
1

ECE 474a/575a
Susan Lysecky

1 of 72

ECE 474A/57A
Computer-Aided Logic Design

Behavioral Synthesis
Scheduling Algorithms

ECE 474a/575a
Susan Lysecky

2 of 72

Scheduling

  What have we done?
  Specified the order in which operations are

performed

  What’s next - Operator Scheduling
  Assigning operations performed in each states
  Generally speaking, determining the start time of

each task/operation

  Why is scheduling important?
  Determines the amount of concurrency of the

resulting implementation – effects performance
  Maximum amount of concurrent operations of a

given type at any time step also determines the
amount of hardware resources of that type
required – effects area

t3 t2

*

t1

t6 t5

*

t4

B2
(some

operations)
(some

operations)
t1 = t2 * t3
t4 = t5 * t6

A B C
* t4 = t5 t6

*

2x1

t4 t1

2x1

t2 t5 t3 t6

sr sl

A B
(some

operations)
(some

operations)
t1 = t2*t3
t4 = t5*t6

C

ECE 474a/575a
Susan Lysecky

3 of 72

Control/Data flow graph (CDFG)

  How do we represent a scheduling?
  Dataflow graph – represents the way data flows through a computation

  Computations limited to 2-input

x1 = x + dx;
u1 = u – (3 * x * u * dx) – (3 * y * dx)
y1 = y + u * dx
c = x1 < a +

<

x dx

c

a

x1

*

+

y

u dx

y1

*

3 x

*

u dx

*

*

3 y

*

 -

u

 -

u1

dx

Code fragment we want to implement Corresponding CDFG

Vertices correspond to the
operations we perform

Edges correspond to the
dependencies

ECE 474a/575a
Susan Lysecky

4 of 72

Task Representation - Sequencing graph

  Determining a schedule
  Don’t really care about the actual input/output values
  Just want to know the task we perform (add, subtract, compare, etc..) and the

dependencies among the task

  Utilize a Sequencing graph

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

Sequencing Graph

CDFG

+

<

x dx

c

a

x1

*

+

y

u dx

y1

*

3 x

*

u dx

*

*

3 y

*

 -

u

 -

y1

dx
1 2

3

4

5

6

7

8

9

10

11

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

2

ECE 474a/575a
Susan Lysecky

5 of 72

Sequencing graph

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

Source node
Represented by a NOP (no operation) node
Indicates start of computation

Sink node
Represented by a NOP (no operation) node
Indicates completion of computation

Vertices
Represents the task or
operation to be performed

Edges
Represents dependencies among
operations
Cannot perform operation 3 until
operation 1 and 2 are completed

Dotted lines
Does NOT represent a dependency between
tasks or operations
Represents a connection between the source
and the initial task or operations

Dotted lines
Does NOT represent a dependency between
tasks or operations
Represents a connection between the sink and
the final task or operations

V0

Vn

ECE 474a/575a
Susan Lysecky

6 of 72

Scheduling - Sequencing Graphs

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

  Sequencing graph itself only specifies the dependencies among tasks
  Scheduling requires we associate a start time for each task/operation in the

sequencing graph
  Introduce concept of time

TIME 1

TIME 2

TIME 3

TIME 4

Operation 1, 2, 6, 8, and 10 are
performed in the first clock cycle

Operation 3, 7, 9, and 11 are
performed in the second clock cycle

Operation 4 is performed in the third
clock cycle

Operation 5 is performed in the fourth
clock cycle

V0

Vn

Notice all operations require only 1 clock cycle
to execute

ECE 474a/575a
Susan Lysecky

7 of 72

ASAP Scheduling

  Unconstrained minimum-latency scheduling problem
  We have infinite resources, all we want is the minimum time to perform the

computation
  Commonly referred to as ASAP (as soon as possible) scheduling

ASAP(GS(V,E)){
 Schedule v0 by setting t0 = 1
 repeat{
 Select a vertex vi whose predecessors are all scheduled;
 Schedule vi by setting ti = max tj + dj

 }
 until (vn is scheduled);
 return t;
}

j:(vj, vi) єE

Perform ASAP scheduling on the sequencing
graph

Schedule the source node v0 for time 1

Look for tasks/operations that are not
dependent on a task/operation that hasn’t been
scheduled yet

Keep going until we have scheduled the sink
node vn

Schedule the task/operation to time = time
predecessor scheduled for + time required for
predecessor to execute

may have multiple predecessors, take
maximum time

ECE 474a/575a
Susan Lysecky

8 of 72

*

ASAP Scheduling
Example 1

Step1
Schedule v0 at time 1

All of v1 predecessors are scheduled
Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet?

Time = v0 start time + v0 execution time
= 1 + 0
= 1

*
1

NOP

TIME 1

V0

+

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

No. Repeat loop.

3

ECE 474a/575a
Susan Lysecky

9 of 72

*

ASAP Scheduling
Example 1

Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet?

*

NOP

1
TIME 1

V0

+

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

All of v2 predecessors are scheduled

No. Repeat loop.

*
2

Time = v0 start time + v0 execution time
= 1 + 0
= 1

ECE 474a/575a
Susan Lysecky

10 of 72

ASAP Scheduling
Example 1

* *

NOP

1 2
TIME 1

V0

All of v3 predecessors are scheduled
Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? No. Repeat loop.

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

*
3

TIME 2

Time = v1 start time + v1 execution time
= 1 + 1
= 2

Time = v2 start time + v2 execution time
= 1 + 1
= 2

ECE 474a/575a
Susan Lysecky

11 of 72

ASAP Scheduling
Example 1

* *

*

NOP

1 2

3

TIME 1

TIME 2

V0

All of v4 predecessors are scheduled
Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? No. Repeat loop.

 - 4
TIME 3

Time = v3 start time + v3 execution time
= 2 + 1
= 3

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ECE 474a/575a
Susan Lysecky

12 of 72

ASAP Scheduling
Example 1

* *

*

 -

NOP

1 2

3

4

TIME 1

TIME 2

TIME 3

V0

v5 still has predecessors not scheduled (v7), skip for now
All of v6 predecessors are scheduled

Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? No. Repeat loop.

*
6

Time = v0 start time + v0 execution time
= 1 + 0
= 1

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

4

ECE 474a/575a
Susan Lysecky

13 of 72

ASAP Scheduling
Example 1

* *

*

*

 -

NOP

1 2

3

4

6
TIME 1

TIME 2

TIME 3

V0

All of v7 predecessors are scheduled
Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? No. Repeat loop.

*
7

Time = v6 start time + v6 execution time
= 1 + 1
= 2

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ECE 474a/575a
Susan Lysecky

14 of 72

ASAP Scheduling
Example 1

* *

*

*

*

 -

NOP

1 2

3

4

6

7

TIME 1

TIME 2

TIME 3

V0

All of v8 predecessors are scheduled
Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? No. Repeat loop.

*
8

Time = v0 start time + v0 execution time
= 1 + 0
= 1

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ECE 474a/575a
Susan Lysecky

15 of 72

ASAP Scheduling
Example 1

* * *

*

*

*

 -

NOP

1 2

3

4

6

7

8
TIME 1

TIME 2

TIME 3

V0

All of v9 predecessors are scheduled
Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? No. Repeat loop.

