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Scheduling 

  What have we done? 
  Specified the order in which operations are 

performed 

  What’s next - Operator Scheduling 
  Assigning operations performed in each states 
  Generally speaking, determining the start time of 

each task/operation 

  Why is scheduling important? 
  Determines the amount of concurrency of the 

resulting implementation – effects performance 
  Maximum amount of concurrent operations of a 

given type at any time step also determines the 
amount of hardware resources of that type 
required – effects area 
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Control/Data flow graph (CDFG) 

  How do we represent a scheduling? 
  Dataflow graph – represents the way data flows through a computation 

  Computations limited to 2-input 

x1 = x + dx; 
u1 = u – (3 * x * u * dx ) – (3 * y * dx) 
y1 = y + u * dx 
c = x1 < a + 
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x dx 
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u 
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Code fragment we want to implement Corresponding CDFG 

Vertices correspond to the 
operations we perform 

Edges correspond to the 
dependencies 
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Task Representation - Sequencing graph 

  Determining a schedule 
  Don’t really care about the actual input/output values 
  Just want to know the task we perform (add, subtract, compare, etc..) and the 

dependencies among the task 

  Utilize a Sequencing graph 
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Sequencing graph 
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Source node 
Represented by a NOP (no operation) node 
Indicates start of computation 

Sink node 
Represented by a NOP (no operation) node 
Indicates completion of computation 

Vertices 
Represents the task or 
operation to be performed 

Edges 
Represents dependencies among 
operations 
Cannot perform operation 3 until 
operation 1 and 2 are completed 

Dotted lines 
Does NOT represent a dependency between 
tasks or operations 
Represents a connection between the source 
and the initial task or operations 

Dotted lines 
Does NOT represent a dependency between 
tasks or operations 
Represents a connection between the sink and 
the final task or operations 

V0 

Vn 
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Scheduling - Sequencing Graphs 
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  Sequencing graph itself only specifies the dependencies among tasks 
  Scheduling requires we associate a start time for each task/operation in the 

sequencing graph 
  Introduce concept of time 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

Operation 1, 2, 6, 8, and 10 are 
performed in the first clock cycle 

Operation 3, 7, 9, and 11 are 
performed in the second clock cycle 

Operation 4 is performed in the third 
clock cycle 

Operation 5 is performed in the fourth 
clock cycle 

V0 

Vn 

Notice all operations require only 1 clock cycle 
to execute 
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ASAP Scheduling 

  Unconstrained minimum-latency scheduling problem 
  We have infinite resources, all we want is the minimum time to perform the 

computation 
  Commonly referred to as ASAP (as soon as possible) scheduling 

ASAP( GS(V,E) ){ 
     Schedule v0 by setting t0 = 1 
     repeat{ 
        Select a vertex vi whose predecessors are all scheduled; 
        Schedule vi by setting ti =  max   tj + dj 

     } 
     until (vn is scheduled); 
     return t; 
} 

j:(vj, vi) єE 

Perform ASAP scheduling on the sequencing 
graph 

Schedule the source node v0 for time 1  

Look for tasks/operations that are not 
dependent on a task/operation that hasn’t been 
scheduled yet 

Keep going until we have scheduled the sink 
node vn 

Schedule the task/operation to time = time 
predecessor scheduled for + time required for 
predecessor to execute 

may have multiple predecessors, take 
maximum time 
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* 

ASAP Scheduling 
Example 1 

Step1 
Schedule v0 at time 1 

All of v1 predecessors are scheduled 
Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? 

Time = v0 start time + v0 execution time 
= 1 + 0 
= 1 
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No. Repeat loop. 
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* 

ASAP Scheduling 
Example 1 

Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? 
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All of v2 predecessors are scheduled 

No. Repeat loop. 

* 
2 

Time = v0 start time + v0 execution time 
= 1 + 0 
= 1 
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ASAP Scheduling 
Example 1 

* * 

NOP 

1 2 
TIME 1 

V0 

All of v3 predecessors are scheduled 
Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? No. Repeat loop. 
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* 
3 

TIME 2 

Time = v1 start time + v1 execution time 
= 1 + 1 
= 2 

Time = v2 start time + v2 execution time 
= 1 + 1 
= 2 
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ASAP Scheduling 
Example 1 

* * 

* 

NOP 
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TIME 1 

TIME 2 

V0 

All of v4 predecessors are scheduled 
Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? No. Repeat loop. 
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ASAP Scheduling 
Example 1 

* * 

* 
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TIME 1 

TIME 2 

TIME 3 

V0 

v5 still has predecessors not scheduled (v7), skip for now 
All of v6 predecessors are scheduled 

Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? No. Repeat loop. 
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ASAP Scheduling 
Example 1 

* * 

* 
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TIME 1 

TIME 2 

TIME 3 

V0 

All of v7 predecessors are scheduled 
Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? No. Repeat loop. 

* 
7 
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ASAP Scheduling 
Example 1 

* * 
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V0 

All of v8 predecessors are scheduled 
Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? No. Repeat loop. 
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ASAP Scheduling 
Example 1 

* * * 

* 

* 
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V0 

All of v9 predecessors are scheduled 
Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? No. Repeat loop. 
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ASAP Scheduling 
Example 1 
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All of v10 predecessors are scheduled 
Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? No. Repeat loop. 
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ASAP Scheduling 
Example 1 
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V0 

All of v11 predecessors are scheduled 
Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? No. Repeat loop. 
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ASAP Scheduling 
Example 1 
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TIME 1 

TIME 2 

TIME 3 

TIME 4 

V0 

vn still has predecessors not scheduled (v5), skip for now 
Return to v5, all predecessors are scheduled 

Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? No. Repeat loop. 
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Time = v4 start time + v4 execution time 
= 3 + 1 
= 4 

Time = v7 start time + v7 execution time 
= 2 + 1 
= 3 
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ASAP Scheduling 
Example 1 
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TIME 1 

TIME 2 

TIME 3 

TIME 4 

V0 

Return to vn, all predecessors are scheduled 
Step2 
Select a vertex vi whose predecessors are all scheduled 

Step3 
Schedule vi to time = predecessor’s scheduled time + time 
required for predecessor to execute 

Step4 
Has vn been scheduled yet? Yes. We are done! 
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Time = v11 start time + v11 execution time 
= 2 + 1 
= 3 

NOP Vn 

Time = v5 start time + v5 execution time 
= 4 + 1 
= 5 

Time = v9 start time + v9 execution time 
= 2 + 1 
= 3 
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ASAP Scheduling 
Example 2 

ASAP Scheduling goal is to schedule tasks/operations to perform as 
soon as possible 

