
1

ECE 474a/575a 1 of 49

ECE 474A/57A
Computer-Aided Logic Design

Logic Optimization 1

ECE 474a/575a 2 of 49

  We now know how to build digital
circuits
  How can we build better circuits?

  Let’s consider two important design
criteria
  Delay – the time from inputs changing

to new correct stable output
  Size – the number of transistors

  Assumption
  Every gate has delay of “1 gate-delay”
  Every gate input requires 2 transistors
  Ignore inverters

16 transistors
2 gate-delays

F1

w
x
y

w
x y

F1 = wxy + wxy’

4 transistors
1 gate-delay

F2 = wx

F2
w
x

= wx(y+y’) = wx

Transforming F1 to F2 represents an
optimization: Better in all criteria of interest

20

15

10

5

F1

F2

1 2 3 4
delay (gate-delays)

si
ze

(tr

an
si

st
or

s)

Digital Design
Copyright © 2006
Frank Vahid

Logic Optimization

ECE 474a/575a 3 of 49

  Two-level logic
  Circuit with only two levels (ORed AND

gates)

  Basically sum-of-products form
  An equation written as an ORing of

product terms F = xy + x’y’

F

x
y

x’
y’

F = a’bc + c’ + de

F

a’
c

d
e

b

c’

F = ((jk) + l) + mn’

F

j
k

m
n’

l

Are these two-level logic?

F = (rs) • (tu)

F

r
s

t
u

technically yes, but not what we mean
in terms of logic minimization

Two-level Logic Optimization

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a 4 of 49

  Optimization - Defined as better in all criteria of interest
  Delay and size - we consider size minimization only (2-level logic only)
  In reality requires a balance of many criteria metrics

  Cost, reliability, time-to-market, etc...

  Tradeoff - Improves some, but worsens other, criteria of interest

F = xy + x’y’

F
x
y
x’
y’

F = xyz + xyz’ + x’y’z’ + x’y’z

F

x

x’

x’

x’

y

y’

y’

y’

z

z’

z’

z’

Optimization vs. Tradeoff

14 transistors
2 gate-delays

12 transistors
3 gate-delays

G2

w

x
y
z

G2 = w(x+y) + z

G1

w
x

w
y
z

G1 = wx + wy + z

32 transistors
2 gate-delays

12 transistors
2 gate-delays

  Reduced number of gates
  Reduced size of gate (i.e.

number of inputs)

  Reduced number of gates
  Increased delay

Digital Design
Copyright © 2006
Frank Vahid

2

ECE 474a/575a 5 of 49

Pareto Points

Optimizations

Tradeoffs

All criteria of interest
are improved (or at least
kept the same)

Some criteria of interest
are improved, while others
are worsened

delay

si
ze

Digital Design
Copyright © 2006
Frank Vahid

si
ze

delay

delay

  We obviously prefer optimizations, but
often must accept tradeoffs
  You can’t build a car that is the most

comfortable, and has the best fuel
efficiency, and is the fastest – you have
to give up something to gain other
things

  Many options in solution space
  Pareto point

  Point in solution space in which no other
point better in all metrics

  Shown in red
  Pareto points yield the trade-off curve

si
ze

ECE 474a/575a 6 of 49

  Two-level size optimization using algebraic
methods
  Goal: circuit with only two levels (ORed AND

gates), with minimum transistors
  Though transistors getting cheaper (Moore’s Law),

they still cost something

  Define problem algebraically
  Sum-of-products yields two levels

  F = abc + abc’ is sum-of-products; G = w(xy + z) is
not.

  Transform sum-of-products equation to have
fewest literals and terms

  Each literal and term translates to a gate input, each
of which translates to about 2 transistors

  Ignore inverters for simplicity

F = xyz + xyz’ + x’y’z’ + x’y’z

F = xy(z + z’) + x’y’(z + z’)

F = xy*1 + x’y’*1

F = xy + x’y’