+
9

Time = v8 start time + v8 execution time
= 1 + 1
= 2

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ECE 474a/575a
Susan Lysecky

16 of 72

ASAP Scheduling
Example 1

*

+

* *

*

*

*

 -

NOP

1 2

3

4

6

7

8

9

TIME 1

TIME 2

TIME 3

V0

All of v10 predecessors are scheduled
Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? No. Repeat loop.

+
10

Time = v0 start time + v0 execution time
= 1 + 0
= 1

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

5

ECE 474a/575a
Susan Lysecky

17 of 72

ASAP Scheduling
Example 1

+ *

+

* *

*

*

*

 -

NOP

1 2

3

4

6

7

8

9

10
TIME 1

TIME 2

TIME 3

V0

All of v11 predecessors are scheduled
Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? No. Repeat loop.

<
11

Time = v10 start time + v10 execution time
= 1 + 1
= 2

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ECE 474a/575a
Susan Lysecky

18 of 72

ASAP Scheduling
Example 1

+

<

*

+

* *

*

*

*

 -

NOP

1 2

3

4

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

vn still has predecessors not scheduled (v5), skip for now
Return to v5, all predecessors are scheduled

Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? No. Repeat loop.

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

 - 5

Time = v4 start time + v4 execution time
= 3 + 1
= 4

Time = v7 start time + v7 execution time
= 2 + 1
= 3

ECE 474a/575a
Susan Lysecky

19 of 72

ASAP Scheduling
Example 1

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Return to vn, all predecessors are scheduled
Step2
Select a vertex vi whose predecessors are all scheduled

Step3
Schedule vi to time = predecessor’s scheduled time + time
required for predecessor to execute

Step4
Has vn been scheduled yet? Yes. We are done!

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

Time = v11 start time + v11 execution time
= 2 + 1
= 3

NOP Vn

Time = v5 start time + v5 execution time
= 4 + 1
= 5

Time = v9 start time + v9 execution time
= 2 + 1
= 3

ECE 474a/575a
Susan Lysecky

20 of 72

ASAP Scheduling
Example 2

ASAP Scheduling goal is to schedule tasks/operations to perform as
soon as possible

We can skip the algorithm and visually move vertices “up” as far as
possible

* *

*

NOP

NOP

3 4

6

9

V0

Vn

* *
1 2

5

* *

*

7 8

10

*

*

* 11

TIME 1

TIME 2

TIME 3

TIME 4

* *

*

NOP

NOP

3 4

6

9

V0

Vn

* *
1 2

5

* *

*

7 8

10 *

*

* 11

6

ECE 474a/575a
Susan Lysecky

21 of 72

ASAP Scheduling
Example 3

* *

NOP

NOP

4 5

10

V0

Vn

6

1

*

*

11

9

+ * 2 3

7 +

/

-

<

TIME 1

TIME 2

TIME 3

TIME 4

8 +

* *

NOP

NOP

4 5

10

V0

Vn

6

1

* *

11

9

+ * 2 3

7 +

/

-

<

8 +

TIME 5

ECE 474a/575a
Susan Lysecky

22 of 72

ALAP Scheduling

  Latency constrained scheduling problem
  Schedule must satisfy an upper bound on latency
  Commonly referred to as ALAP (as late as possible) scheduling

ALAP(GS(V,E), λ){
 Schedule vn by setting tn = λ + 1
 repeat{
 Select a vertex vi whose successors are all scheduled;
 Schedule vi by setting ti = min tj - dj

 }
 until (v0 is scheduled);
 return t;
}

j:(vj, vi) єE

Perform ALAP scheduling on the sequencing
graph, λ is the upper time bound

Schedule the sink node vn for upper latency
bound + 1

Look for tasks/operations whose successors
are already scheduled

Keep going until we have scheduled the source
node v0

Schedule the task/operation to time = time
successor scheduled for - time required for
successor to execute

may have multiple successors, take
minimum time

ECE 474a/575a
Susan Lysecky

23 of 72

ALAP Scheduling
Example 1

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

* +

<

*

+

*

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ALAP Scheduling goal is to schedule tasks/operations to perform as
late as possible

We can skip the algorithm and visually move vertices “down” as far
as possible

ECE 474a/575a
Susan Lysecky

24 of 72

ALAP Scheduling
Example 2

* *

*

NOP

NOP

3 4

6

9

V0

Vn

* *
1 2

5

* *

*

7 8

10

*

*

* 11

TIME 1

TIME 2

TIME 3

TIME 4

* *

*

NOP

NOP

3 4

6

9

V0

Vn

* *
1 2

5 * *

*

7 8

10

*

*

* 11

7

ECE 474a/575a
Susan Lysecky

25 of 72

ALAP Scheduling
Example 3

* *

NOP

NOP

4 5

10

V0

Vn

6

1

*

*

11

9

+ * 2 3

7 +

/

-

<

TIME 1

TIME 2

TIME 3

TIME 4

8 +

* *

NOP

NOP

4 5

10

V0

Vn

6

1

*

*

11

9

+ * 2 3

7 +

/

-

<

8 +

TIME 5

ECE 474a/575a
Susan Lysecky

26 of 72

Mobility

  Mobility (or slack) important quantity used by some scheduling algorithms
  Mobility = start time ALAP scheduling – start time ASAP scheduling

  Mobility = 0, task/operation can only be started at the given time in order to meet
overall latency constraint

  Mobility > 0, indicates span of possible start times
  Helps with minimizing resources (adders, multipliers, etc.)

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

Example 1 – ASAP Schedule Example 1 – ALAP Schedule

V1 mobility = timeALAP(V1) - timeASAP(V1)
 = 1 – 1
 = 0

V6 mobility = timeALAP(V6) - timeASAP(V6)
 = 2 – 1
 = 1

V11 mobility = timeALAP(V11) - timeASAP(V11)
 = 4 – 2
 = 2

ECE 474a/575a
Susan Lysecky

27 of 72

Mobility
Example 1 – ASAP Only

1 ALU operation

1 ALU operation

4 multiply operations, 1 ALU operation

2 multiply operations, 2 ALU operations

  What do we get with the ASAP Schedule?
  Latency = 4
  Resource requirement = 4 multipliers, 2 ALUs

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

ECE 474a/575a
Susan Lysecky

28 of 72

Mobility
Example 1 – ALAP Only

TIME 1

TIME 2

TIME 3

TIME 4

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

  What do we get with the ALAP Schedule?
  Latency = 4
  Resource requirement = 2 multipliers, 3 ALUs