We can skip the algorithm and visually move vertices “up” as far as 
possible 
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ASAP Scheduling 
Example 3 
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ALAP Scheduling 

  Latency constrained scheduling problem 
  Schedule must satisfy an upper bound on latency 
  Commonly referred to as ALAP (as late as possible) scheduling 

ALAP( GS(V,E), λ ){ 
     Schedule vn by setting tn = λ + 1 
     repeat{ 
        Select a vertex vi whose successors are all scheduled; 
        Schedule vi by setting ti =  min   tj - dj 

     } 
     until (v0 is scheduled); 
     return t; 
} 

j:(vj, vi) єE 

Perform ALAP scheduling on the sequencing 
graph, λ is the upper time bound 

Schedule the sink node vn for upper latency 
bound + 1  

Look for tasks/operations whose successors 
are already scheduled 

Keep going until we have scheduled the source 
node v0 

Schedule the task/operation to time = time 
successor scheduled for - time required for 
successor to execute 

may have multiple successors, take 
minimum time 
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ALAP Scheduling 
Example 1 
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ALAP Scheduling goal is to schedule tasks/operations to perform as 
late as possible 

We can skip the algorithm and visually move vertices “down” as far 
as possible 
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ALAP Scheduling 
Example 2 
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ALAP Scheduling 
Example 3 

* * 

NOP 

NOP 

4 5 

10 

V0 

Vn 

6 

1 

* 

* 

11 

9 

+ * 2 3 

7 + 

/ 

- 

< 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

8 + 

* * 

NOP 

NOP 

4 5 

10 

V0 

Vn 

6 

1 

* 

* 

11 

9 

+ * 2 3 

7 + 

/ 

- 

< 

8 + 

TIME 5 

ECE 474a/575a 
Susan Lysecky 

26 of 72 

Mobility 

  Mobility (or slack) important quantity used by some scheduling algorithms 
  Mobility = start time ALAP scheduling – start time ASAP scheduling 

  Mobility = 0, task/operation can only be started at the given time in order to meet 
overall latency constraint 

  Mobility > 0, indicates span of possible start times 
  Helps with minimizing resources (adders, multipliers, etc.) 
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Example 1 – ASAP Schedule Example 1 – ALAP Schedule 

V1 mobility = timeALAP(V1) - timeASAP(V1) 
                     = 1 – 1 
                     = 0 

V6 mobility = timeALAP(V6) - timeASAP(V6) 
                     = 2 – 1 
                     = 1 

V11 mobility = timeALAP(V11) - timeASAP(V11) 
                     = 4 – 2 
                     = 2 
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Mobility 
Example 1 – ASAP Only 

1 ALU operation 

1 ALU operation 

4 multiply operations, 1 ALU operation 

2 multiply operations, 2 ALU operations 

  What do we get with the ASAP Schedule? 
  Latency = 4 
  Resource requirement = 4 multipliers, 2 ALUs 
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Mobility 
Example 1 – ALAP Only 

TIME 1 

TIME 2 

TIME 3 

TIME 4 
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Vn 

  What do we get with the ALAP Schedule? 
  Latency = 4 
  Resource requirement = 2 multipliers, 3 ALUs 

2 multiply operations, 2 ALU operations 

3 ALU operations 

2 multiply operations 

2 multiply operations 
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Mobility 
Example 1 – Modify ALAP 

Operations with mobility = 0 
   v1, v2, v3, v4, v5 

Operations with mobility = 1 
   v6, v7 

Operations with mobility = 2 
   v8, v9, v10, v11 

  Start with ALAP schedule 
  Use mobility to try to improve resource requirements 
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2 multiply operations,  2 ALU operations 

3 ALU operations 

2 multiply operations 

2 multiply operations 
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Mobility 
Example 1 – Modify ALAP 

Operations with mobility = 0 
   v1, v2, v3, v4, v5 

Operations with mobility = 1 
   v6, v7 

Operations with mobility = 2 
   v8, v9, v10, v11 

  Start with ALAP schedule 
  Use mobility to try to improve resource requirements 

  Vertices with mobility = 0 cannot be moved, they are part of the critical path 
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2 multiply operations,  2 ALU operations 

3 ALU operations 

2 multiply operations 

2 multiply operations 

ECE 474a/575a 
Susan Lysecky 

31 of 72 

Mobility 
Example 1 – Modify ALAP 

Operations with mobility = 0 
   v1, v2, v3, v4, v5 

Operations with mobility = 1 
   v6, v7 

Operations with mobility = 2 
   v8, v9, v10, v11 

  Start with ALAP schedule 
  Use mobility to try to improve resource requirements 

  Vertices with mobility = 0 cannot be moved, they are part of the critical path 
  Vertices with mobility > 0 can be moved to minimize resource requirements 
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3 ALU operations 

2 multiply operations 

2 multiply operations 

2 multiply operations,  2 ALU operations 

,  1 ALU operations 

,  1 ALU operations 

1 

2 

Latency = 4, Resources = 2 multipliers, 2 ALUs 
Latency = 4, Resources = 4 multipliers, 2 ALUs (ASAP) 
Latency = 4, Resources = 2 multipliers, 3 ALUs (ALAP) 
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Resource Constrained Scheduling 

  Resource constrained scheduling problem 
  Resource usage determines circuit area 
  Consider area/latency tradeoff 

ASAP schedule determines the minimum 
latency, we assumed infinite resources 
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We can determine a schedule to consider 
only minimizing resources – assuming 
latency doesn’t matter 
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Likely we want something in between 



9 

ECE 474a/575a 
Susan Lysecky 

33 of 72 

Hu’s Algorithm 

  Exact (polynomial-time) algorithm for resource constrained scheduling 
  Assumes one resource handles all possible operations 
  Assumes all operations have 1 unit delay 

HU( GS(V,E), a ){ 

     Label the vertices; 

     l = 1; 

     repeat { 

        U = unscheduled vertices in V without predecessors 
               or whose predecessors have been scheduled; 

        Select S   U vertices, such that |S| ≤ a and labels in S are maximal; 

        Schedule the S operations at step l by setting t = l    i : vi є S; 

        l = l + 1; 

     } until (vn is scheduled); 

     return t; 

} 

Make a list of all vertices not waiting on another 
operation to be scheduled 

Select a subset of the vertices in U, no more 
than a, choosing vertices with largest labels 

Keep going until we have scheduled the sink 
node vn 

update l to next time step 

∩ 

A 

Value of a indicates the number of resources 
we have available 

Label with distance of vertices to sink node 

Indicates the time step  

Schedule the vertices in the subset to start at 
time l 
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Hu’s Algorithm 
Example 1 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