F
x
y
x’
y’

m

n

= 6 gate inputs * 2 transistor/input
= 12 transistors

Example

Combinational Logic Optimization and Tradeoffs

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a 7 of 49

1a. 0 · 0 = 0
1b. 1 + 1 = 1
2a. 1 · 1 = 1
2b. 0 + 0 = 0
3a. 0 · 1 = 1 · 0 = 0
3b. 0 + 1 = 1 + 0 = 1
4a. If x = 0, then x’ = 1
4b. If x = 1, then x’ = 0
5a. x · 0 = 0
5b. x + 1 = 1
6a. x · 1 = x
6b. x + 0 = x
7a. x · x = x
7b. x + x = x
8a. x · x’ = 0
8b. x + x’ = 1
9. x’’ = x

Boolean Algebra

10a. x · y = y · x (Commutative)
10b. x + y = y + x
11a. x · (y · z) = (x · y) · z (Associative)
11b. x + (y + z) = (x + y) + z
12a. x · (y + z) = x · y + x · z (Distributive)
12b. x + (y · z) = (x + y) · (x + z)
13a. x + x · y = x (Absorption)
13b. x · (x + y) = x
14a. x · y + x · y’ = x (Combining)
14b. (x + y) · (x + y’) = x
15a. (x · y)’ = x’ + y’ (DeMorgan’s Theorem)
15b. (x + y)’ = x’ · y’
16a. x + x’ · y = x + y
16b. x · (x’ + y) = x · y

  How do we use Boolean algebra to obtain fewest literals and terms?

ECE 474a/575a 8 of 49

Algebraic Two-Level Size Minimization
Uniting Theorem

a

Digital Design
Copyright © 2006
Frank Vahid

F
x
y
x’
y’

F
z’
x
y

z’
x’
y’

z
x’
y’

z
x
y

delay = 2 gate delay
size = 16 * 2 = 32 transistors

delay = 2 gate delay
size = 6 * 2 = 12 transistors

G = xy’z’ + xy’z + xyz + xyz’
G = xy’(z’+z) + xy(z+z’)
G = xy’ + xy (now do again)
G = x(y’+y)
G = x

F = xyz + xyz’ + x’y’z’ + x’y’z
F = xy(z + z’) + x’y’(z + z’)
F = xy*1 + x’y’*1
F = xy + x’y’

  Multiply out to sum-of-products, then apply Uniting Theorem
  ab + ab’ = a(b + b’) = a*1 = a
  “Combining terms to eliminate a variable”
  (Formally called the “Uniting theorem”)

  Sometimes after combining terms, can combine resulting terms

3

ECE 474a/575a 9 of 49

Algebraic Two-Level Size Minimization
Duplication

  Duplicating a term sometimes helps
  Note that doesn’t change function
  c + d = c + d + d = c + d + d + d + d ...

a

Digital Design
Copyright © 2006
Frank Vahid

F = x’y’z’ + x’y’z + x’yz
F = x’y’z’ + x’y’z + x’y’z + x’yz
F = x’y’(z+z’) + x’z(y’+y)
F = x’y’ + x’z

ECE 474a/575a 10 of 49

Algebraic Two-Level Size Minimization
Complex and Error Prone

  Algebraic Manipulation
  Which “rules” to use and when?
  Easy to miss “seeing” possible opportunities to combine terms

a

Digital Design
Copyright © 2006
Frank Vahid

F(a, b, c, d) = a’b’cd + c’d + ab’d + acd + a’bcd + a’c’d
F(a, b, c, d) = d

F(a, b, c) = b’c’ + bc + a’b’ + a’b
F(a, b, c) = b’c’ + bc + a’b’

F(a, b, c, d, e, f, g) = a’b’c + d’e’f + fa + eg + a’bcd’e’f’g + a’bc’efg + c
F(a, b, c, d, e, f, g) = ?

ECE 474a/575a 11 of 49

0 0 0 0

00 01 11 10

1 1

0

1 0 0

F yz
x

xy’

0 1 1 0

00 01 11 10

0 1

0

1 1 0

G yz
x

z

0 0 1 0

00 01 11 10

1 1

00

01 1 0

0 0 1 0

0 0

11

10 1 0

H yz
wx

yz

w’xy’

K-maps (Karnaugh Maps)

  Graphical method to help us find
opportunities to combine terms
  Graphical method to help us find

opportunities to combine terms
  Create map where adjacent minterms

differ in one variable
  Can clearly see opportunities to combine

terms – look for adjacent 1s

ECE 474a/575a 12 of 49

Example: Minimize G = a + a’b’c’ + b*(c’ + bc’)