2 multiply operations, 2 ALU operations

3 ALU operations

2 multiply operations

2 multiply operations

8

ECE 474a/575a
Susan Lysecky

29 of 72

Mobility
Example 1 – Modify ALAP

Operations with mobility = 0
 v1, v2, v3, v4, v5

Operations with mobility = 1
 v6, v7

Operations with mobility = 2
 v8, v9, v10, v11

  Start with ALAP schedule
  Use mobility to try to improve resource requirements

TIME 1

TIME 2

TIME 3

TIME 4

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

2 multiply operations, 2 ALU operations

3 ALU operations

2 multiply operations

2 multiply operations

ECE 474a/575a
Susan Lysecky

30 of 72

Mobility
Example 1 – Modify ALAP

Operations with mobility = 0
 v1, v2, v3, v4, v5

Operations with mobility = 1
 v6, v7

Operations with mobility = 2
 v8, v9, v10, v11

  Start with ALAP schedule
  Use mobility to try to improve resource requirements

  Vertices with mobility = 0 cannot be moved, they are part of the critical path

TIME 1

TIME 2

TIME 3

TIME 4

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

2 multiply operations, 2 ALU operations

3 ALU operations

2 multiply operations

2 multiply operations

ECE 474a/575a
Susan Lysecky

31 of 72

Mobility
Example 1 – Modify ALAP

Operations with mobility = 0
 v1, v2, v3, v4, v5

Operations with mobility = 1
 v6, v7

Operations with mobility = 2
 v8, v9, v10, v11

  Start with ALAP schedule
  Use mobility to try to improve resource requirements

  Vertices with mobility = 0 cannot be moved, they are part of the critical path
  Vertices with mobility > 0 can be moved to minimize resource requirements

TIME 1

TIME 2

TIME 3

TIME 4

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

3 ALU operations

2 multiply operations

2 multiply operations

2 multiply operations, 2 ALU operations

, 1 ALU operations

, 1 ALU operations

1

2

Latency = 4, Resources = 2 multipliers, 2 ALUs
Latency = 4, Resources = 4 multipliers, 2 ALUs (ASAP)
Latency = 4, Resources = 2 multipliers, 3 ALUs (ALAP)

ECE 474a/575a
Susan Lysecky

32 of 72

Resource Constrained Scheduling

  Resource constrained scheduling problem
  Resource usage determines circuit area
  Consider area/latency tradeoff

ASAP schedule determines the minimum
latency, we assumed infinite resources

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

We can determine a schedule to consider
only minimizing resources – assuming
latency doesn’t matter

+

<

*

+

*

*

*

*

* -

 -

NOP

NOP

1

2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

TIME 5

TIME 6

TIME 7

Likely we want something in between

9

ECE 474a/575a
Susan Lysecky

33 of 72

Hu’s Algorithm

  Exact (polynomial-time) algorithm for resource constrained scheduling
  Assumes one resource handles all possible operations
  Assumes all operations have 1 unit delay

HU(GS(V,E), a){

 Label the vertices;

 l = 1;

 repeat {

 U = unscheduled vertices in V without predecessors
 or whose predecessors have been scheduled;

 Select S U vertices, such that |S| ≤ a and labels in S are maximal;

 Schedule the S operations at step l by setting t = l i : vi є S;

 l = l + 1;

 } until (vn is scheduled);

 return t;

}

Make a list of all vertices not waiting on another
operation to be scheduled

Select a subset of the vertices in U, no more
than a, choosing vertices with largest labels

Keep going until we have scheduled the sink
node vn

update l to next time step

∩

A

Value of a indicates the number of resources
we have available

Label with distance of vertices to sink node

Indicates the time step

Schedule the vertices in the subset to start at
time l

ECE 474a/575a
Susan Lysecky

34 of 72

Hu’s Algorithm
Example 1

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

2

1

2

1

4 4

3

3

2

2

 1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

l = 1

Step1
Label all vertices with distance to sink

Step2
l = 1

a = 3

ECE 474a/575a
Susan Lysecky

35 of 72

Hu’s Algorithm
Example 1

2

1

2

1

4 4

3

3

2

2

 1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

U = { v1, v2, v6, v8, v10 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 1 + 1 = 2

S = { v1, v2, v6 }

NOP

Set vertices in S to start at 1

4 4 3
1 2 6

V0

TIME 1

l = 1

a = 3

ECE 474a/575a
Susan Lysecky

36 of 72

Hu’s Algorithm
Example 1

Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 2 + 1 = 3

S = { v3, v7, v8 }

4 4 3

NOP

1 2 6

V0

TIME 1

Set vertices in S to start at 2

2 3 2
3 7 8

TIME 2

U = { v3, v7, v8, v10 }

l = 2

a = 3

2

1

2

1

4 4

3

3

2

2

 1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

10

ECE 474a/575a
Susan Lysecky

37 of 72

Hu’s Algorithm
Example 1

U = { v4, v9, v10 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 3 + 1 = 4

S = { v4, v9, v10 }

2

4 4

3

3

2

NOP

1 2

3

6

7 8

V0

TIME 1

TIME 2

Set vertices in S to start at 3

2 1 2
4 9 10

TIME 3

l = 3

a = 3

2

1

2

1

4 4

3

3

2

2

 1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ECE 474a/575a
Susan Lysecky

38 of 72

Hu’s Algorithm
Example 1

U = { v5, v11 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 4 + 1 = 5

S = { v5, v11 }

2

2

1

4 4

3

3

2

2

NOP

1 2

3

4

6

7 8

9 10

V0

TIME 1

TIME 2

TIME 3

Set vertices in S to start at 4

1 1
5 11

TIME 4

l = 4

a = 3

2

1

2

1

4 4

3

3

2

2

 1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ECE 474a/575a
Susan Lysecky

39 of 72

Hu’s Algorithm
Example 1

U = { vN }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? Yes. We are done!

I = 5 + 1 = 6

S = { vN }

2

1

2

1

4 4

3

3

2

2

 1

NOP

1 2

3

4

5

6

7 8

9 10

11

V0

TIME 1

TIME 2

TIME 3

TIME 4

NOP

Set vertices in S to start at 5

NOP Vn

l = 5

a = 3

2

1

2

1

4 4

3

3

2

2

 1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ECE 474a/575a
Susan Lysecky

40 of 72

Hu’s Algorithm
Example 2

Step1
Label all vertices with distance to sink

Step2
l = 1

* *

*

NOP

NOP

3 4

6

9

V0

Vn

* *
1 2

5

* *

*

7 8

10

*

*

* 11

l = 1

a = 4

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

11

ECE 474a/575a
Susan Lysecky

41 of 72

Hu’s Algorithm
Example 2

U = { v1, v2, v3, v4, v7, v8}
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 1 + 1 = 2

S = { v1, v2, v3, v4}

NOP V0

Set vertices in S to start at 1

4 4 3 4 4 4 1 2 TIME 1

l = 1

a = 4

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

ECE 474a/575a
Susan Lysecky

42 of 72

Hu’s Algorithm
Example 2

U = { v5, v6, v7, v8 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 2 + 1 = 3

S = { v5, v6, v7, v8}

4 4

NOP

3 4

V0

4 4 1 2 TIME 1

Set vertices in S to start at 2

3 6 5 3 3 7 8 3 TIME 2

l = 2

a = 4

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

ECE 474a/575a
Susan Lysecky

43 of 72

Hu’s Algorithm
Example 2

U = { v9, v10 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 3 + 1 = 4

S = { v9, v10 }

4 4

3

NOP

3 4

6

V0

4 4 1 2

5 3 3 7 8 3

TIME 1

TIME 2

Set vertices in S to start at 3

9 2 10 2 TIME 3

l = 3

a = 4

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

ECE 474a/575a
Susan Lysecky

44 of 72

Hu’s Algorithm
Example 2

U = { v11 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 4 + 1 = 5

S = { v11 }

4 4

3

NOP

3 4

6

9

V0

4 4 1 2

5 3 3

2

7 8

10

3

2

TIME 1

TIME 2

TIME 3

Set vertices in S to start at 4

1 11 TIME 4

l = 4

a = 4

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

12

ECE 474a/575a
Susan Lysecky

45 of 72

Hu’s Algorithm
Example 2

U = { vn }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? Yes. We are done.

