```
ECE 474A/57A
Computer-Aided Logic Design
```


Logic Optimization 2

Qunie-McCluskey with Don't Cares, Iterated Consensus, Row/Column Dominance

Quine-McCluskey with Don't Cares
 Example 1

- $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\Sigma \mathrm{m}(2,4)+\Sigma \mathrm{d}(1,5,6)$

Step 1: Find all the prime implicants

- List all elements of on-set and don't care set, represented as a binary number

Mark don't cares with "D"

G1 (1) 001 D
(2) 010
(4) 100

G2 (5) 101 D
(6) 110 D

K-map with Don't Cares

- Consider $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\Sigma \mathrm{m}(2,4)+\Sigma \mathrm{d}(1,5,6)$
- What should we do with the don't cares?
- Include d.c. if it helps to further minimize the cover ($\mathrm{m} 5, \mathrm{~m} 6$)
- Don't need to include d.c. if it doesn't help (better to exclude $m 1$)

$\mathrm{F}=\mathrm{ab} \mathrm{b}^{\prime}+\mathrm{a}^{\prime} \mathrm{bc} \mathrm{c}^{\prime}$

F = ab' + b' $^{\prime}+\mathrm{bc} c^{\prime}$

F = ab' + bc $^{\prime}$

How do we apply these ideas to Quine-McCluskey?

Quine-McCluskey with Don't Cares Example 1

Step 1: Find all the prime implicants (cont')

- Compare each entry in Gi to each entry in Gi+
- If they differ by 1 bit, we can apply the uniting theorem and eliminate a literal
- If both values are don't cares, retain " D ", otherwise no need to mark
- Add check to implicant to remind us that it is not a prime implicant
G1 (1) 001 D ।
G1 (1,5) -01 D
of step 1
(2) $010 \quad \mathrm{l}$
(4) $100 \quad \mathrm{~J}$
$(2,6)-1$
$(4,5) 10-$
$(4,6) 1-0$
we have found all prime implicants
G2 (5) 101 D ل
(ones without check marks)

Quine-McCluskey with Don't Cares
 Example 1

Step 2: Create Prime Implicant Chart to find all essential prime implicants

- Minterms are added as columns in the table
- Prime implicants not marked as " D " are added as rows

Quine-McCluskey with Don't Cares
 Example 2

- $F=\Sigma m(0,3,10,15)+\Sigma d(1,2,7,8,11,14)$

Using a K-map we get
$F=a^{\prime} b^{\prime}+a c$
2 product terms, 2 variables each

Can we do just was well with Q.M.?

Quine-McCluskey with Don't Cares Example 1

Step 2: Create Prime Implicant Chart to find all essential prime implicants

- Place " X " in a row if the prime implicant covers the minterm

Essential prime implicants are found by looking for rows with a single " X

- If minterm is covered by one and only one prime implicant - it's an essential prime implicant

Add essential prime implicants to the cove

	P1 is essential, need to include Choose between P2 and P3 to cover remaining minterm
(2,6) P1	
(4,5) P2	
(4,6) P3	

Quine-McCluskey with Don't Cares

 Example 2- $F=\Sigma \mathrm{m}(0,3,10,15)+\Sigma \mathrm{d}(1,2,7,8,11,14)$
G0 (0) 0000
1 (1) 0001 D
(2) 0010
(8) 1000 D
(3) 0011
(10) 1010
G3 (7) 0111
(11) 1011 D
(14) 1110 D
G4 (15) 1111
G0 $\quad(0,1) \quad 000-$
$(0,2) \quad 00-0$

$(0,8)$	-000

-••
ECE 474a/575a

Quine-McCluskey with Don't Cares

Example 2

- $F=\Sigma m(0,3,10,15)+\Sigma d(1,2,7,8,11,14)$

		0	3	10	15	
$(0,1,2,3)$	P1	*	*			
$(0,2,8,10)$	P2	*		*		
(2,3,10,11)	P3		\times	*		
(3,7,11,15)	P4		\times		*	No essentials, how do we choose?
(10,11,14,15)	P5			*	\times	TRY PETRICKS!