0 0

Step 3 - Cover 1s

Step 4 - OR terms

Step 1 - Convert to sum-of-products

Step 2 - Place 1’s in the appropriate cells

G = a + a’b’c’ + bc’ + bc’

G = a + c’

a

1
bc’

1
a’b’c’

1 1 1 1
0
1

00 01 11 10
G bc

a

1 0 0 1
00 01 11 10

1 1
0
1 1 1

G bc
a

a

c ’

Two-Level Size Minimization Using K-maps

General K-map method

1.  Convert the function’s equation into sum-of-
products form

2.  Place 1s in the appropriate K-map cells for
each term

3.  Cover all 1s by drawing the fewest largest
circles, with every 1 included at least once;
write the corresponding term for each circle

4.  OR all the resulting terms to create the
minimized function.

4

ECE 474a/575a 13 of 49

  Fill in each cell with corresponding value of F
  Draw circles around adjacent 1’s

  Groups of 1, 2 or 4

  Circle indicates optimization opportunity
  We can remove a variable

  To obtain function OR all product terms contained in
circles
  Make sure all 1’s are in at least one circle

x1 x2 F

0 0

0 1

1 0

1 1

1

0

1

1

1 0

1 1

x1

x2

0

0

1

1

x1’x2’ + x1x2’

x2’(x1’ + x1)

x2’(1)

x2’

x1x2’ + x1x2

x1(x2’ + x2)

x1(1)

x1

F = x1 + x2’

Two-Variable K-Maple Example

ECE 474a/575a 14 of 49

Generalized Three-Variable K-Map

  Three-Variable Map

a b F

Truth table

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

c

m0

m1

m2

m3

m4

m5

m6

m7

Truth table

a

bc

0

1

m0 m1

m5 m4

00 01

m3 m2

m6 m7

11 10

m1 cannot be placed next to m2 (a’b’c, a’bc’)

REMEMBER: K-map graphically place minterms
next to each other when they differ by one variable

m1 can be placed next to m3 (a’b’c, a’bc)
m2 can be placed next to m3 (a’bc’, a’bc)

ECE 474a/575a 15 of 49

Three-Variable K-Map Optimization Guidelines

  Circles can cross left/right sides
  Remember, edges are adjacent

  Minterms differ in one variable only

  Circles must have 1, 2, 4, or 8 cells – 3, 5, or 7
not allowed
  3/5/7 doesn’t correspond to algebraic

transformations that combine terms to eliminate
a variable

  Circling all the cells is OK
  Function just equals 1

1 1 1 1 1

00 01 11 10

1 1

0

1 1 1

E yz
x

0 1 0 0

00 01 11 10

1 0

0

1 0 1

K yz
x

xz ’

x ’ y ’ z

0 0 0 0

00 01 11 10

1 1

0

1 1 0

L yz
x

ECE 474a/575a 16 of 49

Three-Variable K-Map Optimization Guidelines

G = xyz + xyz’
G = xy(z+ z’)
G = xy

  Two adjacent 1s means one variables
can be eliminated
  Same as in two-variable K-maps

  Four adjacent 1s means two variables
can be eliminated
  Makes intuitive sense – those two

variables appear in all combinations,
so one must be true

  Draw one big circle – shorthand for
the algebraic transformations above

  Four adjacent cells can be in shape of
a square

0 0 0 0

00 01 11 10

0 0

0

1 1 1

G yz
x

xy

H = x’y’z + x’yz + xy’z + xyz
(xy appears in all
combinations)

0 1 1 0

00 01 11 10

0 1

0

1 1 0

H yz
x

z

G = xy’z’ + xy’z + xyz + xyz’
G = x(y’z’+ y’z + yz + yz’) (must be true)
G = x(y’(z’+z) + y(z+z’))
G = x(y’+y)
G = x

Draw the biggest circle
possible, or you’ll have more
terms than really needed

0 0 0 0

00 01 11 10

1 1

0

1 1 1

G yz
x

x

5

ECE 474a/575a 17 of 49

Three-Variable K-Map Optimization Guidelines

0 1 0 0

00 01 11 10

1 1

0

1 1 1

I yz

x

x

y ’ z

The two circles are shorthand for:
I = x’y’z + xy’z’ + xy’z + xyz + xyz’
I = x’y’z + xy’z + xy’z’ + xy’z + xyz + xyz’
I = (x’y’z + xy’z) + (xy’z’ + xy’z + xyz + xyz’)
I = (y’z) + (x)