I = 5 + 1 = 6

S = { vn }

4 4

3

NOP

3 4

6

9

V0

4 4 1 2

5 3 3

2

7 8

10

3

2

1 11

TIME 1

TIME 2

TIME 3

TIME 4

Set vertices in S to start at 5

NOP Vn

l = 5

a = 4

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

ECE 474a/575a
Susan Lysecky

46 of 72

Hu’s Algorithm
Example 3

Step1
Label all vertices with distance to sink

Step2
l = 1

* *

*

NOP

NOP

3 4

6

9

V0

Vn

* *
1 2

5

* *

*

7 8

10

*

*

* 11

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

l = 1

a = 2

ECE 474a/575a
Susan Lysecky

47 of 72

Hu’s Algorithm
Example 3

U = { v1, v2, v3, v4, v7, v8 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 1 + 1 = 2

S = { v1, v2 }

l = 1

a = 2 NOP V0

Set vertices in S to start at 1

4 4 1 2 TIME 1

l = 1

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

ECE 474a/575a
Susan Lysecky

48 of 72

Hu’s Algorithm
Example 3

U = { v3, v4, v5, v7, v8 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 2 + 1 = 3

S = { v3, v4 }

l = 2

a = 2 NOP V0

4 4 1 2 TIME 1

Set vertices in S to start at 2

4 4 3 4 TIME 2 4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

13

ECE 474a/575a
Susan Lysecky

49 of 72

Hu’s Algorithm
Example 3

U = { v5, v6, v7, v8 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 3 + 1 = 4

S = { v5, v6 }

l = 3

a = 2

4 4

NOP

3 4

V0

4 4 1 2 TIME 1

TIME 2

Set vertices in S to start at 3

3 6 5 3 TIME 3

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

ECE 474a/575a
Susan Lysecky

50 of 72

Hu’s Algorithm
Example 3

U = { v7, v8, v9 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 4 + 1 = 5

S = { v7, v8 }

l = 4

a = 2

4 4

3

NOP

3 4

6

V0

4 4 1 2

5 3

TIME 1

TIME 2

TIME 3

Set vertices in S to start at 4

3 3 7 8 TIME 4

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

ECE 474a/575a
Susan Lysecky

51 of 72

Hu’s Algorithm
Example 3

U = { v9, v10 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 5 + 1 = 6

S = { v9, v10 }

l = 5

a = 2

4 4

3

NOP

3 4

6

V0

4 4 1 2

5

3 3 7 8

3

TIME 1

TIME 2

TIME 3

TIME 4

Set vertices in S to start at 5

9 2 10 2 TIME 5

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

ECE 474a/575a
Susan Lysecky

52 of 72

Hu’s Algorithm
Example 3

U = { v11 }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? No. Repeat loop.

I = 6 + 1 = 7

S = { v11 }

l = 6

a = 2

4 4

3

NOP

3 4

6

9

V0

4 4 1 2

5

3 3

2

7 8

10

3

2

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

Set vertices in S to start at 6

1 11 TIME 6

14

ECE 474a/575a
Susan Lysecky

53 of 72

Hu’s Algorithm
Example 3

U = { vn }
Step 3
U = unscheduled vertices in V without predecessors or
 whose predecessors have been scheduled
Step 4
S = subset set of vertices in U, no more than a, where
labels are maximal

Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet? Yes. We are done.

I = 7 + 1 = 8

S = { vn }

l = 7

a = 2

4 4

3

NOP

3 4

6

9

V0

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

4 4

3

NOP

NOP

3 4

6

9

V0

Vn

4 4 1 2

5

3 3

2

7 8

10

3

2

1 11
TIME 6

Set vertices in S to start at 7

NOP Vn

ECE 474a/575a
Susan Lysecky

54 of 72

Additional Scheduling Considerations

  Hu’s algorithm
  Assumes one resource handles all possible operations
  Assumes all operations have 1 unit delay

  Most scheduling problems have additional considerations
  What happens when we have more than one type of task/operation?
  What happens when a task/operation takes more than 1 unit delay?

  Increased problem space, difficult problem to solve efficiently
  Many heuristics have been developed to address these problems

  Minimum-latency, resource-constrained scheduling
  Minimum-resource, latency-constrained scheduling

We consider one such heuristic from a family of heuristics
called list scheduling that looks at the minimum-latency,
resource-constrained scheduling problem

ECE 474a/575a
Susan Lysecky

55 of 72

List Scheduling (LIST_L)

LIST_L(GS(V,E), a){

 l = 1;

 repeat {

 for each resource type k = 1, 2, …, nres {
 Determine candidate operations Ul, k;
 Determine unfinished operations Tl,k;
 Select Sk Ul,k vertices, such that |Sk| + |Tl,k| <= ak;

 Schedule the Sk operations at step l by setting ti = l i : vi є S;
 }

 l = l + 1;

 } until (vn is scheduled);

 return t;

}

Operations of type k whose
predecessors are completed by time l

Unfinished operations that are already
scheduled but have not completed yet

Keep going until we have scheduled
the sink node vn

∩
A

Vector a indicates the number of each
type of resource available

indicates the time step

Select a subset S so that the number
of new operations and unfinished
operations are <= to number of
resources of that type

  Extension of Hu’s algorithm to handle multiple operation types and multiple-cycle
execution delays

  Considers minimum-latency, resource-constrained scheduling problem

update l to next time step

Schedule operations in S to run at time
step l

ECE 474a/575a
Susan Lysecky

56 of 72

List Scheduling (LIST_L)

LIST_L(GS(V,E), a){

 l = 1;

 repeat {

 for each resource type k = 1, 2, …, nres {
 Determine candidate operations Ul, k;
 Determine unfinished operations Tl,k;
 Select Sk Ul,k vertices, such that |Sk| + |Tl,k| <= ak;

 Schedule the Sk operations at step l by setting ti = l i : vi є S;
 }

 l = l + 1;

 } until (vn is scheduled);

 return t;

}

Select a subset S so that the number
of new operations and unfinished
operations are <= to number of
resources of that type

∩

A

  Selection of which operations to include is based on a priority list indicating some sort
of urgency measure
  We will utilize same method of labeling vertices with weights indicating path to sink, choose

operations with highest weights

15

ECE 474a/575a
Susan Lysecky

57 of 72

LIST_L Scheduling
Example 1

l = 1

Step1
l = 1

a1 = 2 multipliers
a2 = 2 ALUs

Assume all
operations take 1
cycle

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

ECE 474a/575a
Susan Lysecky

58 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 1

l = 1

a1 = 2 multipliers
a2 = 2 ALUs

Assume all
operations take 1
cycle

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

NOP V0

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

*/4 */4
1 2

Set vertices in S to start at 1

S = { v1, v2 }

U = { v1, v2, v6, v8 }
T = { }

Multipliers

No. Repeat loop.

