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Abstract 
This paper describes a method for finding optimal tra- 
jectories for multiple aircraft avoiding collisions. Re- 
cent developments in spacecraft path-planning have 
shown that trajectory optimization including collision 
avoidance can be written as a linear program subject 
to mixed integer constraints, known as a mixed-integer 
linear program (MILP). This can be solved using com- 
mercial software written for the operations research 
community. In this paper, an approximate model of 
aircraft dynamics using only linear constraints is devel- 
oped, enabling the MILP approach to  be applied to  air- 
craft collision avoidance. The formulation can also be 
extended to  include multiple waypoint path-planning, 
in which each vehicle is required to  visit a set of points 
in an order chosen within the optimization. 

1 Introduction 

Path-planning for aircraft has been the subject of much 
recent interest. Two major applications drive this re- 
search: air traffic management [2] and autonomous Un- 
manned Aerial Vehicles (UAVs) [3]. Both areas require 
path-planning methods for multiple vehicles, avoiding 
obstacles and each other. Finding optimal solutions to  
these problems is intrinsically hard, since the optimiza- 
tion is non-convex. However, it can be written involv- 
ing discrete decisions between linear constraints, which 
in turn can be expressed as linear constraints upon a 
mixture of continuous and integer variables [8, 91. The 
resulting mixed-integer linear program (MILP) can be 
solved using efficient, commercial software employing 
the branch-and-bound algorithm [7]. This approach 
has been applied to spacecraft maneuvering, for which 
linear approximations of relative dynamics are well- 
known [5, lo]. In this paper, a linear approximation 
of aircraft dynamics will be developed, allowing the 
MILP method of collision avoidance to  be used in the 
trajectory optimization. 

A centralized algorithm is presented to  perform the 
co-ordinated guidance of multiple aircraft flying at a 
certain altitude. The aircraft are modeled as vehicles 
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moving in two dimensions with constant speed and lim- 
ited turning rate. Previous work in this area has devel- 
oped necessary conditions for optimality using nonlin- 
ear aircraft dynamics [l]. Another method performed a 
simplified optimization based on a single heading deci- 
sion [4]. The method described in this paper provides 
direct generation of the optimal trajectory. A mini- 
mum time formulation, also seen in [ll], is combined 
with the collision avoidance constraints from [5], and 
extended to  include aircraft dynamics. 

The ability of MILP to include discrete decisions in the 
optimization allows some very flexible mission p r o b  
lems to  be solved. In particular, this paper includes 
the extension of the formulation to  include multiple 
waypoint path-planning. Instead of having a single ter- 
minal point, each aircraft is required to  visit a number 
of points. The order of those visits is selected within 
the optimization to  give the shortest overall flight time. 

This paper begins with the formulation of the trajec- 
tory optimization, including the dynamics model, col- 
lision avoidance constraints and multiple waypoint ex- 
tension. An example is then presented to demonstrate 
that the approximation of the dynamics performs ac- 
ceptably. Further examples demonstrate co-operative 
planning for multiple aircraft and the flexibility of the 
multiple waypoint method. 

2 Problem Formulation 
2.1 Approximation of Vehicle Dynamics 
This paper considers problems in which aircraft fly at 
constant altitude, resulting in planar motion. This is 
a common restriction in air traffic models, as air space 
is commonly structured in layers [l]. Also, in UAV 
problems, altitude is often determined by mission con- 
straints, such as sensor resolution or radar visibility, 
resulting in a 2-D guidance problem only. 

Furthermore, for many cases of interest, an aircraft can 
be modeled as moving at constant speed. The rate of 
change of heading angle is limited by the maximum 
bank angle of the aircraft. Writing these constraints 
exactly results in nonlinear expressions, which cannot 
be handled in a MILP framework. Therefore,.the air- 
craft is approximated here as a point mass, moving 
with limited speed and acted on by a force of limited 
magnitude. The optimization seeks the minimum time 
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Fig. 1: Cornering paths allowed by the constraints. 
Rmin is the designed minimum radius of curvature. The 
dashed path is allowable within the constraints, but will 
always take longer than the solid path. 

solution, so it is favorable to remain at, or near, the 
maximum speed throughout the entire maneuver. 