  Okay to cover a 1 twice
  Just like duplicating a term

  Remember, c + d = c + d + d

  No need to cover 1s more than once
  Yields extra terms – not minimized

1 1 0 0

00 01 11 10

0 1

0

1 1 0

J yz

x

xz

y ’ z x ’ y ’

ECE 474a/575a 18 of 49

Four-Variable K-Map Optimization Guidelines

G=z

F=w’xy’+yz

  Four-variable K-map follows same principle
  Left/right adjacent
  Top/bottom also adjacent

  Adjacent cells differ in one variable
  Two adjacent 1’s mean two variables can be

eliminated
  Four adjacent 1s means two variables can be

eliminated
  Eight adjacent 1s means three variables can be

eliminated

ECE 474a/575a 19 of 49

Four-Variable K-Maple Example

c
00 01 11 10

00
01
11
10

H d
ab

  Minimize: H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + a’bd + a’bcd’

1.  Convert to sum-of-products
 H = a’b’cd’ + a’b’c’d’ + ab’c’d’ +
 ab’cd’ + a’bd + a’bcd’

ECE 474a/575a 20 of 49

Four-Variable K-Maple Example - Continued

c
00 01 11 10

00
01
11
10

H d
ab

0 0
0
0 0 0 0

0 0

1

a’b’c’d’

1
ab’c’d’

1 1

a’bd

1

a’b’cd’

1 ab’cd’

1

a’bcd’

  Minimize: H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + a’bd + a’bcd’

1.  Convert to sum-of-products
 H = a’b’cd’ + a’b’c’d’ + ab’c’d’ +
 ab’cd’ + a’bd + a’bcd’

2.  Place 1s in K-map cells

6

ECE 474a/575a 21 of 49

Four-Variable K-Maple Example - Continued

  Minimize: H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + a’bd + a’bcd’

1.  Convert to sum-of-products
 H = a’b’cd’ + a’b’c’d’ + ab’c’d’ +
 ab’cd’ + a’bd + a’bcd’

2.  Place 1s in K-map cells

3.  Cover 1s

a’bd
a’bc

1 1
1 1 1

1 1

c
00 01 11 10

00
01
11
10

H d
ab

0 0
0
0 0 0 0

0 0

Funny-looking circle, but remember that left/
right adjacent, and top/bottom adjacent

b’d’

ECE 474a/575a 22 of 49

Four-Variable K-Maple Example - Continued

H = b’d’ + a’bc + a’bd

  Minimize: H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + a’bd + a’bcd’

1.  Convert to sum-of-products
 H = a’b’cd’ + a’b’c’d’ + ab’c’d’ +
 ab’cd’ + a’bd + a’bcd’

2.  Place 1s in K-map cells

3.  Cover 1s

4.  OR resulting terms
a’bd

a’bc

1 1
1 1 1

1 1

c
00 01 11 10

00
01
11
10

H d
ab

0 0
0
0 0 0 0

0 0

b’d’

