Practice Problem Set 5

ASM Charts and Logic Optimization

1. Which function does the ASM in Figure 1 describe?
(a) Half Subtractor Borrow Bit
(b) 2-tol MUX
(c) Half Subtractor Difference Bit
(d) 2-input XOR gate
(e) none of the above
2. Describe the functionality of a 3-input OR gate using an ASM chart.

Fig 1: ASM example used in Problem 1

3. Which of the following equations are in sum-of-minterms form?
(a) $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=1$
(b) $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum \mathrm{m}(1,2,3)+\sum \mathrm{d}(6)$
(c) $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{ab}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}$
(d) $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{abc}$
4. Implement the following equations using gates (do not optimize the equations). What is the size and area for each circuit?
(a) $\mathrm{F}=\mathrm{a}$,
(b) $\mathrm{F}=\mathrm{ab}+\mathrm{c}^{\prime}$
(c) $\mathrm{F}=\mathrm{a}\left(\mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{d}\right)+\mathrm{bd}{ }^{\prime}$
5. Plot the following design options on the following graph. Which of the following solutions represent a pareto points?
(a) Option $\mathrm{A}\{$ area $=10$, delay $=1\}$
(b) Option $\mathrm{B}\{$ area $=2$, delay $=2\}$
(c) Option $\mathrm{C}\{$ area $=4$, delay $=8\}$
(d) Option D \{area $=8$, delay $=9\}$
(e) Option $\mathrm{E}\{$ area $=1$, delay $=8\}$
(f) Option $\mathrm{F}\{$ area $=5$, delay $=4\}$
(g) Option G \{area $=1$, delay $=5\}$
(h) Option H \{area $=9$, delay $=6\}$
6. Use DeMorgan's Law to find the inverse of the following equations. Provide you answer in sum-of-products form.
(a) $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\mathrm{a}^{\prime}+\mathrm{b}+\mathrm{c}^{\prime} \mathrm{d}$
(b) $\mathrm{F}=\mathrm{a}^{\prime} \mathrm{bc}{ }^{\prime}+\mathrm{ab}$
7. Given $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{ab}+\mathrm{ac}+\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}$
(a) List the variables in F
(b) List the literals in F
(c) List the product terms in F
(d) List the minterms in F
8. Consider the equation $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(4,5,7,12,14,15)$. Which of the following product terms are prime implicants of the equation (Hint: draw a K map).
(a) a'bc'd'
(b) $a b ' c$
(c) ad'
(d) $b c^{\prime} d^{\prime}$
(e) There are no prime implicants in this equation.
9. Using the K-map provided in Fig2, identify
(a) minterms
(b) implicants
(c) prime implicants
(d) essential prime implicants

Fig 2: K-map used in Problem 9.

10. What is the difference between an exact algorithm and a heuristic?
11. Perform two-level logic optimization for $F(a, b, c, d)=a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} c^{\prime} d^{\prime}+a^{\prime} c d^{\prime}+b c d^{\prime}+a c d^{\prime}$
(a) Using K-maps, express your solution in sum-of-products form
(b) Using Boolean Algebra, express your solution in sum-of-products form
12. Perform two-level logic optimization for $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum(0,2,6,8,9,10,13,15)$.
13. Using Quine-McCluskey (tabular minimization method) minimize $\mathrm{F}(\mathrm{a}, \mathrm{b}$, $c)=\sum \mathrm{m}(1,2,3,4,6,7)$.
14. Using Quine-McCluskey (tabular minimization method) minimize $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum \mathrm{m}(0,2,3,4,5,7)$.
15. Using Petrick's method, determine the minimum cover of the following prime implicants chart.
(NOTE: THIS DOES NOT NEED TO BE A FORMAL PROOF).
17. How could you change Petrick's method if the size of the prime implicants was taken into consideration (i.e. Size of a'b'c' is 6 transistors vs. ab is only 4 transistors).