2 

1 

2 

1 

4 4 

3 

3 

2 

2 

 1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

l = 1 

Step1 
Label all vertices with distance to sink 

Step2 
l = 1 

a = 3 
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Hu’s Algorithm 
Example 1 

2 

1 

2 

1 

4 4 

3 

3 

2 

2 

 1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

U = { v1, v2, v6, v8, v10 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 1 + 1 = 2 

S = { v1, v2, v6 } 

NOP 

Set vertices in S to start at 1 

4 4 3 
1 2 6 

V0 

TIME 1 

l = 1 

a = 3 
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Hu’s Algorithm 
Example 1 

Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 2 + 1 = 3 

S = { v3, v7, v8 } 

4 4 3 

NOP 

1 2 6 

V0 

TIME 1 

Set vertices in S to start at 2 

2 3 2 
3 7 8 

TIME 2 

U = { v3, v7, v8, v10 } 

l = 2 

a = 3 

2 

1 

2 

1 

4 4 

3 

3 

2 

2 

 1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 
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Hu’s Algorithm 
Example 1 

U = { v4, v9, v10 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 3 + 1 = 4 

S = { v4, v9, v10 } 

2 

4 4 

3 

3 

2 

NOP 

1 2 

3 

6 

7 8 

V0 

TIME 1 

TIME 2 

Set vertices in S to start at 3 

2 1 2 
4 9 10 

TIME 3 

l = 3 

a = 3 

2 

1 

2 

1 

4 4 

3 

3 

2 

2 

 1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 
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Hu’s Algorithm 
Example 1 

U = { v5, v11 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 4 + 1 = 5 

S = { v5, v11 } 

2 

2 

1 

4 4 

3 

3 

2 

2 

NOP 

1 2 

3 

4 

6 

7 8 

9 10 

V0 

TIME 1 

TIME 2 

TIME 3 

Set vertices in S to start at 4 

1  1 
5 11 

TIME 4 

l = 4 

a = 3 

2 

1 

2 

1 

4 4 

3 

3 

2 

2 

 1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 
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Hu’s Algorithm 
Example 1 

U = { vN } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? Yes. We are done! 

I = 5 + 1 = 6 

S = { vN } 

2 

1 

2 

1 

4 4 

3 

3 

2 

2 

 1 

NOP 

1 2 

3 

4 

5 

6 

7 8 

9 10 

11 

V0 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

NOP 

Set vertices in S to start at 5 

NOP Vn 

l = 5 

a = 3 

2 

1 

2 

1 

4 4 

3 

3 

2 

2 

 1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 
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Hu’s Algorithm 
Example 2 

Step1 
Label all vertices with distance to sink 

Step2 
l = 1 

* * 

* 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

* * 
1 2 

5 

* * 

* 

7 8 

10 

* 

* 

* 11 

l = 1 

a = 4 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 2 

U = { v1, v2, v3, v4, v7, v8} 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 1 + 1 = 2 

S = { v1, v2, v3, v4} 

NOP V0 

Set vertices in S to start at 1 

4 4 3 4 4 4 1 2 TIME 1 

l = 1 

a = 4 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 2 

U = { v5, v6, v7, v8 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 2 + 1 = 3 

S = { v5, v6, v7, v8} 

4 4 

NOP 

3 4 

V0 

4 4 1 2 TIME 1 

Set vertices in S to start at 2 

3 6 5 3 3 7 8 3 TIME 2 

l = 2 

a = 4 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 2 

U = { v9, v10 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 3 + 1 = 4 

S = { v9, v10 } 

4 4 

3 

NOP 

3 4 

6 

V0 

4 4 1 2 

5 3 3 7 8 3 

TIME 1 

TIME 2 

Set vertices in S to start at 3 

9 2 10 2 TIME 3 

l = 3 

a = 4 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 2 

U = { v11 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 4 + 1 = 5 

S = { v11 } 

4 4 

3 

NOP 

3 4 

6 

9 

V0 

4 4 1 2 

5 3 3 

2 

7 8 

10 

3 

2 

TIME 1 

TIME 2 

TIME 3 

Set vertices in S to start at 4 

1 11 TIME 4 

l = 4 

a = 4 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 2 

U = { vn } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? Yes. We are done. 

I = 5 + 1 = 6 

S = { vn } 

4 4 

3 

NOP 

3 4 

6 

9 

V0 

4 4 1 2 

5 3 3 

2 

7 8 

10 

3 

2 

1 11 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

Set vertices in S to start at 5 

NOP Vn 

l = 5 

a = 4 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 3 

Step1 
Label all vertices with distance to sink 

Step2 
l = 1 

* * 

* 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

* * 
1 2 

5 

* * 

* 

7 8 

10 

* 

* 

* 11 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 

l = 1 

a = 2 
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Hu’s Algorithm 
Example 3 

U = { v1, v2, v3, v4, v7, v8 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 1 + 1 = 2 

S = { v1, v2 } 

l = 1 

a = 2 NOP V0 

Set vertices in S to start at 1 

4 4 1 2 TIME 1 

l = 1 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 3 

U = { v3, v4, v5, v7, v8 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 2 + 1 = 3 

S = { v3, v4 } 

l = 2 

a = 2 NOP V0 

4 4 1 2 TIME 1 

Set vertices in S to start at 2 

4 4 3 4 TIME 2 4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 3 

U = { v5, v6, v7, v8 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 3 + 1 = 4 

S = { v5, v6 } 

l = 3 

a = 2 

4 4 

NOP 

3 4 

V0 

4 4 1 2 TIME 1 

TIME 2 

Set vertices in S to start at 3 

3 6 5 3 TIME 3 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 3 

U = { v7, v8, v9 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 4 + 1 = 5 

S = { v7, v8 } 

l = 4 

a = 2 

4 4 

3 

NOP 

3 4 

6 

V0 

4 4 1 2 

5 3 

TIME 1 

TIME 2 

TIME 3 

Set vertices in S to start at 4 

3 3 7 8 TIME 4 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 3 

U = { v9, v10 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 5 + 1 = 6 

S = { v9, v10 } 

l = 5 

a = 2 

4 4 

3 

NOP 

3 4 

6 

V0 

4 4 1 2 

5 

3 3 7 8 

3 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

Set vertices in S to start at 5 

9 2 10 2 TIME 5 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
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Hu’s Algorithm 
Example 3 

U = { v11 } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? No. Repeat loop. 

I = 6 + 1 = 7 

S = { v11 } 

l = 6 

a = 2 

4 4 

3 

NOP 

3 4 

6 

9 

V0 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

TIME 5 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 

Set vertices in S to start at 6 

1 11 TIME 6 
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Hu’s Algorithm 
Example 3 

U = { vn } 
Step 3 
U = unscheduled vertices in V without predecessors or  
       whose predecessors have been scheduled 
Step 4 
S = subset set of vertices in U, no more than a, where 
labels are maximal 

Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? Yes. We are done. 