$F=(m 0)(m 3)(m 10)(m 15)$ $\mathrm{F}=(\mathbf{P} 1+\mathrm{P} 2)(\mathbf{P} 1+\mathrm{P} 3+\mathbf{P 4} \mathbf{)}(\mathbf{P} 2+\mathrm{P} 3+\mathrm{P} 5)(\mathbf{P} 4+\mathbf{P} 5)$

Quine-McCluskey with Don't Cares
 Example 2

- $F=\Sigma m(0,3,10,15)+\Sigma d(1,2,7,8,11,14)$

ECE 474af575a
110139
Quine-McCluskey with Don't Cares

Example 2

$\mathrm{F}=(\mathrm{P} 1+\mathrm{P} 2)(\mathrm{P} 1+\mathrm{P} 3+\mathrm{P} 4)(\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 5)(\mathrm{P} 4+\mathrm{P} 5)$

$$
\underset{\mathbf{P 1}}{\mathrm{P} 1 \mathrm{P}}+\underset{\mathbf{x}}{\mathrm{P} 1 \mathrm{P} 3}+\underset{\mathbf{x}}{\mathrm{P} 1 P 4}+\underset{\mathbf{x}}{\mathrm{P} 1 \mathrm{P} 2}+\mathrm{P} 2 \mathrm{P} 3+\mathrm{P} 2 \mathrm{P} 4
$$

P3+P2P4)(P2+P3+P5)(P4+P5)
$\underset{\mathbf{P} 2 \mathrm{P} 4}{+\underset{\mathbf{x}}{\mathrm{P} 2 \mathrm{P} 5}+\mathrm{P} 3 \mathrm{P} 4}+\underset{\mathbf{x}}{\mathrm{P} 3 \mathrm{P} 5}+\underset{\mathbf{x}}{\mathrm{P} 4 \mathrm{P} 5}+\underset{\mathbf{P 5}}{\mathrm{P} 5 \mathrm{P} 5}$
$F=(P 1+P 2 P 3+P 2 P 4)(P 2 P 4+P 3 P 4+P 5)$
$F=P 1 P 2 P 4+P 1 P 3 P 4+P 1 P 5+P 2 P 2 P 3 P 4+P 2 P 3 P 3 P 4+$ P2P3P5 + P2P2P4P4+P2P3P4P4+P2P4P5
$\times \quad \times \quad \times \quad$ P2P4
$F=P 1 P 3 P 4+P 1 P 5+P 2 P 3 P 5+P 2 P 4$
Best Options

Quine-McCluskey Overview

Quine-McCluskey Algorithm	How is each step currently done?	Are there alternatives?
(1) Find all prime implicants	Tabular Minimization	Iterated Consensus to find complete sum
(2) Find all essential prime implicants	Prime Implicant Chart (column with single "X")	Constraint Matrix (basically same thing except axis switched)
(3) Select a minimal set of remaining prime implicants that covers the on-set of the function	Petrick's Method	Row/Column Dominance

Iterated Consensus/Complete Sum

- Consider $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{yz}+\mathrm{x}^{\prime} \mathrm{y}+\mathrm{y}^{\prime} \mathrm{z}^{\prime}+\mathrm{xyz}+\mathrm{x}^{\prime} \mathrm{z}^{\prime}$
- According to tabular minimization - First expanded product term into minterms
- Then start comparing pairs to determine prime implicants

- Some of the work already done
- Instead we can take existing expression and determine the complete sum

