

F(a,	b, c) = $\Sigma m(2, 4)$	$) + \Sigma d(1, 5, 6)$	
ep 1: List a Mark	Find all the prim all elements of on- don't cares with "	e implicants et and don't care set, represented as a binary number D"	
G1	(1) 001 D		
	(2) 010		
	(4) 100		
G2	(5) 101 D		
	(6) 110 D		

now is each step	Are mere anernanives?
currently done?	
Tabular Minimization	Iterated Consensus to find complete sum
Prime Implicant Chart (row with single "X")	Constraint Matrix (basically same thing except axis switched)
Petrick's Method	Row/Column Dominance
	Tabular Minimization Prime Implicant Chart (row with single "X") Petrick's Method

	terate Example 3	d Consens	sus to F	ind Co	omplete Sum
1	F = yz	+ x'y + y'z' + xy	/z + x'z'	1. St	art with arbitrary SOP form 🖌
2.	Add conse	nsus pair of all terms	s not containe	d in any oth	ier term
	yz + x'y =	NO	x'y + y'z' =	x'z' (INCL)) $y'z' + xyz = xzz' \rightarrow 0$, NO
	yz + y'z' =	$yy' \rightarrow 0$, NO	x'y + xyz =	yz (INCL)	y'z' + x'z' = NO
	yz + xyz =	NO	x'y + x'z' =	NO	
	yz + x'z' =	x'y (INCL)			$xyz + x'z' = xx'y \rightarrow 0$, NO
3.	Compare n can be ger No r	new terms with existing inerated new terms generated	ng and among I	g other new	terms to see if any new consensus terms
4.	Remove al	I terms contained in	some other te	rm	
	V7 +	-x'y + y'z' + xyz + x	' z '		yz + x'y + y'z' + x'z'
	12			ECE 474a/575a	since there is a change you will need to start again – you will find in the next iteration no change occurs 20 of 39

Quine-McCluskey Ov	erview	
Quine-McCluskey Algorithm	How is each step currently done?	Are there alternatives?
(1) Find all prime implicants	Tabular Minimization	Iterated Consensus to find complete sum
(2) Find all essential prime implicants	Prime Implicant Chart (row with single "X")	Constraint Matrix (basically same thing except axis switched)
(3) Select a minimal set of remaining prime implicants that covers the on-set of the function	Petrick's Method	Row/Column Dominance
	ECE 474a/575a	26 of

F(x, y, z) = yz + x'y + y'z' + xyz + x'z'						
Rows are minterms:			P1	P2	P3	P4
yz → xyz, x'yz	(0)		×y	x'z'	y'z'	yz
x'y	(mu) (m2)	x y z x'vz'	1	1	0	0
y'z' → xy'z', x'y'z'	(m3)	x'yz	1	0	0	1
xvz xvz (same)	(m7)	xyz	0	0	0	1
x'z' → x'yz', x'y'z'	(m4)	xy'z'	0	0	1	0)
Cols are prime implicants: (get these from ex3)						
yz + x'y + y'z' + x'z'						

F(x, y, z) = yz + x'y + y'z' + xyz + x'z'		From previous slides			
		P1 x'y	P2 x'z'	P3 y'z'	P4 yz
Solution 1	Solution 2				
= P3 + P4 + P1 = y'z' + yz + x'y	= P3 + P4 + P2 = y'z' + yz + x'z'				

Quine-McCluskey Ov	erview	
Quine-McCluskey Algorithm	How is each step currently done?	Are there alternatives?
(1) Find all prime implicants	Tabular Minimization	Iterated Consensus to find complete sum
(2) Find all essential prime implicants	Prime Implicant Chart (row with single "X")	Constraint Matrix (basically same thing except axis switched)
(3) Select a minimal set of remaining prime implicants that covers the on-set of the function	Petrick's Method	Row/Column Dominance
	ECE 474a/575a	31 of 39

Conclusion

- Quine-McCluskey with Don't Cares
- Alternative methods to perform Quine-McCluskey algorithm
- Iterated consensus (iterative and recursive)
- Generate a complete sum
- Row/Column Dominance

ECE 474a/575a

39 of 39