The turning rate constraint is effected by a force mag- 
nitude limit. Consider a mass m traveling with speed 
v subject to a force of magnitude f .  The instantaneous 
turning rate w will be greatest if the force is perpen- 
dicular to the velocity. It is therefore limited by 

f w < -  
mu 

Furthermore, if the magnitude of the force is limited 
to fm, and the speed is a constant U,,, the rate is 
limited throughout the problem by 

(2) 
f max 

W,, = - 
mumax 

In this implementation of the problem, there is only an 
upper bound on the speed. The inclusion of this magni- 
tude limit as linear constraints is shown in Section 2.2. 
It is feasible for the speed to fall below umax, allowing 
tighter turns than the bound in Eqn. 2. However, for 
the minimum time solution, it is favorable to remain at 
maximum speed and obey the specified turn rate limit. 

For example, consider the situation shown in Fig. 1, 
in which an aircraft must turn through 90' from one 
trajectory on to another. Two of the possible paths 
are shown in this figure. Following the solid line, the 
aircraft remains at maximum speed and turns at the 
prescribed maximum turning rate w,,, therefore fol- 
lowing the prescribed minimum radius Rmin. It is also 
feasible to follow the dashed path, decelerating first, 
then applying the maximum force to achieve a smaller 
radius of curvature, before accelerating back to maxi- 
mum speed and rejoining the solid path. Although it 
is allowed in the linear model, this trajectory is not 
possible for a real aircraft. Fig. 2 shows the variation 
in total maneuver time with the radius of turn used. 
This was found analytically by calculating the time for 

Variation of execution time with turn rate for 
the maneuver shown in Fig. 1. 

the turn itself, the necessary deceleration and acceler- 
ation times, and the adjoining segments of maximum 
speed travel. It is clear from the figure that the fastest 
turning maneuver is achieved by remaining at maxi- 
mum speed and obeying the nominal maximum turn- 
ing rate wm,. Using higher turning rates leads to a 
slower overall maneuver, due to the additional deceler- 
ation required. This result matches intuition, because 
the solid path in Fig. 1 is shorter in length than any 
others and has a higher average speed. 

When avoidance constraints are added, some arrange- 
ments of obstacles could cause the model to favor the 
tighter turn. Therefore, it is necessary to post-analyze 
each trajectory to ensure it is flyable by the real air- 
craft. If not, the problem can be rerun with a lower 
force limit until an acceptable solution is found. 

2.2 Dynamics Constraints in the Problem 
To analyze the types of problems discussed in the In- 
troduction, assume that there are N aircraft, each a p  
proximated as a point mass moving in 2-D. The posi- 
tion of aircraft p at time step i is given by ( z i P , y i p )  

and its velocity by (U,,,, v ~ , ~ ) ,  forming the elements of 
the state vector sip. Each aircraft is assumed to be 
acted upon by control forces (f2,p, fy,,) in the X -  and 
Y-directions respectively, forming the force vector fip. 
The discretized dynamics of the overall system, applied 
to all N vehicles up to T time steps, can be written in 
the linear form 

In all cases, the initial conditions are specified as 

sop = SI, (4) 

where SI, is the initial state of vehicle p .  

As discussed previously, both the velocity of the air- 
craft and the force acting upon the aircraft are subject 
to magnitude constraints. The exact representation of 
these constraints would be nonlinear, but they can be 
approximated by linear inequalities. The true magni- 
tude constraints enclose a circle on the X - Y  plane, as 
shown in Fig. 3. A simple magnitude limit on each 
element, as shown in Eqn. 5 for the speed constraint, 
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Fig. 3: Approximations to magnitude limits for 2-D 
vectors. The circle is the feasible region for true mag- 
nitude limits. The square and polygon are two ways of 
approximating these regions with linear constraints. 

restricts the velocity within the square shown in Fig. 3. 

lvzl I vlim and Ivy1 I vlim (5) 
This is obviously a poor approximation to the circle 
(magnitude limit). However, an arbitrary number ( M )  
of constraints can be used to achieve better approxi- 
mations. For both velocity and force constraints these 
are given by 

V i  E [ O . .  .T - 1]Vp E [l . . . N]Vm E [l . . . M] 

Vi E [ l .  ..T]Vp E [ I . .  .N]Vm E [I .. . M ]  

The feasible region formed by ten constraints ( M  = 10) 
is shown in Fig. 3, forming a better approximation to 
the circle. The additional constraints have little effect 
on the computation time since they include only linear 
variables. 