Iterated Consensus/Complete Sum

```
What is consensus?
In Boolean Algebra, consensus is defined as
    (a) xy+ x'z+yz=xy+x'z
    (b)}(x+y)(\mp@subsup{x}{}{\prime}+z)(y+z)=(x+y)(\mp@subsup{x}{}{\prime}+z
Proof: xy + x'z + yz = xy + x'z
    =xy+x'z+(x+ x')yz
    =xy+ x'z+xyz+ x'yz
    = (xy + xyz) + (x'z + + yz
    =xy(1+z)+x'z(1+y)
    =xy(1)+x'z(1)
    =xy+ x'z

\section*{Iterated Consensus/Complete Sum}

Def: A complete sum is a SOP formula composed of all prime implicants of the function

Thm: A SOP formula is a complete sum if and only if
(1) No term includes any other term
(2) The consensus of any two terms of the formula either does not exist or is contained in some other term of the formula

\section*{Iterated Consensus/Complete Sum}
- Typically consensus theorem used to simplify Boolean equations
- Removed redundant terms
\[
(x+y)\left(x^{\prime}+z\right)(y+z)=(x+y)\left(x^{\prime}+z\right)
\]

Ex \(\quad \frac{a b c}{x} \frac{a^{\prime} b d}{x^{\prime}} \frac{\bar{z}}{}+\frac{b c d}{y z}=\frac{a b c}{x} \frac{a^{\prime} b d}{x^{\prime}} \frac{1}{z}\)
Ex abc'd \(+c^{\prime} d^{\prime} e+a b c^{\prime} e=c^{\prime}\left(\frac{a b d}{y} \frac{d}{x}+\frac{d^{\prime} e}{x^{\prime}}+\frac{a b e}{z}\right)=c^{\prime}\left(\frac{a b d}{y x}+\frac{d e}{x^{\prime} z}\right)\)

Ex \(\quad\left(\frac{a}{x}+\frac{b}{y}\right)\left(\frac{a^{\prime}}{x^{\prime}}+\frac{c}{z}\right)\left(\frac{b}{y z}+c\right)=\left(\frac{a}{x}+\frac{b}{y}\right)\left(\frac{a^{\prime}}{x^{\prime}}+\frac{c}{z}\right)\)
Ex \(\quad(a+b)\left(c^{\prime}+d\right)\left(a+c^{\prime}\right)=\) cannot simplify

\section*{Iterated Consensus/Complete Sum}
- We'll use consensus backwards
- Add redundant terms
- Generate complete sum
- Is SOP not a complete sum, it's missing prime implicants
- Missing prime must be covered by two or more implicants Find the term spanning these implicants (consensus term) find the complete sum
\[
\begin{array}{ll}
F=x y+x^{\prime} z & \text { // not a complete sum } \\
F=x y+x^{\prime} z+y z & \text { // a complete sum }
\end{array}
\]


Why is it important to start with complete sum?
- Better opportunity to apply absorption \([\mathrm{x} \cdot(\mathrm{x}+\mathrm{y})=\mathrm{x}]\)
- Better opportunity to apply absorption \([x \cdot(x+y)=x]\)
- Step 1 of Quine original ter

ECE 47aa575a

\section*{Iterated Consensus to Find Complete Sum}
- Methodology to convert SOP function to complete sum
1. Start with arbitrary SOP form
2. Add consensus pair of all terms not contained in any other term
3. Compare new terms with existing and among other new terms to see if any new consensus terms can be generated
4. Remove all terms contained in some other term

Repeat 2 - 4 until no change occurs

\section*{Quine-McCluskey Overview}
\begin{tabular}{lll}
\hline Quine-McCluskey Algorithm & \begin{tabular}{l} 
How is each step \\
currently done?
\end{tabular} & Are there alternatives?
\end{tabular}

\section*{Iterated Consensus to Find Complete Sum Example 3}
\[
\begin{array}{lll}
\text { - } F=y z+x^{\prime} y+y^{\prime} z^{\prime}+x y z+x^{\prime} z^{\prime} & 1 . & \text { Start with arbitrary SOP form } \\
\text { 2. } & \text { Add consensus pair of all terms not contained in any other term } \\
y z+x^{\prime} y=N O & x^{\prime} y+y^{\prime} z^{\prime}=x^{\prime} z^{\prime}(\text { INCL }) & y^{\prime} z^{\prime}+x y z=x z z^{\prime} \rightarrow 0, N O \\
y z+y^{\prime} z^{\prime}=y y^{\prime} \rightarrow 0, N O & x^{\prime} y+x y z=y z(\text { INCL }) & y^{\prime} z^{\prime}+x^{\prime} z^{\prime}=N O \\
y z+x y z=N O & x^{\prime} y+x^{\prime} z^{\prime}=N O & \\
y z+x^{\prime} z^{\prime}=x^{\prime} y(\text { INCL) } & & x y z+x^{\prime} z^{\prime}=x x^{\prime} y \rightarrow 0, N O
\end{array}
\]
3. Compare new terms with existing and among other new terms to see if any new consensus terms can be generated

No new terms generated
4. Remove all terms contained in some other term

\[
\begin{aligned}
& y z+x^{\prime} y+y^{\prime} z^{\prime}+x^{\prime} z^{\prime} \\
& \text { since there is a change you will need to start } \\
& \text { again }- \text { you will find in the next iteration no } \\
& \text { change occurs } \\
& 20 \text { o } 39
\end{aligned}
\]

ECE 474a/575a

\section*{Iterative vs. Recursive}
- Iterative approach
- Repetitive procedure used to add new consensus terms
- Recursive approach
- Also repetitive, but we are trying to Also repertitive, but we are trying to
keep simplifying problem until solution is easy

Iterated Consensus Methodology
1. Start with arbitrary SOP form 2. Add consensus pair of all terms not contained in any other term
3. Compare new terms with existing and among other new terms to see if any new cons can be generated
4. Remove all terms contained in some other term
Repeat 2-4 until no change occurs

\section*{Recursive Consensus Methodology}
- Break down equation until it is trivial to find complete sum
- Boole's expansion Theorem (a.k.a. Shannon Expansion)
- Get down to 1 term, the complete sum of this term is itser
\[
\begin{aligned}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\left[x_{1}^{\prime} \bullet f\left(0, x_{2}, \ldots, x_{n}\right)\right]+\left[x_{1} \bullet f\left(1, x_{2}, \ldots, x_{n}\right)\right] \\
& =\left[x_{1}^{\prime}+f\left(1, x_{2}, \ldots, x_{n}\right)\right] \bullet\left[x_{1}+f\left(0, x_{2}, \ldots, x_{n}\right)\right]
\end{aligned}
\]

Reconstruct equation, or equation's complete sum, using Thm 4.6.1 (Hatchel pg.138)
```