ECE 474a/575a 23 of 49

Larger N-Variable K-Maps

  Graphical minimizing by hand
  5 and 6 variable maps exist, but hard to use

  May not yield minimum cover depending on
order we choose
  Is error prone

  Minimization thus typically done by automated
tools

ab

cd
00 01 11 10

00

01

m0 m1

m5 m4

m3 m2

m6 m7

11

10

m12 m13

m9 m8

m15 m14

m10 m11

ab

cd
00 01 11 10

00

01

m16 m17

m21 m20

m19 m18

m22 m23

11

10

m28 m29

m25 m24

m31 m30

m26 m27

e = 0 e = 1

Five-variable Map
Six-variable Map

ab

cd
00 01 11 10

00

01

m0 m1

m5 m4

m3 m2

m6 m7

11

10

m12 m13

m9 m8

m15 m14

m10 m11

ab

cd
00 01 11 10

00

01

m16 m17

m21 m20

m19 m18

m22 m23

11

10

m28 m29

m25 m24

m31 m30

m26 m27

ef = 00 ef = 01

ab

cd
00 01 11 10

00

01

m32 m33

m37 m36

m35 m34

m38 m39

11

10

m44 m45

m41 m40

m47 m46

m42 m43

ab

cd
00 01 11 10

00

01

m48 m49

m53 m52

m51 m50

m54 m55

11

10

m60 m61

m57 m56

m63 m62

m58 m59

ef = 10 ef = 11

ECE 474a/575a 24 of 49

Don’t Care Input Combinations

x 0 0 0
00 01 11 10

1 1
0
1 x 1

G bc
a

a

a b c Z
0 0 0 x
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 x

abc = 000 and abc = 111
are unused inputs

including this term
doesn’t help us

including this term enables
better minimization

  Don’t Care Input
  Input combination that the designer doesn’t

care what the output is
  i.e. input condition can never occur

  Thus, make output be 1 or 0 for those cases in
a way that best minimizes the equation

  Represented as Xs in K-map

7

ECE 474a/575a 25 of 49

  Instead of listing each product, simply list the minterm number
  F(a, b) = ∑m(0, 2) = m0 + m2

  m – minterms, M – maxterms

  010 – 002 - a’b’

  210 – 102 - ab’

Simplified Notation for Sum-of-Products Form

a b F

0 0

0 1

1 0

1 1

1

0

1

0

1 0

1 1

a

b

0

0

1

1

0 1

3 2

ECE 474a/575a 26 of 49

Generalized Three-Variable K-Map

  F(a, b) = ∑m(4, 5, 6, 7)

  Don’t forget column 01 is followed by 11

a b F

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

c

0

0

0

0

1

1

1

1

a

bc

0

1

0 0

1 1

00 01

0 0

1 1

11 10

0 1

5 4

3 2

6 7

ECE 474a/575a 27 of 49

Generalized Three-Variable K-Map

  F(a, b) = ∑m(0, 1) + ∑d(4, 5)

  d – don’t cares

a b F

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

c

1

1

0

0

x

x

0

0

a

bc

0

1

1 1

x x

00 01

0 0

0 0

11 10

0 1

5 4

3 2

6 7

ECE 474a/575a 28 of 49

Four-Variable K-Maple Example

  F(a, b, c, d) = ∑m(4, 5, 11, 15)
  Don’t forget in 4-variable K-map, columns and rows are out of sequence too (00, 01, 11, 10)

c
00 01 11 10

00

01

11

10

H d
ab

c F d

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
0
0

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
1
0
0
0
1

b

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

a

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0 0 1 0

0 0 1 0

1 1 0 0

0 0 0 0

8 9 11 10

12 13 15 14

4 5 7 6

0 1 3 2

8

ECE 474a/575a 29 of 49

Exact Algorithms vs. Heuristic

  Algorithm
  Finite set of instructions/steps to solve a problem
  Terminates in finite time at a known end state

  Many algorithms can exist that solve the same problem
  What makes one algorithm better than another?

  Optimality – “best” quality solution found
  Efficiency – “good” quality solution found fast

  Exact Algorithm
  Finds optimal solution
  May not be efficient

  Heuristic
  Efficient
  Finds good solution, but not necessarily optimal

ECE 474a/575a 30 of 49

Quine-McCluskey Overview

  Exact Algorithm
  Developed in the mid-50’s
  Finds the minimized representation of a Boolean function
  Provides systematic way of generating all prime implicants then extracting a minimum set

of primes covering the on-set
  Accomplishes this by repeatedly applying the Uniting theorem

  Uniting theorem: ab + ab’ = a(b+b’) = a*1 = a

ECE 474a/575a 31 of 49

F(a, b, c) = a’b’c + ab

variables: a, b, c

on-set: a’b’c, abc’, abc

minterms: a’b’c

off-set: a’b’c’, a’bc’, a’bc, ab’c’, ab’c

ab abc

abc’