2.3 Collision Avoidance 
To safely avoid collision, each vehicle has a rectangular 
exclusion region around it which no other vehicle can 
enter. For example, consider two vehicles p and q, using 
the same position notation as in the previous section. 
Let the safety distance be denoted by d, assumed to 
be the same in both X and Y directions for simplicity. 
The constraints for collision avoidance were developed 
in [5, 101 and can be written as 

vi E [l ... TI v p , q  1q > p 

xip - xiq 2 d - Rcipql 
and x i q  - xip 2 d - Rqpqz 
and Yip - Yiq 2 d -  R c i p q ~  (8) 
and Yiq - Yip 1 d -  Rcipq4 

4 

where Cipqk are a set of binary variables (0 or 1) and 
R is a positive number that i's much larger than any 
position or velocity to be encountered in the problem. 
The first four inequalities in Eqn. 8 represent the four 
lines enclosing the exclusion region around each vehicle. 
If cipqk = 0, there is at least d distance between vehicles 
p and q in the kth direction (of the four directions + X ,  
-x, +Y, -Y) at the ith time step. If CZpqk = 1, the 
constraint is relaxed. The final inequality ensures that 
no more than three of the constraints are relaxed at 
any time step, so there must always be safe separation 
in at least one direction. 

Eqn. 8 becomes an additional constraint on the trajec- 
tory optimization problem. The binaries Cipqk become 
decision variables for the optimization. 

2.4 Solving for the Minimum Time Trajectory 
This section shows how MILP constraints can be used 
to include variable finishing times within a linear opti- 
mization. A concurrent development of a similar for- 
mulation can be seen in [ll], applied to off-line design 
of minimum-time regulators. In this problem, vehi- 
cle p is required to reach its destination (xF,,YF,) at 
some time-step before the maximum T. This problem 
is solved by introducing the binary variables hip, which 
have a value of 1 if the pth vehicle reaches its destina- 
tion at the ith timestep, and 0 otherwise. The resulting 
MILP constraints are 

v p  E [l ... NI vi E [l ... TI 

z i p  - ZF, I R( 1 - bip) 

and Zip - XF, 2 - R(l -hip) (9) 
and Yip - YF, i R(l - bi,) 
and Yip - YF, L - R(1 -hip) 

T 
Vp E [l . . .NI C bi, = 1 (10) 

i=l 

where R is the same large, positive number used in 
Eqn. 8. It can be seen that if bi, = 1, Eqn. 9 forces 
the aircraft state to equal the final state. However, 
if bi, = 0, then the constraints are inactive. Eqn. 10 
enforces the logic that each vehicle must reach its target 
at one time point, but does not require that the vehicles 
finish at the same time. The minimum time solution 
for each aircraft is sought by minimizing the sum of the 
finishing times for each vehicle: 

T N  

where Ti is the actual time elapsed at step i, b and c 
are the binary variables. 

Unfortunately, the cost function in Eqn. 11 alone leads 
to an inefficient formulation. Since time has been dis- 
cretized, there can be multiple solutions that finish at 
each time step. In addition, the states and inputs for 
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time steps after the selected finishing time have no ef- 
fect on the cost. These redundancies do not affect the 
final result, but finding that solution can be slower as 
irrelevant regions of the solution space are searched. 
This problem can be remedied by adding a small input 
penalty to the cost function 

N / T  T-1 \ 

(12) 
where E is a positive number, small enough to ensure 
that the fuel penalty never exceeds the value of one 
time step. The complete problem is then to minimize 
Eqn. 12 subject to the constraints in Eqs. 3, 4, 6, 7, 8, 
9 and 10. In this case, there is a unique optimal so- 
lution, and the solution algorithm appears to perform 
more efficiently. Due to the complexity of the CPLEX 
solution procedure used, the exact cause of this im- 
provement is unclear, but later results will show that 
it has a significant effect on the solution times. 

2.5 Multiple Waypoints 
The problem formulation so far plans trajectories from 
a fixed start point t o  a fixed end point. This section 
extends the minimum time formulation to include mul- 

, .  tiple waypoints. These results address the scenario in 
which each vehicle must visit a set of points during 
the maneuver, but the order of those visits is not pre- 
specified. Instead, the order will be selected within.the 
optimization to minimize the overall cost of the ma- 
neuver. 