The SOP obtained from the two complete sums F1 and F2 by the
following is a complete sum for F1 \bulletF2

1. Mutiply out F1 and F2 using the idempotent property (a+a=a
a\bulleta=a), distributive properties, and x}x\cdot\mp@subsup{x}{}{\prime}=
2. Eliminate all terms contained in some other terms
```

\section*{Recursive Consensus Methodology \\ Example 4}
- Started with \(\mathrm{F}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}+\mathrm{a}^{\prime} \mathrm{bc} \mathrm{c}^{\prime}+\mathrm{ac}\)
- Ended with \(\mathrm{CS}(\mathrm{F})=\mathrm{ac}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}+\mathrm{b}^{\prime} \mathrm{c}+\mathrm{a}^{\prime} \mathrm{c}^{\prime}\)
- Did it work?


Not a complete sum - missing
some prime implicants some prime implicants

b'c
Complete sum achieved

\section*{Recursive method beneficial when dealing with larger equations} Book example \(F=v^{\prime} x y z+v^{\prime} w^{\prime} x+v^{\prime} x^{\prime} z^{\prime}+v^{\prime} w x z+w^{\prime} y z^{\prime}+v w^{\prime} z+v w x^{\prime} z\)

ECE 474af575a

\section*{Constraint Matrix}
- Describes conditions or constraints a cover must satisfy
- Each column corresponds to a prime implicant
- Each row correspond to a minterm

- GOAL - choose minimal subset of primes where each minter form which the function is 1 is included in at least one prime of the subset
- Known as a "cover"

\section*{Quine-McCluskey Overview}
\begin{tabular}{|c|c|c|}
\hline Quine-McCluskey Algorithm & How is each step currently done? & Are there alternatives? \\
\hline (1) Find all prime implicants & Tabular Minimization & Iterated Consensus to find complete sum \\
\hline (2) Find all essential prime implicants & Prime Implicant Chart (row with single " \(X\) ") & Constraint Matrix (basically same thing except axis switched) \\
\hline \multirow[t]{2}{*}{(3) Select a minimal set of remaining prime implicants that covers the on-set of the function} & Petrick's Method & Row/Column Dominance \\
\hline & ECE 47aal57a & 26 of 39 \\
\hline
\end{tabular}

\section*{Constraint Matrix}

Example 5
- \(F(x, y, z)=y z+x^{\prime} y+y^{\prime} z^{\prime}+x y z+x^{\prime} z^{\prime}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Rows are minterms: & & & P1
x'y & \[
\begin{aligned}
& \mathrm{P} 2 \\
& \mathrm{x}_{\mathrm{\prime} \mathbf{z}^{\prime}}
\end{aligned}
\] & \[
\begin{aligned}
& \text { P3 } \\
& y^{\prime} z^{\prime}
\end{aligned}
\] & & \\
\hline \(\mathrm{yz} \longrightarrow \mathrm{xyz}, \mathrm{x}^{\prime} \mathrm{yz}\) & (m0) & & \[
0
\] & \[
1
\] & 1 & & \\
\hline \(x^{\prime} \mathrm{y} \longrightarrow \mathrm{x}^{\prime} \mathrm{yz}, \mathrm{x}^{\prime} \mathrm{z}^{\prime}\) & (m2) & \(x^{\prime} y z^{\prime}\) & 1 & 1 & 0 & & \\
\hline  & (m3) & \(x^{\prime} y z\) & 1 & 0 & 0 & & \\
\hline xyz \(\longrightarrow\) xyz (same) & (m7) & xyz & 0 & 0 & 0 & & \\
\hline \(\longrightarrow x^{\prime} y z^{\prime}, x^{\prime} y^{\prime} z^{\prime}\) & (m4) & & 0 & 0 & 1 & & \\
\hline
\end{tabular}

Cols are prime implicants: (get these from ex3)
\(y z+x^{\prime} y+y^{\prime} z^{\prime}+x^{\prime} z^{\prime}\)


\section*{Constraint Matrix \\ Example 5 \\ - \(F(x, y, z)=y z+x^{\prime} y+y^{\prime} z^{\prime}+x y z+x^{\prime} z^{\prime} \quad\)\begin{tabular}{|llll} 
From previous slides ... \\
P1 & P2 & P3 & P4 \\
\(x^{\prime} y\) & \(x^{\prime} z^{\prime}\) & \(y^{\prime} z^{\prime}\) & \(y z\) \\
\hline
\end{tabular} \\ Solution 1 \\ Solution 2 \\ \(=P 3+P 4+P 2\)
\(=y^{\prime} z^{\prime}+y z+x^{\prime} z^{\prime}\) \\ What happens when the solution is no so obvious?}

\section*{Row Dominance (Constraint)}
- If a row \(r_{i}\) in a constraint matrix has all the ones of another row \(r_{j}\), we say \(r_{\text {r }}\)
dominates \(r_{j}\)
- \(r_{i}\) is unneeded and all dominating row can be removed
- Absorption property \(\mathrm{x} \cdot(\mathrm{x}+\mathrm{y})=\)

