PRACTICE PROBLEM SET 5 ASM Charts and Logic Optimization

- 1. Which function does the ASM in Figure 1 describe?
 - (a) Half Subtractor Borrow Bit
 - (b) 2-to1 MUX
 - (c) Half Subtractor Difference Bit
 - (d) 2-input XOR gate
 - (e) none of the above
- 2. Describe the functionality of a 3-input OR gate using an ASM chart.

- (a) F(a, b, c) = 1
- (b) $F(a, b, c) = \sum m(1, 2, 3) + \sum d(6)$
- (c) F(a, b, c) = ab + a'b'
- (d) F(a, b, c) = abc
- 4. Implement the following equations using gates (do not optimize the equations). What is the size and area for each circuit?
 - (a) F = a'
 - (b) F = ab + c'
 - (c) F = a(b'c' + d) + bd'
- 5. Plot the following design options on the following graph. Which of the following solutions represent a pareto points?
 - (a) Option A {area = 10, delay = 1 }
 - (b) Option B {area = 2, delay = 2 }
 - (c) Option C {area = 4, delay = 8 }
 - (d) Option D {area = 8, delay = 9 }
 - (e) Option E {area = 1, delay = 8}
 - (f) Option F {area = 5, delay = 4 }
 - (g) Option G {area = 1, delay = 5}
 - (h) Option H {area = 9, delay = 6}
- 6. Use DeMorgan's Law to find the inverse of the following equations. Provide you answer in sum-of-products form.
 - (a) F(a, b, c, d) = a' + b + c'd
 - (b) F = a'bc' + ab
- 7. Given F(a, b, c) = ab + ac + a'b'c
 - (a) List the variables in F
 - (b) List the literals in F
 - (c) List the product terms in F
 - (d) List the minterms in F

- 8. Consider the equation $F(a,b,c,d) = \sum m(4, 5, 7, 12, 14, 15)$. Which of the following product terms are prime implicants of the equation (*Hint: draw a K-map*).
 - (a) a'bc'd'
 - (b) ab'c
 - (c) ad'
 - (d) bc'd'
 - (e) There are no prime implicants in this equation.
- 9. Using the K-map provided in Fig2, identify
 - (a) minterms
 - (b) implicants
 - (c) prime implicants
 - (d) essential prime implicants

- 10. What is the difference between an exact algorithm and a heuristic?
- 11. Perform two-level logic optimization for F(a, b, c, d) = a'b'c'd' + a'c'd' + a'cd' + bcd' + acd'
 - (a) Using K-maps, express your solution in sum-of-products form
 - (b) Using Boolean Algebra, express your solution in sum-of-products form
- 12. Perform two-level logic optimization for $F(a, b, c, d) = \sum (0, 2, 6, 8, 9, 10, 13, 15)$.
- 13. Using Quine-McCluskey (tabular minimization method) minimize F(a, b, $c) = \sum m(1, 2, 3, 4, 6, 7)$.
- 14. Using Quine-McCluskey (tabular minimization method) minimize $F(a, b, c) = \sum m(0, 2, 3, 4, 5, 7)$.
- 15. Using Petrick's method, determine the minimum cover of the following prime implicants chart.

Fig 3: Prime Implicants Chart used in Problem 15.								
			2	3	7	10	14	15
P1	001-	(2, 3)	x	х				
P2	-010	(2, 10)	х			х		
P3	0-11	(3, 7)		х	х			
P4	-111	(7, 15)			х			х
P5	1-10	(10, 14)				х	х	
P6	111-	(14, 15)					х	х

- 16. Petrick's method utilizes the absorption property (X + XY = X) to determine the minimum cover. Prove the absorption property works *(NOTE: THIS DOES NOT NEED TO BE A FORMAL PROOF).*
- 17. How could you change Petrick's method if the size of the prime implicants was taken into consideration (i.e. Size of a'b'c' is 6 transistors vs. ab is only 4 transistors).