I = 7 + 1 = 8 

S = { vn } 

l = 7 

a = 2 

4 4 

3 

NOP 

3 4 

6 

9 

V0 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

TIME 5 

4 4 

3 

NOP 

NOP 

3 4 

6 

9 

V0 

Vn 

4 4 1 2 

5 

3 3 

2 

7 8 

10 

3 

2 

1 11 
TIME 6 

Set vertices in S to start at 7 

NOP Vn 
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Additional Scheduling Considerations 

  Hu’s algorithm 
  Assumes one resource handles all possible operations 
  Assumes all operations have 1 unit delay 

  Most scheduling problems have additional considerations 
  What happens when we have more than one type of task/operation? 
  What happens when a task/operation takes more than 1 unit delay? 

  Increased problem space, difficult problem to solve efficiently 
  Many heuristics have been developed to address these problems 

  Minimum-latency, resource-constrained scheduling 
  Minimum-resource, latency-constrained scheduling 

We consider one such heuristic from a family of heuristics 
called  list scheduling that looks at the minimum-latency, 
resource-constrained scheduling problem 
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List Scheduling (LIST_L) 

LIST_L( GS(V,E), a ){ 

     l = 1; 

     repeat { 

          for each resource type k = 1, 2, …, nres { 
               Determine candidate operations Ul, k; 
               Determine unfinished operations Tl,k; 
               Select Sk       Ul,k vertices, such that |Sk| + |Tl,k| <= ak; 

               Schedule the Sk operations at step l by setting ti = l    i : vi є S; 
          } 

          l = l + 1; 

     } until (vn is scheduled); 

     return t; 

} 

Operations of type k whose 
predecessors are completed by time l 

Unfinished operations that are already 
scheduled but have not completed yet 

Keep going until we have scheduled 
the sink node vn 

∩ 
A 

Vector a indicates the number of each 
type of resource available 

indicates the time step  

Select a subset S so that the number 
of new operations and unfinished 
operations are <= to number of 
resources of that type 

  Extension of Hu’s algorithm to handle multiple operation types and multiple-cycle 
execution delays 

  Considers minimum-latency, resource-constrained scheduling problem 

update l to next time step 

Schedule operations in S to run at time 
step l 
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List Scheduling (LIST_L) 

LIST_L( GS(V,E), a ){ 

     l = 1; 

     repeat { 

          for each resource type k = 1, 2, …, nres { 
               Determine candidate operations Ul, k; 
               Determine unfinished operations Tl,k; 
               Select Sk       Ul,k vertices, such that |Sk| + |Tl,k| <= ak; 

               Schedule the Sk operations at step l by setting ti = l    i : vi є S; 
          } 

          l = l + 1; 

     } until (vn is scheduled); 

     return t; 

} 

Select a subset S so that the number 
of new operations and unfinished 
operations are <= to number of 
resources of that type 

∩ 

A 

  Selection of which operations to include is based on a priority list indicating some sort 
of urgency measure 
  We will utilize same method of labeling vertices with weights indicating path to sink, choose 

operations with highest weights 
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LIST_L Scheduling 
Example 1 

l = 1 

Step1 
l = 1 

a1 = 2 multipliers  
a2 =  2 ALUs 

Assume all 
operations take 1 
cycle 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 1 

l = 1 

a1 = 2 multipliers  
a2 =  2 ALUs 

Assume all 
operations take 1 
cycle 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

NOP V0 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

*/4 */4 
1 2 

Set vertices in S to start at 1 

S = { v1, v2 } 

U = { v1, v2, v6, v8 } 
T = { } 

Multipliers 

No. Repeat loop. 

+/2 
10 

Set vertices in S to start at 1 

S = { v10 } 

U = { v10 } 
T = { } 

ALUs 

TIME 1 

I = 1 + 1 = 2 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 1 

l = 2 

a1 = 2 multipliers  
a2 =  2 ALUs 

Assume all 
operations take 1 
cycle 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

+/2 */4 */4 

NOP 

1 2 10 

V0 

U = { v3, v6, v8 } 
T = { } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = { v3, v6 } 

Multipliers 
U = { v11 } 
T = { } 

No. Repeat loop. 

</1 
11 

Set vertices in S to start at 2 

S = { v11 } 

ALUs 

TIME 1 

*/3 */3 
3 6 

Set vertices in S to start at 2 

TIME 2 

I = 2 + 1 = 3 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 1 

l = 3 

a1 = 2 multipliers  
a2 =  2 ALUs 

Assume all 
operations take 1 
cycle 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

+/2 

</1 

*/4 */4 

*/3 */3 

NOP 

1 2 

3 6 

10 

11 

V0 

U = {v7,  v8 } 
T = { } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = { v7, v8 } 

Multipliers 
U = { v4 } 
T = { } 

No. Repeat loop. 

 -/2 
4 

Set vertices in S to start at 3 

S = { v4 } 

ALUs 

TIME 1 

TIME 2 

*/2 */2 
7 8 

Set vertices in S to start at 3 

TIME 3 

I = 3 + 1 = 4 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 1 

l = 4 

a1 = 2 multipliers  
a2 =  2 ALUs 

Assume all 
operations take 1 
cycle 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

+/2 

</1 

*/2 

*/4 */4 

*/3 */3 

*/2  -/2 

NOP 

1 2 

3 

4 

6 

7 8 

10 

11 

V0 

U = { } 
T = { } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = {  } 

Multipliers 
U = { v5, v9 } 
T = { } 

No. Repeat loop. 

S = { v5, v9 } 

ALUs 

TIME 1 

TIME 2 

TIME 3 

+/1  -/1 
5 9 

Set vertices in S to start at 4 

TIME 4 

I = 4 + 1 = 5 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 1 

l = 5 

a1 = 2 multipliers  
a2 =  2 ALUs 

Assume all 
operations take 1 
cycle 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 */3 

*/2  -/2 

 -/1 

NOP 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

V0 

U = { } 
T = { } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = { } 

Multipliers 
U = { } 
T = { } 

Yes. We are done. 

S = { } 

ALUs 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

I = 5 + 1 = 6 

U = { Vn } 
T = { } 

NOP Vn 

Set vertices in S to 
start at 5 

S = { Vn } 
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LIST_L Scheduling 
Example 2 

l = 1 

Step1 
l = 1 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

A1 = 3 multipliers  
A2 = 1 ALU 

Mult. = 2 cycles 
ALU = 1 cycle 

ECE 474a/575a 
Susan Lysecky 

64 of 72 

Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 2 

l = 1 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = { v1, v2, v6 } 

U = { v1, v2, v6, v8 } 
T = { } 

Multipliers 

No. Repeat loop. 