```

c}[$$
\begin{array}{ccc}{\textrm{P}1}&{\textrm{P}2}&{\textrm{P}3}\\{1}&{1}&{0}\end{array}
$$

```

\section*{Column Dominance (Variable)}

\section*{Reduction Techniques Using Row/Col Dominance}

If column \(P_{i}\) has all the ones of another column \(P_{j}\), and the cost of \(P_{i}\) is not greater than \(P_{j}\), we say \(P_{i}\) dominates \(P_{j}\)
- The dominated column can be removed
. Remove rows covered by "essential columns" (i.e. essential prime implicants)
2. Remove rows through row dominance (dominating row removed)
3. Remove columns through column dominance (dominated column removed)

Re-iterate \(1-3\) until no further simplification is possible


2 dominates P1
P2 dominates P3
Remove P1 and P3
 - \(\begin{gathered}\text { Assu } \\ \text { P3 }\end{gathered}\)
- What is the cost of a column?

Each prime implicant (col) corresponds to one AND gate
- Our Choices

We could say each column \(=1\) gate and
We could say each col
everyone's the same
We could dinclud number of literal, then a
prime with 5 literals cost more than 3
ECE 477a5575a

\section*{Reduction Techniques Using Row/Col Dominance Example 6}

(1A) No essential columns to remove

(2A) Row dominance
m 1 dominates m 2
m 4 dominates m 3
\({ }^{\mathrm{m} 6}\) dominates m 5
Remove the dominating rows

ECE 474af57a

Reduction Techniques Using Row/Col Dominance Example 6



\section*{Reduction Techniques Using Row/Col Dominance}
- What happens when matrix cannot be simplified?
- No rows left
- We have a terminal case and solved the problem
- Rows left
- Problem is cyclic
- Alternative techniques such as divide-and-conquer or branch-and-bound are needed
- (Or guess, or use Petrick's)

\section*{Conclusion}
- Quine-McCluskey with Don't Cares
- Alternative methods to perform Quine-McCluskey algorithm
- Iterated consensus (iterative and recursive)

Generate a complete sum
- Row/Column Dominance```

