## Practice Problems Set 1 <br> Digital Logic and Introductory Review Problems

1. Design a circuit that computes $\mathrm{F}=5 \mathrm{~A}$, using the fewest number of 4-bit adders. Input A is a 4-bit number. How many bits are required for the result to avoid overflow?
2. Design a 3-bit ALU to perform the operations specified. Draw the internal components and connections within each AL-extender, however you can use a block diagram to depict the adder.

| Inputs |  | Operation |
| :--- | :--- | :--- |
| a | b |  |
| 0 | 0 | Set output to 2 |
| 0 | 1 | $\mathrm{~A}-\mathrm{B}$ |
| 1 | 0 | $\mathrm{~B}+1$ |
| 1 | 1 | $\mathrm{~A}+\mathrm{B}$ |

3. Create the internal design of a full subtractor. Be sure to include a truth table, logic equations, and a gate-level schematic.
4. Using only 2-input, 1-output MUXes, implement the following components
a) 8-input, 1 output MUX
b) 2-input AND gate
c) half adder
5. Trace the behavior of the Verilog code provided. Fill in the value of C in each time step. (Hint: run the code through the simulator to verify your result)
```
always @ (posedge RST or posedge CLK) begin
    if( RST == 1) begin
        A=2;B=4;C=1;
        end
    else begin
        A<= B;
        B=B+1;
        C<=A+B;
    end
end
```

6. Provide an example/scenario where blocking statements are useful.
7. Provide an example/scenario where non-blocking statements are useful.
8. According to the Mythical Man Month, designer productivity decreases due to team-size complexity. Assuming a hypothetical $6,000,000$ transistor project ( T ), in which a single designer working alone can produce 7,500 transistors per months (P), and each additional designer added to project results in a productivity decrease of 150 transistors per designer (D).
a) Derive an equation to compute the months until completion (M) based on $T, P, D$, and $N$ (team size).
b) Plot the months until completion (M) verses team size (N), with the team size ranging from 1 designer to 50 designers. Hint: use excel or similar program to plot graph.
c) Plot the productivity per designer (I) verses team size (N), with the team size ranging from 1 designer to 50 designers.
d) What is the optimal team size?
e) If $D=200$, what is the optimal team size?
9. If specifying functionality at a higher level of abstraction increases productivity, what would be the benefit of specifying an module/application at the structural level?