S = { v10 } 

U = { v10 } 
T = { } 

ALUs 

I = 1 + 1 = 2 

A1 = 3 multipliers  
A2 = 1 ALU 

Mult. = 2 cycles 
ALU = 1 cycle 

NOP 

Set vertices in S to start at 1 

+/2 10 

V0 

TIME 1 

Set vertices in S to start at 1 

*/4 */4 */3 1 2 6 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 2 

l = 2 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

U = { v8 } 
T = {v1, v2, v6 } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = { v1, v2, v6 } 

Multipliers 
U = { v11 } 
T = { } 

No. Repeat loop. 

S = { v11 } 

ALUs 

I = 2 + 1 = 3 

A1 = 3 multipliers  
A2 = 1 ALU 

Mult. = 2 cycles 
ALU = 1 cycle 

+/2 */4 */4 */3 

NOP 

1 2 6 10 

Set vertices in S to start at 2 

</1 11 

V0 

TIME 1 

Set vertices in S to start at 2 

TIME 2 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 2 

l = 3 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

U = { v3, v7,  v8 } 
T = { } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = { v3, v7, v8 } 

U = { } 
T = { } 

No. Repeat loop. 

S = { } 

ALUs 

I = 3 + 1 = 4 

A1 = 3 multipliers  
A2 = 1 ALU 

Mult. = 2 cycles 
ALU = 1 cycle 

+/2 

</1 

*/4 */4 */3 

NOP 

1 2 6 10 

11 

V0 

TIME 1 

TIME 2 

Set vertices in S to start at 3 

*/2 */3 */2 3 7 8 TIME 3 

Multipliers 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 2 

l = 4 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

U = { } 
T = { v3, v7, v8 } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = {v3, v7,  v8} 

Multipliers 
U = { } 
T = { } 

No. Repeat loop. 

S = { } 

ALUs 

I = 4 + 1 = 5 

A1 = 3 multipliers  
A2 = 1 ALU 

Mult. = 2 cycles 
ALU = 1 cycle 

+/2 

</1 

*/2 

*/4 */4 

*/3 

*/3 

*/2 

NOP 

1 2 

3 

6 

7 8 

10 

11 

V0 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

Set vertices in S to start at 4 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 2 

l = 5 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

U = { } 
T = { } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = {  } 

Multipliers 
U = { v4, v9 } 
T = { } 

No. Repeat loop. 

S = { v4 } 

ALUs 

I = 5 + 1 = 6 

A1 = 3 multipliers  
A2 = 1 ALU 

Mult. = 2 cycles 
ALU = 1 cycle 

+/2 

</1 

*/2 

*/4 */4 

*/3 

*/3 

*/2 

NOP 

1 2 

3 

6 

7 8 

10 

11 

V0 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

Set vertices in S to start at 5 

 -/2 4 TIME 5 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 2 

l = 6 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

U = { } 
T = { } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = {  } 

Multipliers 
U = { v5, v9 } 
T = { } 

No. Repeat loop. 

S = { v5 } 

ALUs 

I = 6 + 1 = 7 

A1 = 3 multipliers  
A2 = 1 ALU 

Mult. = 2 cycles 
ALU = 1 cycle 

+/2 

</1 

*/2 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

NOP 

1 2 

3 

4 

6 

7 8 

10 

11 

V0 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

TIME 5 

Set vertices in S to start at 6 

 -/1 5 TIME 6 
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Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 2 

l = 7 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

U = { } 
T = { } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = {  } 

Multipliers 
U = { v9 } 
T = { } 

No. Repeat loop. 

S = { v9 } 

ALUs 

I = 7 + 1 = 8 

A1 = 3 multipliers  
A2 = 1 ALU 

Mult. = 2 cycles 
ALU = 1 cycle 

+/2 

</1 

*/2 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

1 2 

3 

4 

5 

6 

7 8 

10 

11 

V0 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

TIME 5 

TIME 6 

Set vertices in S to start at 7 

+/1 9 TIME 7 

ECE 474a/575a 
Susan Lysecky 

71 of 72 

Step 2/3 
Ul,k = candidate operations with predecessors finished at l 
Tl,k = unfinished operations  

LIST_L Scheduling 
Example 2 

l = 8 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

U = { } 
T = { } 

Step 4 
S = subset set of vertices in U and T such that U + T is 
<=a, where labels are maximal 
Step 5 
Schedule vertices in S to time step I 

Step 6 
I = I + 1 

Step 7 
Has vn been scheduled yet? 

S = { } 

Multipliers 
U = { } 
T = { } 

Yes. We are done. 

S = { } 

ALUs 

I = 8 + 1 = 9 

U = { Vn } 
T = { } 

S = { Vn } 

A1 = 3 multipliers  
A2 = 1 ALU 

Mult. = 2 cycles 
ALU = 1 cycle 

+/2 

</1 

*/2 

+/1 

*/4 */4 

*/3 

*/3 

*/2 

 -/2 

 -/1 

NOP 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

V0 

Set vertices in S to 
start at 8 

NOP Vn 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

TIME 5 

TIME 6 

TIME 7 
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LIST_R( GS(V,E), λ ){ 
     a = 1; 

     Compute the latest possible start times tL by ALAP( G(V, E), λ); 
     if( tL < 0) 
          return (Φ); 

     l = 1; 

     repeat { 
          for each resource type k = 1, 2, …, nres { 
               Determine candidate operations Ulk; 
               Compute the slacks {si = tL - l     vi є Ulk }; 
               Schedule the candidate operations with zero slack and update a; 
               Schedule the candidate operations requiring no additional resources; 
          } 
          l = l + 1; 
     } until (vn is scheduled); 
     return (t, a); 
} 

List Scheduling (LIST_R) 

Operations of type k whose 
predecessors are completed by time l 

Scheduled any operation with 0 slack to 
meet timing requirement, add resources 
if needed 

Keep going until we have scheduled 
the sink node vn 

Vector a indicates the number of each 
type of resource available 

  Considers minimum-resource, latency-constrained scheduling problem 

Algorithm exits if ALAP detects no 
feasible solution with dedicated resources 

Time step 

Compute slack of all candidates 
(current time – ALAP time) 

Fill in unused resources by scheduling 
any available operation 

A 

0 

i 
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LIST_R Scheduling 
Example 1 

  Assume all operations have unit delay, latency of 4 is required 
  Initialize vector a so all entries have value of 1 
  Compute the latest start times of all vectors by using ALAP() 
  Set time step equal to 1 

+ 

< 

* 

+ 

* * 

* * 

*  - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

V0 

Vn 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

a1 = 1 multiplier 
a2 = 1 ALU 

Node Time 
1 1 
2 1 
3 2 
4 3 
5 4 
6 2 
7 3 
8 3 
9 4 
10 3 
11 4 

l = 1 
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LIST_R Scheduling 
Example 1 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

a1 = 1 multiplier 
a2 = 1 ALU 

Node Time 
1 1 
2 1 
3 2 
4 3 
5 4 
6 2 
7 3 
8 3 
9 4 
10 3 
11 4 

Has vn been scheduled yet? No. Repeat loop. 