Assume that there are W waypoints for each vehicle 
and the position of the kth waypoint for the pth vehicle 
is (xwkP,ywkp).  To solve this problem, introduce the 
new binary variables bipk, which have the value 1 if the 
pth vehicle reaches its kth waypoint at the ith time step, 
and 0 otherwise. In this case, the MILP constraints 
from Eqs. 9 and 10 are modified to 

V p  E [ l .  .. N]Vz E (1 .. . T ] V k  E [ l .  .. W ]  

Z i p  - X W ~ ,  5 R(1 - b i p k )  
and xip  - X W +  2 - R(l  - b i p k )  (13) 
and y ip  -ywkp I R(1 - b i p k )  

and y i p  - YWkp 2 - R(1 - b i p k )  

These constraints require that each vehicle visits each 
of its assigned waypoints once, but does not imply any 
ordering of the visits. Since the ordering of the way- 
points is not specified, any one of them might be the 
final point visited. The finishing time is therefore the 
maximum of the visiting times for each waypoint. Thus 
we define a new variable, T F ~  to represent the finishing 
time for the pth vehicle. It must satisfy the following 

constraint 

T 
Vp E [l . . . N ]  V k  E [l . . . W ]  TF, 2 q b i p k  

i= l  

Finally, the cost function in Eqn. 12 is modified 
come 

N /  T-1 \ 

subject to the constraints in Eqs. 3, 4, 6, 7, 8, 
and 15. It can be seen that this formulation will provide 
the minimum time solution to visit all the waypoints 
in the optimal order. 

3 Implementation 

The optimization problems shown here can be easily 
translated into the AMPL modeling language [6]. An 
AMPL model file contains the constraint forms for all 
instances, while the data is written to an AMPL data 
file by a Matlab script. CPLEX optimization software 
is used to solve the problem (131. A series of scripts 
in Matlab and AMPL allow the entire path-planning 
problem to be invoked by a single command. The prob- 
lems were solved on a 1GHz PC withq256MB RAM. 

4 Examples 

4.1 Single Aircraft 
The example in this section demonstrates that the lin- 
ear constraints form an acceptable approximation to 
aircraft dynamics. A vehicle with mass m = 5kg moves 
through a field of fixed obstacles. The constraints for 
avoiding fixed obstacles were developed in [5] and are 
similar to the collision avoidance constraints earlier in 
this paper. The dynamics were discretized with a time 
step of two seconds. The initial position was (5,5) and 
the final position (-5,4), with a required velocity of 
(-0.2,O) at both points. 

The real vehicle has a maximum speed v,, = 
0.225m/s and turn rate U,, = 15O/s. Using Eqn. 2, 
this corresponds to a force limit fmax = 0.294N. A 
force penalty weighting e = 0.001 was used. The cir- 
cles in Fig. 4 mark the trajectory design using these 
values. It avoids all the obstacles and reaches its tar- 
get after 60 seconds or 30 time steps. The solid line in 
Fig. 5 shows the speed of the vehicle during the ma- 
neuver. As expected, it remains close to  the maximum 
throughout. The turn rate, shown by the dash-dot line 
in Fig. 6, is either near its maximum or zero. The 
trajectory is approximately a series of straight lines 
joined by the tightest possible turns, all at constant 
speed. This satisfies the necessary conditions derived 
in [l], which found that the extrema1 path consists of 
segments of minimum radius turns joined by straight 
lines. Note that the trajectory cuts the corners of the 
obstacles, since collision avoidance is enforced only at 
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Fig. 4: The designed trajectories for an aircraft moving 
through obstacles. Paths for two different turn rate 
settings are shown. 

the discrete time points marked. The obstacle regions 
in the optimization must be slightly larger that the real 
obstacles to allow for this margin. 

