Practice Problem Set 2

Finite State Machines and Verilog

1. Which of the following FSMs implement a button synchronizer, converting each unique button press into a single cycle " 1 ", regardless of the time the button is actually pressed.

(a)

Inputs: b (bit) Outputs: x (bit)

(b)

Inputs: b (bit)
Outputs: x (bit)

(c)

Inputs: b (bit) Outputs: x (bit)

(d)
2. Create a state table for the following FSM. You can assume the state register is implemented with D flip-flops. You DO NOT need to implement the combinational logic.

Inputs: a; Outputs: x, y

3. Convert the following Moore FSM to a Mealy FSM.

4. Convert the following Mealy FSM to a Moore FSM

Inputs: y; Outputs: e

5. Implement a Mealy FSM that detects the input sequence pattern $z=1,0,1,0$. Whenever the input pattern is detected immediately output $\mathrm{f}=1$ (do not wait until the next clock cycle). You only need to show the FSM, you do not need to implement the architecture. Hint: What happens when you detect input $z=1,0,1,0,1,0$?
6. Describe the FSM provided using the formal specification $M=\left(X, Y, S, \delta, \lambda, s_{0}\right)$.

Inputs: a, b; Outputs: y

7. You want to design a laser surgery system where a surgeon activates the laser by pressing a button. The laser should then stay on for exactly 3 cycles, then turn off. The FSM below describes the three-cycles high laser timer controller. (Same system from lecture 3, slide 4)

To model this FSM in Verilog we can use either a 2-process model or a 1-process model. Download the three-cycles high laser time code provided on the course page and simulate both FSMs using the Testbench provided.
a) Do both the 1-process model and 2-process model accurately describe the functionality of the desired system?
b) Is there any difference in output between the 1-process model and 2-process model? If so, why?
8. Derive a state table for the FSM provided. Assume the state register is implemented with T flip-flops and the state encodings for states A, B, C, and D are $00,01,10$, and 11 respectively. A truth table for T flip-flops is provided.

Inputs: a (bit)
Outputs: y, z (bit)

T flip-flop and corresponding truth table

T	Q	$\mathrm{Q}_{\text {next }}$
0	0	0
0	1	1
1	0	1
1	1	0