Schedule candidate operations requiring no additional resources no spare multipliers S = { v10 } 

Compute the slacks v1 = 1-1 = 0      v2 = 1-1 = 0  
v6 = 2-1 =1       v8 = 3-1 = 2  

v10 = 3-1 = 2 

Determine candidate operations U = { v1, v2, v6, v8 } 
Multipliers 

U = { v10 } 
ALUs 

Increment time step I = 1 + 1 = 2 

Schedule candidate operations with zero slack and update a S = { v1, v2 }, a1 = 2 no zero slack operations 

l = 1 
NOP 

+ 
10 

V0 

* * 
1 2 

TIME 1 

2 2 
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LIST_R Scheduling 
Example 1 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

a1 = 2 multiplier 
a2 = 1 ALU 

Node Time 
1 1 
2 1 
3 2 
4 3 
5 4 
6 2 
7 3 
8 3 
9 4 
10 3 
11 4 

Has vn been scheduled yet? No. Repeat loop. 

Schedule candidate operations requiring no additional resources no spare multipliers S = { v11 } 

Compute the slacks v3 = 2-2 = 0 
v6 = 2-2 =0       v8 = 3-2 = 1  

v11 = 4-2 = 2 

Increment time step I = 2 + 1 = 3 

Schedule candidate operations with zero slack and update a S = { v3, v6 } no zero slack operations 

l = 2 

< 
11 

* * 
3 6 TIME 2 

+ * * 

NOP 

1 2 10 

V0 

TIME 1 

3 

Determine candidate operations U = { v3, v6, v8 } U = { v11 } 
ALUs Multipliers 
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LIST_R Scheduling 
Example 1 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

a1 = 2 multiplier 
a2 = 1 ALU 

Node Time 
1 1 
2 1 
3 2 
4 3 
5 4 
6 2 
7 3 
8 3 
9 4 
10 3 
11 4 

Has vn been scheduled yet? No. Repeat loop. 

Schedule candidate operations requiring no additional resources no spare multipliers no spare ALUs 

Compute the slacks v7 = 3-3 = 0      v8 = 3-3 =0 v4 = 3-3 = 0 

Determine candidate operations U = { v7, v8 } 
Multipliers 

U = { v4 } 
ALUs 

Increment time step I = 1 + 1 = 4 

Schedule candidate operations with zero slack and update a S = { v7, v8 } S = { v4 } 

l = 3 

 - 
4 

* * 
7 8 TIME 3 

+ 

< 

* * 

* * 

NOP 

1 2 

3 6 

10 

11 

V0 

TIME 1 

TIME 2 

4 
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LIST_R Scheduling 
Example 1 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

a1 = 2 multiplier 
a2 = 1 ALU 

Node Time 
1 1 
2 1 
3 2 
4 3 
5 4 
6 2 
7 3 
8 3 
9 4 
10 3 
11 4 

Has vn been scheduled yet? No. Repeat loop. 

Schedule candidate operations requiring no additional resources no multiplier operations no spare ALUs 

Compute the slacks v5 = 4-4 = 0     v9 = 4-4 = 0 

Determine candidate operations U = { Φ } 
Multipliers 

U = { v5, v9} 
ALUs 

Increment time step I = 4 + 1 = 5 

Schedule candidate operations with zero slack and update a S = { Φ } S = {v5, v9}; a = 2 

+ 

< 

* 

* * 

* * 

*  - 

NOP 

1 2 

3 

4 

6 

7 8 

10 

11 

V0 

TIME 1 

TIME 2 

TIME 3 

+  - 
5 9 TIME 4 

l = 4 
5 

2 
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LIST_R Scheduling 
Example 1 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

a1 = 2 multiplier 
a2 = 2 ALU 

Node Time 
1 1 
2 1 
3 2 
4 3 
5 4 
6 2 
7 3 
8 3 
9 4 
10 3 
11 4 

Determine candidate operations 

Compute the slacks 

Schedule candidate operations requiring no additional resources 

Increment time step 

Has vn been scheduled yet? 

U = { Φ } 
Multipliers 

Yes. Done 

U = { Φ} 
ALUs 

Schedule candidate operations with zero slack and update a 

l = 5 

NOP Vn 

U = { Vn} 

+  - 
5 9 TIME 4 

+ 

< 

* 

* * 

* * 

*  - 

NOP 

1 2 

3 

4 

6 

7 8 

10 

11 

V0 

TIME 1 

TIME 2 

TIME 3 
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Force-Directed Scheduling (FDS) 

  Heuristic scheduling algorithms 
  Consider the unscheduled CDFG under a physics-based 

spring model   
  Operators are subjected to physical 'forces', both repelling 

and attracting them to particular time slices 
  Larger the force, the larger the concurrency 

  Goal is to find the optimal placement of vertices into a 
schedule, when subject to these 'forces' 

  Minimum latency under resource-constraint 
  Force directed list scheduling 
  Extension of list scheduling algorithms 

  Minimum resource under latency-constraint 
  Force directed scheduling 

This is the one 
we will consider 
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FDS( G(V,E), λ ){ 

     repeat { 

          Compute the time frames; 

          Compute the operations and type probabilities; 

          Compute the self-forces, predecessor/successor forces and total forces; 
          Schedule the operation with least force and update its time-frame; 

     } until (all operations scheduled); 
     return (t); 
} 

Force-Directed Scheduling (FDS) 

  Force-Directed Scheduling 
  Minimum resource under latency constraint 



21 

ECE 474a/575a 
Susan Lysecky 

81 of 29 

Force-Directed Scheduling (FDS) 
Time Frames 

  Time frame of an operation is the time interval where it can be scheduled 
  Denoted by {[tS, tL]; i = 0, 1, …, n} 

  Earliest and latest start times can be computed by ASAP and ALAP algorithms 
i i 

  Width of time frame of an operation is equal to its mobility plus 1 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