Fig. 6 shows that the turn rate exceeds the 15"/s limit 
during some of the tighter turns around obstacle cor- 
ners. This possibility was discussed in Section 2.1. In 
this case, the infringement of the turn rate limit is 
small, but if the resulting trajectory is unflyable by the 
real aircraft, post-processing would indicate the need to 
find a different solution. Reducing the force limit in the 
model by 20%, corresponding to a nominal turn rate 
limit of 12"/s, gives the result shown by the triangles in 
Fig. 4. Since the available force has been reduced, the 
tight turns in the first maneuver would require greater 
deceleration. This makes the new path more favorable. 
The solid line in Fig. 6 shows the turning rate during 
the redesigned maneuver, which now remains below the 
15O/s limit. 

The optimization was solved in 49 seconds with the 
first settings and 65 seconds with the reduced force. 
To illustrate the- importance of the force penalty, the 
same problems using the cost function in Eqn. 11, with- 
out the force penalty, were solved in 142 and 277 sec- 
onds respectively. In a further experiment to test the 
problem-dependency of solution times, 783 randomly- 
generated, feasible problems, each involving similar ob- 
stacles and operating region as in this example, were 
solved using the cost function with force penalty. The 
average solution time was 11 seconds, with a maximum 
of 68 seconds. 

4.2 Multiple Aircraft 
Having verified the model in the previous section, this 
example applies it to a collision avoidance problem in- 
volving multiple aircraft. Three aircraft, similar to 
those used in the previous example, are required to tra- 
verse different diameters of a circle, as shown in Fig. 7. 
Their starting points are marked by squares and desti- 
nations by stars. The straight line paths to the desti- 

.._,-, .,... I..,. yl-w-v-q,., l ' - ' - ' - ' - .  ..... .... I 

0.2 ?,i 
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B i...t 
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Fig. 5: Speed of vehicle during maneuvers shown in 
Fig. 4. The dashed line shows the specified limit. 

Fig. 6: Turning rate of vehicle during maneuvers 
shown in Fig. 4. The dashed line shows the real aircraft 
limit of 15O/s. 

nations, shown dotted in the figure, would clearly lead 
to a collision. The designed trajectories, also shown in 
Fig. 7, form a 'roundabout' maneuver and successfully 
avoid collision with minimal deviation. The square ex- 
clusion region is l m  across. A similar result was shown 
in [l], found by an iterative process involving the nec- 
essary conditions for optimal avoidance. This paper 
has repeated that result by direct optimization. The 
trajectories also demonstrate the co-operative nature 
of this optimization method. 

The heavy dots mark the positions of the aircraft at 
the 18th time step. The exclusion regions around these 
positions are shown by the dotted boxes. Observe that 
the vehicles are separated by exactly the safety dis- 
tance in the X-direction, illustrating the efficiency of 
the formulation and the direct physical significance of 
the avoidance distance. This contrasts with penalty 
methods such as potential functions [12], in which the 
avoidance weighting is not so obviously related to the 
achieved distance and may need tuning. 
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Fig. 7: The designed trajectories for the aircraft. The 
stars mark the target positions. 
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Fig. 8: Designed trajectory for an aircraft to visit three 
waypoints, marked by stars, in any order. The aircraft 
starts at the left. 

4.3 Multiple Waypoints 
This section presents an example of the multiple way- 
point formulation, in which the aircraft must visit sev- 
eral different points in an unspecified order. In Fig. 8, 
the waypoints are marked by stars. The algorithm has 
chosen the ordering to give the fastest trajectory visit- 
ing all three points. In Fig. 9, an obstacle blocks the 
path used in Fig. 8. The algorithm now selects a dif- 
ferent ordering to  visit the points in minimum time. 
This illustrates the potential of this method for solv- 
ing planning problems including aspects of high-level 
co-ordination. 

5 Conclusion 

It has been shown by theory and example that a con- 
stant speed, limited turn rate vehicle, such as an air- 
craft, can be modeled as a point mass with limited 
speed and subject to limited force in a minimum time 
problem. This has been combined with collision avoid- 
ance constraints to  form a mixed integer linear pro- 
gram, which can be solved by a commercial software 
package. A further extension generates trajectories 
passing through a set of waypoints, the order of which 
is determined in the optimization for minimum comple- 
tion time. Examples have been given to show that the 
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Fig. 9: Designed trajectory for the same task as in 
Fig. 8 but with an obstacle blocking the path used pre- 
viously. The order of visiting the waypoints is changed. 

approximate modeling is valid and to  demonstrate the 
technique applied to various collision avoidance prob- 
lems. 
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