+/2
10

Set vertices in S to start at 1

S = { v10 }

U = { v10 }
T = { }

ALUs

TIME 1

I = 1 + 1 = 2

ECE 474a/575a
Susan Lysecky

59 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 1

l = 2

a1 = 2 multipliers
a2 = 2 ALUs

Assume all
operations take 1
cycle

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

+/2 */4 */4

NOP

1 2 10

V0

U = { v3, v6, v8 }
T = { }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { v3, v6 }

Multipliers
U = { v11 }
T = { }

No. Repeat loop.

</1
11

Set vertices in S to start at 2

S = { v11 }

ALUs

TIME 1

*/3 */3
3 6

Set vertices in S to start at 2

TIME 2

I = 2 + 1 = 3

ECE 474a/575a
Susan Lysecky

60 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 1

l = 3

a1 = 2 multipliers
a2 = 2 ALUs

Assume all
operations take 1
cycle

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

+/2

</1

*/4 */4

*/3 */3

NOP

1 2

3 6

10

11

V0

U = {v7, v8 }
T = { }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { v7, v8 }

Multipliers
U = { v4 }
T = { }

No. Repeat loop.

 -/2
4

Set vertices in S to start at 3

S = { v4 }

ALUs

TIME 1

TIME 2

*/2 */2
7 8

Set vertices in S to start at 3

TIME 3

I = 3 + 1 = 4

16

ECE 474a/575a
Susan Lysecky

61 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 1

l = 4

a1 = 2 multipliers
a2 = 2 ALUs

Assume all
operations take 1
cycle

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

+/2

</1

*/2

*/4 */4

*/3 */3

*/2 -/2

NOP

1 2

3

4

6

7 8

10

11

V0

U = { }
T = { }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { }

Multipliers
U = { v5, v9 }
T = { }

No. Repeat loop.

S = { v5, v9 }

ALUs

TIME 1

TIME 2

TIME 3

+/1 -/1
5 9

Set vertices in S to start at 4

TIME 4

I = 4 + 1 = 5

ECE 474a/575a
Susan Lysecky

62 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 1

l = 5

a1 = 2 multipliers
a2 = 2 ALUs

Assume all
operations take 1
cycle

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

+/2

</1

*/2

+/1

*/4 */4

*/3 */3

*/2 -/2

 -/1

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

U = { }
T = { }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { }

Multipliers
U = { }
T = { }

Yes. We are done.

S = { }

ALUs

TIME 1

TIME 2

TIME 3

TIME 4

I = 5 + 1 = 6

U = { Vn }
T = { }

NOP Vn

Set vertices in S to
start at 5

S = { Vn }

ECE 474a/575a
Susan Lysecky

63 of 72

LIST_L Scheduling
Example 2

l = 1

Step1
l = 1

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

A1 = 3 multipliers
A2 = 1 ALU

Mult. = 2 cycles
ALU = 1 cycle

ECE 474a/575a
Susan Lysecky

64 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 2

l = 1

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { v1, v2, v6 }

U = { v1, v2, v6, v8 }
T = { }

Multipliers

No. Repeat loop.

S = { v10 }

U = { v10 }
T = { }

ALUs

I = 1 + 1 = 2

A1 = 3 multipliers
A2 = 1 ALU

Mult. = 2 cycles
ALU = 1 cycle

NOP

Set vertices in S to start at 1

+/2 10

V0

TIME 1

Set vertices in S to start at 1

*/4 */4 */3 1 2 6

17

ECE 474a/575a
Susan Lysecky

65 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 2

l = 2

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

U = { v8 }
T = {v1, v2, v6 }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { v1, v2, v6 }

Multipliers
U = { v11 }
T = { }

No. Repeat loop.

S = { v11 }

ALUs

I = 2 + 1 = 3

A1 = 3 multipliers
A2 = 1 ALU

Mult. = 2 cycles
ALU = 1 cycle

+/2 */4 */4 */3

NOP

1 2 6 10

Set vertices in S to start at 2

</1 11

V0

TIME 1

Set vertices in S to start at 2

TIME 2

ECE 474a/575a
Susan Lysecky

66 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 2

l = 3

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

U = { v3, v7, v8 }
T = { }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { v3, v7, v8 }

U = { }
T = { }

No. Repeat loop.

S = { }

ALUs

I = 3 + 1 = 4

A1 = 3 multipliers
A2 = 1 ALU

Mult. = 2 cycles
ALU = 1 cycle

+/2

</1

*/4 */4 */3

NOP

1 2 6 10

11

V0

TIME 1

TIME 2

Set vertices in S to start at 3

*/2 */3 */2 3 7 8 TIME 3

Multipliers

ECE 474a/575a
Susan Lysecky

67 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 2

l = 4

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

U = { }
T = { v3, v7, v8 }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = {v3, v7, v8}

Multipliers
U = { }
T = { }

No. Repeat loop.

S = { }

ALUs

I = 4 + 1 = 5

A1 = 3 multipliers
A2 = 1 ALU

Mult. = 2 cycles
ALU = 1 cycle

+/2

</1

*/2

*/4 */4

*/3

*/3

*/2

NOP

1 2

3

6

7 8

10

11

V0

TIME 1

TIME 2

TIME 3

TIME 4

Set vertices in S to start at 4

ECE 474a/575a
Susan Lysecky

68 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 2

l = 5

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

U = { }
T = { }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { }

Multipliers
U = { v4, v9 }
T = { }

No. Repeat loop.

S = { v4 }

ALUs

I = 5 + 1 = 6

A1 = 3 multipliers
A2 = 1 ALU

Mult. = 2 cycles
ALU = 1 cycle

+/2

</1

*/2

*/4 */4

*/3

*/3

*/2

NOP

1 2

3

6

7 8

10

11

V0

TIME 1

TIME 2

TIME 3

TIME 4

Set vertices in S to start at 5

 -/2 4 TIME 5

18

ECE 474a/575a
Susan Lysecky

69 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 2

l = 6

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

U = { }
T = { }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { }

Multipliers
U = { v5, v9 }
T = { }

No. Repeat loop.

S = { v5 }

ALUs

I = 6 + 1 = 7

A1 = 3 multipliers
A2 = 1 ALU

Mult. = 2 cycles
ALU = 1 cycle

+/2

</1

*/2

*/4 */4

*/3

*/3

*/2

 -/2

NOP

1 2

3

4

6

7 8

10

11

V0

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

Set vertices in S to start at 6

 -/1 5 TIME 6

ECE 474a/575a
Susan Lysecky

70 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 2

l = 7

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

U = { }
T = { }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { }

Multipliers
U = { v9 }
T = { }

No. Repeat loop.

S = { v9 }

ALUs

I = 7 + 1 = 8

A1 = 3 multipliers
A2 = 1 ALU

Mult. = 2 cycles
ALU = 1 cycle

+/2

</1

*/2

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

1 2

3

4

5

6

7 8

10

11

V0

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

TIME 6

Set vertices in S to start at 7

+/1 9 TIME 7

ECE 474a/575a
Susan Lysecky

71 of 72

Step 2/3
Ul,k = candidate operations with predecessors finished at l
Tl,k = unfinished operations

LIST_L Scheduling
Example 2

l = 8

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

U = { }
T = { }

Step 4
S = subset set of vertices in U and T such that U + T is
<=a, where labels are maximal
Step 5
Schedule vertices in S to time step I

Step 6
I = I + 1

Step 7
Has vn been scheduled yet?