V0 

Vn 

+ 

< 

* 

+ 

* * 

* * 

*  - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

V0 

Vn 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TIME 1 

TIME 2 

TIME 3 

TIME 4 

V0 

NOP 
Vn 
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Force-Directed Scheduling (FDS) 
Example 2 

  Time frames for various operation 
assuming a latency bound of 4 
  Latency bound needed for ALAP 

scheduling 

+ 
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* 

+ 

* * 

* * 

*  - 

 - 

NOP 

NOP 

1 2 

3 

4 

5 

6 

7 8 

9 

10 

11 

V0 

Vn 

+ 

< 

* 

+ 

* * 

* 

* 

* 

 - 

 - 

NOP 

1 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
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operation v1 

ASAP time = 1 

ALAP time = 1 

time frame = [1, 1] 

operation v2 

ASAP time = 1 

ALAP time = 1 

time frame = [1, 1] 

operation v6 

ASAP time = 1 

ALAP time = 2 

time frame = [1, 2] 

operation v8 

ASAP time = 1 

ALAP time = 3 

time frame = [1, 3] 
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FDS( G(V,E), λ ){ 

     repeat { 

          Compute the time frames; 

          Compute the operations and type probabilities; 

          Compute the self-forces, predecessor/successor forces and total forces; 
          Schedule the operation with least force and update its time-frame; 

     } until (all operations scheduled); 
     return (t); 
} 

Force-Directed Scheduling (FDS) 

  Force-Directed Scheduling 
  Minimum resource under latency constraint 
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Force-Directed Scheduling (FDS) 
Operation Probability 

  Operation Probability is a function 
  Equal to zero outside of the corresponding time frame 

  Equal to reciprocal of the frame width inside the time frame 

  Denoted the probability of the operations at time l by {pi(l); i = 0, 1, …, n} 

  What is the significance? 
  Operations whose time frame is one unit wide are bound to start in one specific time 

  For remaining operations, the larger the width, the lower the probability that the operation is 
scheduled in any given step inside the corresponding time frame 
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Force-Directed Scheduling (FDS) 
Example 3 

  Operation Probability for various 
operations 
  Equal to zero outside of the 

corresponding time frame 

  Equal to reciprocal of the frame 
width inside the time frame 
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operation v1 

time frame = [1, 1] 

operation v2 

time frame = [1, 1] 

operation v6 

time frame = [1, 2] 

operation v8 

time frame = [1, 3] 

p1(1) = 1, p1(2) = 0 

p1(3) = 0, p1(4) = 0 

p2(1) = 1, p2(2) = 0 

p2(3) = 0, p2(4) = 0 

p6(1) = 0.5, p6(2) = 0.5 

p6(3) = 0, p6(4) = 0 

p8(1) = 0.3, p8(2) = 0.3 

p8(3) = 0.3, p8(4) = 0 

frame width = 1 frame width = 1 frame width = 2 frame width = 3 
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Force-Directed Scheduling (FDS) 
Type Distribution 

  Type Distribution is the sum of probabilities of the operations implemented by a specific 
resource at any time step of interest 
  Denote distribution at time l by {qk(l); k = 1, 2, …, nres} 

  Distribution graph is a plot of any operation-type distribution over the scheduled steps 
  Shows likelihood that a resource is used at each scheduled step 

  Uniform plot in a distribution graph means that a type is evenly scattered in the schedule and a 
good measure of utilization 
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Force-Directed Scheduling (FDS) 
Example 4 

  Distribution graph for ALU 
  Sum of probabilities of the operations 

implemented by a specific resource at any 
time step of interest 

p(1) p(4) p(2) p(3) 

v4 = [3, 3], width = 1 0 0 0 1 

v5 = [4, 4], width = 1 0 1 0 0 

v9 = [2, 4], width = 3 0 0.3 0.3 0.3 

v10 = [1, 3], width = 3 0.3 0 0.3 0.3 

v11 = [2, 4], width = 3 0 0.3 0.3 0.3 

q2(1) = 0 + 0 + 0 + 0.3  + 0 

q2(2) = 0 + 0 + 0.3 + 0.3 + 0.3 

q2(3) = 1 + 0 + 0.3 + 0.3 + 0.3 

q2(4) = 0 + 1 + 0.3 + 0 + 0.3 

= 0.3 

= 0.9 

= 1.9 

= 1.6 
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1 2 3 4 0 

Distribution graph 
for the ALU 
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Force-Directed Scheduling (FDS) 
Example 5 

  Distribution graph for Multiplier 
  Sum of probabilities of the operations 

implemented by a specific resource at any 
time step of interest 
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p(1) p(4) p(2) p(3) 

v1 = [1, 1], width = 1 1 0 0 0 

v2 = [1, 1], width = 1 1 0 0 0 

v3 = [2, 2], width = 1 0 0 1 0 

v6 = [1, 2], width = 2 0.5 0 0.5 0 

v7 = [2, 3], width = 2 0 0 0.5 0.5 

1 

2 

3 

4 

1 2 3 4 0 

Distribution graph 
for the multiplier 

q2(1) = 1 + 1 + 0 + 0.5 + 0 + 0.3 

q2(2) = 0 + 0 + 1 + 0.5 + 0.5 + 0.3 

q2(3) = 0 + 0 + 0 + 0 + 0.5 + 0.3 

q2(4) = 0 + 0 + 0 + 0 + 0 + 0 

= 2.8 

= 2.3 

= 0.8 

= 0 

v8 = [1, 3], width = 3 0.3 0 0.3 0.3 
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FDS( G(V,E), λ ){ 

     repeat { 

          Compute the time frames; 

          Compute the operations and type probabilities; 

          Compute the self-forces, predecessor/successor forces and total forces; 
          Schedule the operation with least force and update its time-frame; 

     } until (all operations scheduled); 
     return (t); 
} 

Force-Directed Scheduling (FDS) 

  Force-Directed Scheduling 
  Minimum resource under latency constraint 
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Force-Directed Scheduling (FDS) 
Self Force 

  Self Force 
  Scheduling an operation will effect overall 

concurrency 

  Every operation has “self force” for every 
C-step of its time frame 

  Desirable scheduling will have negative 
self force 

Force(i) = DG(i) * x(i) 
DG(i) = Current Distribution Graph value 
x(i) = Change in operation’s probability 

Self Force(j) =  Σ Force(i) 
i = t 

b 

ECE 474a/575a 
Susan Lysecky 

91 of 29 

Force-Directed Scheduling (FDS) 
Example 6 

  Calculate Self Force for v6 

  Assignment of v6 to time step 1 

  Assignment of v6 to time step 2 
DG(i) = Current Distribution Graph value 
x(i) = Change in operation’s probability 

