore, the decoder
can decode the message and reliable transmission is possible
at a rateI(X ; Z) + H(Y |Z).

We remark here, that the main idea behind achievability of
the rateI(X ; Z) + H(Y |Z) at the corner pointP3 is to use
compress-and-forward at relay2, where relay2 compresses its
output by using relay1 output as the side information [12].
This approach of compress-and-forward to achieve the cut-
set bound is different than that we have seen for the case
of physically degraded relay channel, where both relay1 and
relay 2 are able to decode the message.

The capacity of the diamond channel with separated relays
when Y = X and Z is a noisy function ofX was obtained
in [3]. We note that this channel falls in the class of dia-
mond channels with semi-deterministic broadcast component,
since Y = f(X). Moreover, this channel also falls in the
class of diamond channels with physically degraded broadcast

Semi-Deterministic

Deterministic
Y = X

X → Y → Z

Z = g(X)

Y = f(X)

Y = f(X)
Class of [3]

Physically Degraded

Fig. 6. Illustration of some classes of diamond channels.

component, sinceX → Y → Z forms a Markov chain. To
observe these inclusions, see Figure6. Now, note that for this
channel, it was shown in [3] that the cut-set upper bound is
strictly sub-optimal when the relays are separated. On the other
hand, when the relays are partially separated, we have from
Theorems 4 and 5, that the cut-set upper bound is optimal.
Since the case of partially separated relays is equivalent to
having feedback from the decoder to relay2, our results
therefore show that feedback to even one of the relays strictly
improves the capacity of the diamond channel.

IV. CONCLUSIONS

We considered several variations of the diamond channel
with an orthogonal multiple access component. We established
the capacity for the case when the broadcast channel is de-
terministic. We next provided an upper bound on the capacity
when the broadcast channel is physically degraded. This upper
bound was shown to be tight for a sub-class of such channels.
We next considered the variation of diamond channel where
the relays are partially separated and established the capacity
when the broadcast channel is a) physically degraded and b)
semi-deterministic. For both of these cases, we showed that
the cut-set bound is tight.
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