S = { }

Multipliers
U = { }
T = { }

Yes. We are done.

S = { }

ALUs

I = 8 + 1 = 9

U = { Vn }
T = { }

S = { Vn }

A1 = 3 multipliers
A2 = 1 ALU

Mult. = 2 cycles
ALU = 1 cycle

+/2

</1

*/2

+/1

*/4 */4

*/3

*/3

*/2

 -/2

 -/1

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Set vertices in S to
start at 8

NOP Vn

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

TIME 6

TIME 7

ECE 474a/575a
Susan Lysecky

72 of 29

LIST_R(GS(V,E), λ){
 a = 1;

 Compute the latest possible start times tL by ALAP(G(V, E), λ);
 if(tL < 0)
 return (Φ);

 l = 1;

 repeat {
 for each resource type k = 1, 2, …, nres {
 Determine candidate operations Ulk;
 Compute the slacks {si = tL - l vi є Ulk };
 Schedule the candidate operations with zero slack and update a;
 Schedule the candidate operations requiring no additional resources;
 }
 l = l + 1;
 } until (vn is scheduled);
 return (t, a);
}

List Scheduling (LIST_R)

Operations of type k whose
predecessors are completed by time l

Scheduled any operation with 0 slack to
meet timing requirement, add resources
if needed

Keep going until we have scheduled
the sink node vn

Vector a indicates the number of each
type of resource available

  Considers minimum-resource, latency-constrained scheduling problem

Algorithm exits if ALAP detects no
feasible solution with dedicated resources

Time step

Compute slack of all candidates
(current time – ALAP time)

Fill in unused resources by scheduling
any available operation

A

0

i

19

ECE 474a/575a
Susan Lysecky

73 of 29

LIST_R Scheduling
Example 1

  Assume all operations have unit delay, latency of 4 is required
  Initialize vector a so all entries have value of 1
  Compute the latest start times of all vectors by using ALAP()
  Set time step equal to 1

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

a1 = 1 multiplier
a2 = 1 ALU

Node Time
1 1
2 1
3 2
4 3
5 4
6 2
7 3
8 3
9 4
10 3
11 4

l = 1

ECE 474a/575a
Susan Lysecky

74 of 29

LIST_R Scheduling
Example 1

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

a1 = 1 multiplier
a2 = 1 ALU

Node Time
1 1
2 1
3 2
4 3
5 4
6 2
7 3
8 3
9 4
10 3
11 4

Has vn been scheduled yet? No. Repeat loop.

Schedule candidate operations requiring no additional resources no spare multipliers S = { v10 }

Compute the slacks v1 = 1-1 = 0 v2 = 1-1 = 0
v6 = 2-1 =1 v8 = 3-1 = 2

v10 = 3-1 = 2

Determine candidate operations U = { v1, v2, v6, v8 }
Multipliers

U = { v10 }
ALUs

Increment time step I = 1 + 1 = 2

Schedule candidate operations with zero slack and update a S = { v1, v2 }, a1 = 2 no zero slack operations

l = 1
NOP

+
10

V0

* *
1 2

TIME 1

2 2

ECE 474a/575a
Susan Lysecky

75 of 29

LIST_R Scheduling
Example 1

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

a1 = 2 multiplier
a2 = 1 ALU

Node Time
1 1
2 1
3 2
4 3
5 4
6 2
7 3
8 3
9 4
10 3
11 4

Has vn been scheduled yet? No. Repeat loop.

Schedule candidate operations requiring no additional resources no spare multipliers S = { v11 }

Compute the slacks v3 = 2-2 = 0
v6 = 2-2 =0 v8 = 3-2 = 1

v11 = 4-2 = 2

Increment time step I = 2 + 1 = 3

Schedule candidate operations with zero slack and update a S = { v3, v6 } no zero slack operations

l = 2

<
11

* *
3 6 TIME 2

+ * *

NOP

1 2 10

V0

TIME 1

3

Determine candidate operations U = { v3, v6, v8 } U = { v11 }
ALUs Multipliers

ECE 474a/575a
Susan Lysecky

76 of 29

LIST_R Scheduling
Example 1

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

a1 = 2 multiplier
a2 = 1 ALU

Node Time
1 1
2 1
3 2
4 3
5 4
6 2
7 3
8 3
9 4
10 3
11 4

Has vn been scheduled yet? No. Repeat loop.

Schedule candidate operations requiring no additional resources no spare multipliers no spare ALUs

Compute the slacks v7 = 3-3 = 0 v8 = 3-3 =0 v4 = 3-3 = 0

Determine candidate operations U = { v7, v8 }
Multipliers

U = { v4 }
ALUs

Increment time step I = 1 + 1 = 4

Schedule candidate operations with zero slack and update a S = { v7, v8 } S = { v4 }

l = 3

 -
4

* *
7 8 TIME 3

+

<

* *

* *

NOP

1 2

3 6

10

11

V0

TIME 1

TIME 2

4

20

ECE 474a/575a
Susan Lysecky

77 of 29

LIST_R Scheduling
Example 1

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

a1 = 2 multiplier
a2 = 1 ALU

Node Time
1 1
2 1
3 2
4 3
5 4
6 2
7 3
8 3
9 4
10 3
11 4

Has vn been scheduled yet? No. Repeat loop.

Schedule candidate operations requiring no additional resources no multiplier operations no spare ALUs

Compute the slacks v5 = 4-4 = 0 v9 = 4-4 = 0

Determine candidate operations U = { Φ }
Multipliers

U = { v5, v9}
ALUs

Increment time step I = 4 + 1 = 5

Schedule candidate operations with zero slack and update a S = { Φ } S = {v5, v9}; a = 2

+

<

*

* *

* *

* -

NOP

1 2

3

4

6

7 8

10

11

V0

TIME 1

TIME 2

TIME 3

+ -
5 9 TIME 4

l = 4
5

2

ECE 474a/575a
Susan Lysecky

78 of 29

LIST_R Scheduling
Example 1

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

a1 = 2 multiplier
a2 = 2 ALU

Node Time
1 1
2 1
3 2
4 3
5 4
6 2
7 3
8 3
9 4
10 3
11 4

Determine candidate operations

Compute the slacks

Schedule candidate operations requiring no additional resources

Increment time step

Has vn been scheduled yet?