Force(i) = DG(i) * x(i) 

Self Force(j) =  Σ Force(i) 
i = t 

b 

Assuming v6 assigned to time step 1 

Self force = 2.8(1-0.5) + 2.3(0-0.5) 

Distribution graph values 
to time step 1 and 2 

1 indicates that v6 schedule in time 1, 
minus the operator probability in time 1 

0 indicates that v6 is NOT scheduled in time 
1, minus the operator probability in time 2 

Time frame and operation probability for v6 

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0 

v6 = [1, 2], width = 2 

1 
2 
3 
4 

1 2 3 4 0 

2.8 
2.3 
0.8 
0 

Distribution graph for the multiplier 
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Force-Directed Scheduling (FDS) 
Example 6 

  Calculate Self Force for v6 

  Assignment of v6 to time step 1 

  Assignment of v6 to time step 2 
DG(i) = Current Distribution Graph value 
x(i) = Change in operation’s probability 

Force(i) = DG(i) * x(i) 

Self Force(j) =  Σ Force(i) 
i = t 

b 

Time frame and operation probability for v6 

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0 

v6 = [1, 2], width = 2 

1 
2 
3 
4 

1 2 3 4 0 

2.8 
2.3 
0.8 
0 

Distribution graph for the multiplier 

Assuming v6 assigned to time step 1 

Self force = 2.8(1-0.5) + 2.3(0-0.5) 

= 0.25 

Assuming v6 assigned to time step 2 

Self force = 2.8(0-0.5) + 2.3(1-0.5) 

= -0.25 

Want to reduce force (concurrency), 
time step 2 looks better 

How does this impact other operations? 
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If v11 scheduled in time 3, then v10 
has to be scheduled in time 1 or 2 

Force-Directed Scheduling (FDS) 
Predecessor/Successor Forces 

  Predecessor/Successor Force 
  Scheduling an operation may affect the time 

frames of other linked operations 

  This may negate the benefits of the desired 
assignment 

  Predecessor/Successor Forces = Sum of Self 
Forces of any implicitly scheduled operations 

If v6 scheduled in time 2, then v7 
has to be scheduled in time 3 
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Force-Directed Scheduling (FDS) 
Example 7 

  Calculate Predecessor/Successor 
Force for v6 

  Assign of v6 to time step 1 

  Assign of v6 to time step 2 
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DG(i) = Curr Distrb Graph value 
x(i) = Change in op prob 

Force(i) = DG(i) * x(i) 

Self Force(j) =  Σ Force(i) 
i = t 

b 
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Distribution graph for the multiplier 

Time frame and operation probability for v6 and v7 

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0 

v6 = [1, 2], width = 2 

p(1)=0, p(2)=0.5, p(3)=0.5, p(4)=0 

v7 = [2, 3], width = 2 

Assuming v6 assigned to time step 1 

Predecessor force = 0 
no predecessor effected 

Successor force = 0 

no successor effected 
v7 can be scheduled at time 2 or 3 

Total force = Self Force + Predecessor force + Successor force 
= 0.25 + 0 + 0 

= 0.25 
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Force-Directed Scheduling (FDS) 
Example 7 

  Calculate Predecessor/Successor 
Force for v6 

  Assign of v6 to time step 1 

  Assign of v6 to time step 2 
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DG(i) = Curr Distrb Graph value 
x(i) = Change in op prob 

Force(i) = DG(i) * x(i) 

Self Force(j) =  Σ Force(i) 
i = t 

b 
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Distribution graph for the multiplier 

Time frame and operation probability for v6 and v7 

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0 

v6 = [1, 2], width = 2 

p(1)=0, p(2)=0.5, p(3)=0.5, p(4)=0 

v7 = [2, 3], width = 2 

Assuming v6 assigned to time step 2 

Total force = Self Force + Predecessor force + Successor force 
= -0.25 + 0 + -0.75 

= -1 

no predecessor effected 

Predecessor force = 0 

v7 can only be scheduled at time 3 

= sum of self forces of implicitly 

= 2.3(0-0.5) + 0.8(1-0.5) 
scheduled operations 

= -0.75 

Successor force 
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Force-Directed Scheduling (FDS) 
Example 7 

  Calculate Predecessor/Successor 
Force for v6 

  Assign of v6 to time step 1 

  Assign of v6 to time step 2 
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DG(i) = Curr Distrb Graph value 
x(i) = Change in op prob 

Force(i) = DG(i) * x(i) 

Self Force(j) =  Σ Force(i) 
i = t 

b 
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Distribution graph for the multiplier 

Time frame and operation probability for v6 and v7 

p(1)=0.5, p(2)=0.5, p(3)=0, p(4)=0 

v6 = [1, 2], width = 2 

p(1)=0, p(2)=0.5, p(3)=0.5, p(4)=0 

v7 = [2, 3], width = 2 

Assuming v6 assigned to time step 1 

Assuming v6 assigned to time step 2 

Total force = 0.25 

Total force = -1 

Better choice – want to reduce force in the 
minimum resource under latency-constraint 



25 

ECE 474a/575a 
Susan Lysecky 

97 of 29 

FDS( G(V,E), λ ){ 

     repeat { 

          Compute the time frames; 

          Compute the operations and type probabilities; 

          Compute the self-forces, predecessor/successor forces and total forces; 
          Schedule the operation with least force and update its time-frame; 

     } until (all operations scheduled); 
     return (t); 
} 

Force-Directed Scheduling (FDS) 

  Force-Directed Scheduling 
  Minimum resource under latency constraint 

Forces relate to concurrency – we 
choose lowest force so we can 
minimize number of resources 

At each iteration time frame, 
probabilities, and forces need to 
be recalculated 

Results have shown FDS superior to list scheduling, but run time are long for 
larger graph (limited usage) 
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Force-Directed Scheduling (FDS) 

  Previous example only looked at v6 

  Algorithm tells us to calculate ALL unscheduled nodes, 
then schedule operation assignment with smallest force 
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Conclusion 

  Considered several types of scheduling algorithms 
  Unconstrained Scheduling - ASAP 
  Latency-Constrained Scheduling – ALAP 
  Resource-Constrained Scheduling – Hu’s Algorithm 

  Practical Scheduling problems possibly include multiple-cycle operations with different 
types 
  Minimum-Latency, Resource-Constrained and Minimum-Resource, Latency-Constrained 

problems become difficult to solve efficiently 
  Heuristics developed 

  List Scheduling (LIST_L) 
  List Scheduling (LIST_R) 
  Force-directed Scheduling 
  Trace Scheduling 
  Percolation Scheduling 