U = { Φ }
Multipliers

Yes. Done

U = { Φ}
ALUs

Schedule candidate operations with zero slack and update a

l = 5

NOP Vn

U = { Vn}

+ -
5 9 TIME 4

+

<

*

* *

* *

* -

NOP

1 2

3

4

6

7 8

10

11

V0

TIME 1

TIME 2

TIME 3

ECE 474a/575a
Susan Lysecky

79 of 29

Force-Directed Scheduling (FDS)

  Heuristic scheduling algorithms
  Consider the unscheduled CDFG under a physics-based

spring model
  Operators are subjected to physical 'forces', both repelling

and attracting them to particular time slices
  Larger the force, the larger the concurrency

  Goal is to find the optimal placement of vertices into a
schedule, when subject to these 'forces'

  Minimum latency under resource-constraint
  Force directed list scheduling
  Extension of list scheduling algorithms

  Minimum resource under latency-constraint
  Force directed scheduling

This is the one
we will consider

ECE 474a/575a
Susan Lysecky

80 of 29

FDS(G(V,E), λ){

 repeat {

 Compute the time frames;

 Compute the operations and type probabilities;

 Compute the self-forces, predecessor/successor forces and total forces;
 Schedule the operation with least force and update its time-frame;

 } until (all operations scheduled);
 return (t);
}

Force-Directed Scheduling (FDS)

  Force-Directed Scheduling
  Minimum resource under latency constraint

21

ECE 474a/575a
Susan Lysecky

81 of 29

Force-Directed Scheduling (FDS)
Time Frames

  Time frame of an operation is the time interval where it can be scheduled
  Denoted by {[tS, tL]; i = 0, 1, …, n}

  Earliest and latest start times can be computed by ASAP and ALAP algorithms
i i

  Width of time frame of an operation is equal to its mobility plus 1

+

<

*

+

* *

*

*

*

 -

 -

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

V0

Vn

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

ECE 474a/575a
Susan Lysecky

82 of 29

Force-Directed Scheduling (FDS)
Example 2

  Time frames for various operation
assuming a latency bound of 4
  Latency bound needed for ALAP

scheduling

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

operation v1

ASAP time = 1

ALAP time = 1

time frame = [1, 1]

operation v2

ASAP time = 1

ALAP time = 1

time frame = [1, 1]

operation v6

ASAP time = 1

ALAP time = 2

time frame = [1, 2]

operation v8

ASAP time = 1

ALAP time = 3

time frame = [1, 3]

ECE 474a/575a
Susan Lysecky

83 of 29

FDS(G(V,E), λ){

 repeat {

 Compute the time frames;

 Compute the operations and type probabilities;

 Compute the self-forces, predecessor/successor forces and total forces;
 Schedule the operation with least force and update its time-frame;

 } until (all operations scheduled);
 return (t);
}

Force-Directed Scheduling (FDS)

  Force-Directed Scheduling
  Minimum resource under latency constraint

ECE 474a/575a
Susan Lysecky

84 of 29

Force-Directed Scheduling (FDS)
Operation Probability

  Operation Probability is a function
  Equal to zero outside of the corresponding time frame

  Equal to reciprocal of the frame width inside the time frame

  Denoted the probability of the operations at time l by {pi(l); i = 0, 1, …, n}

  What is the significance?
  Operations whose time frame is one unit wide are bound to start in one specific time

  For remaining operations, the larger the width, the lower the probability that the operation is
scheduled in any given step inside the corresponding time frame

22

ECE 474a/575a
Susan Lysecky

85 of 29

Force-Directed Scheduling (FDS)
Example 3

  Operation Probability for various
operations
  Equal to zero outside of the

corresponding time frame

  Equal to reciprocal of the frame
width inside the time frame

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

operation v1

time frame = [1, 1]

operation v2

time frame = [1, 1]

operation v6

time frame = [1, 2]

operation v8

time frame = [1, 3]

p1(1) = 1, p1(2) = 0

p1(3) = 0, p1(4) = 0

p2(1) = 1, p2(2) = 0

p2(3) = 0, p2(4) = 0

p6(1) = 0.5, p6(2) = 0.5

p6(3) = 0, p6(4) = 0

p8(1) = 0.3, p8(2) = 0.3

p8(3) = 0.3, p8(4) = 0

frame width = 1 frame width = 1 frame width = 2 frame width = 3

ECE 474a/575a
Susan Lysecky

86 of 29

Force-Directed Scheduling (FDS)
Type Distribution

  Type Distribution is the sum of probabilities of the operations implemented by a specific
resource at any time step of interest
  Denote distribution at time l by {qk(l); k = 1, 2, …, nres}

  Distribution graph is a plot of any operation-type distribution over the scheduled steps
  Shows likelihood that a resource is used at each scheduled step

  Uniform plot in a distribution graph means that a type is evenly scattered in the schedule and a
good measure of utilization

ECE 474a/575a
Susan Lysecky

87 of 29

Force-Directed Scheduling (FDS)
Example 4

  Distribution graph for ALU
  Sum of probabilities of the operations

implemented by a specific resource at any
time step of interest

p(1) p(4) p(2) p(3)

v4 = [3, 3], width = 1 0 0 0 1

v5 = [4, 4], width = 1 0 1 0 0

v9 = [2, 4], width = 3 0 0.3 0.3 0.3

v10 = [1, 3], width = 3 0.3 0 0.3 0.3

v11 = [2, 4], width = 3 0 0.3 0.3 0.3

q2(1) = 0 + 0 + 0 + 0.3 + 0

q2(2) = 0 + 0 + 0.3 + 0.3 + 0.3

q2(3) = 1 + 0 + 0.3 + 0.3 + 0.3

q2(4) = 0 + 1 + 0.3 + 0 + 0.3

= 0.3

= 0.9

= 1.9

= 1.6

1

2

3

4

1 2 3 4 0

Distribution graph
for the ALU

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

ECE 474a/575a
Susan Lysecky

88 of 29

Force-Directed Scheduling (FDS)
Example 5

  Distribution graph for Multiplier
  Sum of probabilities of the operations

implemented by a specific resource at any
time step of interest

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

V0

Vn

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

p(1) p(4) p(2) p(3)

v1 = [1, 1], width = 1 1 0 0 0

v2 = [1, 1], width = 1 1 0 0 0

v3 = [2, 2], width = 1 0 0 1 0

v6 = [1, 2], width = 2 0.5 0 0.5 0

v7 = [2, 3], width = 2 0 0 0.5 0.5

1

2

3

4

1 2 3 4 0

Distribution graph
for the multiplier

q2(1) = 1 + 1 + 0 + 0.5 + 0 + 0.3

q2(2) = 0 + 0 + 1 + 0.5 + 0.5 + 0.3

q2(3) = 0 + 0 + 0 + 0 + 0.5 + 0.3

q2(4) = 0 + 0 + 0 + 0 + 0 + 0

= 2.8

= 2.3

= 0.8

= 0

v8 = [1, 3], width = 3 0.3 0 0.3 0.3

23

ECE 474a/575a
Susan Lysecky

89 of 29

FDS(G(V,E), λ){

 repeat {

 Compute the time frames;

 Compute the operations and type probabilities;

 Compute the self-forces, predecessor/successor forces and total forces;
 Schedule the operation with least force and update its time-frame;

 } until (all operations scheduled);
 return (t);
}

Force-Directed Scheduling (FDS)

  Force-Directed Scheduling
  Minimum resource under latency constraint

ECE 474a/575a
Susan Lysecky

90 of 29

Force-Directed Scheduling (FDS)
Self Force

  Self Force
  Scheduling an operation will effect overall

concurrency

  Every operation has “self force” for every
C-step of its time frame

  Desirable scheduling will have negative
self force

Force(i) = DG(i) * x(i)
DG(i) = Current Distribution Graph value
x(i) = Change in operation’s probability

Self Force(j) = Σ Force(i)
i = t

b

ECE 474a/575a
Susan Lysecky

91 of 29

Force-Directed Scheduling (FDS)
Example 6

  Calculate Self Force for v6

  Assignment of v6 to time step 1

  Assignment of v6 to time step 2
DG(i) = Current Distribution Graph value
x(i) = Change in operation’s probability

Force(i) = DG(i) * x(i)

Self Force(j) = Σ Force(i)
i = t

b

Assuming v6 assigned to time step 1

Self force = 2.8(1-0.5) + 2.3(0-0.5)

Distribution graph values
to time step 1 and 2

1 indicates that v6 schedule in time 1,
minus the operator probability in time 1

0 indicates that v6 is NOT scheduled in time
1, minus the operator probability in time 2

Time frame and operation probability for v6

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0

v6 = [1, 2], width = 2

1
2
3
4

1 2 3 4 0

2.8
2.3
0.8
0

Distribution graph for the multiplier

ECE 474a/575a
Susan Lysecky

92 of 29

Force-Directed Scheduling (FDS)
Example 6

  Calculate Self Force for v6

  Assignment of v6 to time step 1

  Assignment of v6 to time step 2
DG(i) = Current Distribution Graph value
x(i) = Change in operation’s probability

Force(i) = DG(i) * x(i)

Self Force(j) = Σ Force(i)
i = t

b

Time frame and operation probability for v6

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0

v6 = [1, 2], width = 2

1
2
3
4

1 2 3 4 0

2.8
2.3
0.8
0

Distribution graph for the multiplier

Assuming v6 assigned to time step 1

Self force = 2.8(1-0.5) + 2.3(0-0.5)

= 0.25

Assuming v6 assigned to time step 2

Self force = 2.8(0-0.5) + 2.3(1-0.5)

= -0.25

Want to reduce force (concurrency),
time step 2 looks better

How does this impact other operations?

24

ECE 474a/575a
Susan Lysecky

93 of 29

If v11 scheduled in time 3, then v10
has to be scheduled in time 1 or 2

Force-Directed Scheduling (FDS)
Predecessor/Successor Forces

  Predecessor/Successor Force
  Scheduling an operation may affect the time

frames of other linked operations

  This may negate the benefits of the desired
assignment

  Predecessor/Successor Forces = Sum of Self
Forces of any implicitly scheduled operations

If v6 scheduled in time 2, then v7
has to be scheduled in time 3

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

ECE 474a/575a
Susan Lysecky

94 of 29

Force-Directed Scheduling (FDS)
Example 7

  Calculate Predecessor/Successor
Force for v6

  Assign of v6 to time step 1

  Assign of v6 to time step 2

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

DG(i) = Curr Distrb Graph value
x(i) = Change in op prob

Force(i) = DG(i) * x(i)

Self Force(j) = Σ Force(i)
i = t

b

1
2
3
4

1 2 3 4 0

2.8
2.3
0.8
0

Distribution graph for the multiplier

Time frame and operation probability for v6 and v7

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0

v6 = [1, 2], width = 2

p(1)=0, p(2)=0.5, p(3)=0.5, p(4)=0

v7 = [2, 3], width = 2

Assuming v6 assigned to time step 1

Predecessor force = 0
no predecessor effected

Successor force = 0

no successor effected
v7 can be scheduled at time 2 or 3

Total force = Self Force + Predecessor force + Successor force
= 0.25 + 0 + 0

= 0.25

ECE 474a/575a
Susan Lysecky

95 of 29

Force-Directed Scheduling (FDS)
Example 7

  Calculate Predecessor/Successor
Force for v6

  Assign of v6 to time step 1

  Assign of v6 to time step 2

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

DG(i) = Curr Distrb Graph value
x(i) = Change in op prob

Force(i) = DG(i) * x(i)

Self Force(j) = Σ Force(i)
i = t

b

1
2
3
4

1 2 3 4 0

2.8
2.3
0.8
0

Distribution graph for the multiplier

Time frame and operation probability for v6 and v7

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0

v6 = [1, 2], width = 2

p(1)=0, p(2)=0.5, p(3)=0.5, p(4)=0

v7 = [2, 3], width = 2

Assuming v6 assigned to time step 2

Total force = Self Force + Predecessor force + Successor force
= -0.25 + 0 + -0.75

= -1

no predecessor effected

Predecessor force = 0

v7 can only be scheduled at time 3

= sum of self forces of implicitly

= 2.3(0-0.5) + 0.8(1-0.5)
scheduled operations

= -0.75

Successor force

ECE 474a/575a
Susan Lysecky

96 of 29

Force-Directed Scheduling (FDS)
Example 7

  Calculate Predecessor/Successor
Force for v6

  Assign of v6 to time step 1

  Assign of v6 to time step 2

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

DG(i) = Curr Distrb Graph value
x(i) = Change in op prob

Force(i) = DG(i) * x(i)

Self Force(j) = Σ Force(i)
i = t

b

1
2
3
4

1 2 3 4 0

2.8
2.3
0.8
0

Distribution graph for the multiplier

Time frame and operation probability for v6 and v7

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0

v6 = [1, 2], width = 2

p(1)=0, p(2)=0.5, p(3)=0.5, p(4)=0

v7 = [2, 3], width = 2

Assuming v6 assigned to time step 1

Assuming v6 assigned to time step 2

Total force = 0.25

Total force = -1

Better choice – want to reduce force in the
minimum resource under latency-constraint

25

ECE 474a/575a
Susan Lysecky

97 of 29

FDS(G(V,E), λ){

 repeat {

 Compute the time frames;

 Compute the operations and type probabilities;

 Compute the self-forces, predecessor/successor forces and total forces;
 Schedule the operation with least force and update its time-frame;

 } until (all operations scheduled);
 return (t);
}

Force-Directed Scheduling (FDS)

  Force-Directed Scheduling
  Minimum resource under latency constraint

Forces relate to concurrency – we
choose lowest force so we can
minimize number of resources

At each iteration time frame,
probabilities, and forces need to
be recalculated

Results have shown FDS superior to list scheduling, but run time are long for
larger graph (limited usage)

ECE 474a/575a
Susan Lysecky

98 of 29

Force-Directed Scheduling (FDS)

  Previous example only looked at v6

  Algorithm tells us to calculate ALL unscheduled nodes,
then schedule operation assignment with smallest force

+

<

*

+

* *

*

*

*

 -

 -

NOP

1 2

3

4

5

6

7

8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

NOP
Vn

ECE 474a/575a
Susan Lysecky

99 of 72

Conclusion

  Considered several types of scheduling algorithms
  Unconstrained Scheduling - ASAP
  Latency-Constrained Scheduling – ALAP
  Resource-Constrained Scheduling – Hu’s Algorithm

  Practical Scheduling problems possibly include multiple-cycle operations with different
types
  Minimum-Latency, Resource-Constrained and Minimum-Resource, Latency-Constrained

problems become difficult to solve efficiently
  Heuristics developed

  List Scheduling (LIST_L)
  List Scheduling (LIST_R)
  Force-directed Scheduling
  Trace Scheduling
  Percolation Scheduling