Review Definitions

  Minterm
  product term whose literals include every

variable of the function exactly once in true
or complemented form

  On-set
  All minterms that define when F=1

  Off-set
  All minterms that define when F=0

ECE 474a/575a 32 of 49
Note: We use K-maps are for illustration purposes only

1 1 0

0

0

00 01 11 10

1

0

1 1 1

G bc
a

a’b’ ab

4 prime
implicants

2 essential
prime
implicants

0 1 0 0

00 01 11 10

0 0

0

1 1 1

F bc
a

ab
abc’
abc

a’b’c 4 implicants

0 1 0 0

00 01 11 10

0 0

0

1 1 1

F bc
a

ab

a’b’c 2 prime
Implicants

Review Definitions

  Implicant
  Any product term (minterm or other) that when

1 causes F=1
  On K-map, any legal (but not necessarily largest)

circle

  Prime implicant
  Maximally expanded implicant – any further

expansion would cover 1s not in on-set

  Essential prime implicant
  The only prime implicant that covers a particular

minterm in a function’s on-set
  Importance: We must include all essential PIs in

a function’s cover
  In contrast, some, but not all, non-essential PIs

will be included

9

ECE 474a/575a 33 of 49

Quine-McCluskey Algorithm

1.  Find all the prime implicants
2.  Find all the essential prime implicants
3.  Select a minimal set of remaining prime implicants that covers the on-set of the

function

ECE 474a/575a 34 of 49

a’b’c’

a’b’c

ab’c

abc’

abc

(0) 000

(1) 001

(5) 101

(6) 110

(7) 111

G0

G1

G2

G3

(0) 000

(1) 001

(5) 101

(6) 110

(7) 111

group G0 contains all minterms containing zero 1’s

group G1 contains all minterms containing one 1

group G2 contains all minterms containing two 1’s

group G3 contains all minterms containing three 1’s

this grouping strategy will help us
compare the minterms systematically

Minimize F = a’b’c’ + a’b’c + ab’c + abc’ + abc

Step 1: Find all the prime implicants
  List all elements of on-set and don’t care set, represented as a binary number
  Group minterms according to the number of 1’s in the minterm

Quine-McCluskey – Example 1

ECE 474a/575a 35 of 49

(0) 000

(1) 001

(5) 101

(6) 110

(7) 111

G0

G1

G2

G3

no new implicants are generated – end
of step 1

we have found all prime implicants
(ones without check marks)

(0,1) 00- G0

(6,7) 11-

(5,7) 1-1 G2

(1,5) -01 G1

Quine-McCluskey – Example 1

Step 1: Find all the prime implicants(cont’)
  Compare each entry in Gi to each entry in Gi+1

  If they differ by 1 bit, we can apply the uniting theorem and eliminate a literal
  Add check to minterm/implicant to remind us that it is not a prime implicant (combined with another element to

form a larger implicant)

ECE 474a/575a 36 of 49

0 1 5 6 7

(0,1) 00-

(5,7) 1-1

(6,7) 11-

(1,5) -01

F = a’b’c’ + a’b’c + ab’c + abc’ + abc
(000) (001) (101) (110) (111)

derived in
Step1

Quine-McCluskey – Example 1

Step 2: Find all essential prime implicants
  Create prime implicant chart

  Columns are minterm indicies, rows are the prime implicants we determined

10

ECE 474a/575a 37 of 49

0 1 5 6 7

(0,1) 00-

(5,7) 1-1

(6,7) 11-

(1,5) -01

Step 2: Find all essential prime implicants (cont’)
  Place “X” in a row if the prime implicant covers the minterm
  Essential prime implicants are found by looking for rows with a single “X”

  If minterm is covered by one and only one prime implicant – it’s an essential prime implicant

  Add essential prime implicants to the cover

essential prime
implicants

Cover:

F = a’b’ + ab

Quine-McCluskey – Example 1

ECE 474a/575a 38 of 49

0 1 5 6 7

(0,1) 00-

(5,7) 1-1

(6,7) 11-

(1,5) -01

Cover:

F = a’b’ + ab

Quine-McCluskey – Example 1

Step 3: Select a minimal set of remaining prime implicants that covers the on
set of the function
  Step 2 determined essential prime implicants, and added to cover

  Essential prime implicants may cover other minterms, cross out all minterms covered by the prime implicants
  Minterm only needs to be covered once

ECE 474a/575a 39 of 49

0 1 5 6 7

(0,1) 00-

(5,7) 1-1

(6,7) 11-

(1,5) -01

Cover:

F = a’b’ + ab

Only minterm 5 remains – either prime
implicant (1,5) or (5,7) will work

+ b’c

Quine-McCluskey – Example 1

Step 3: Select a minimal set of remaining prime implicants that covers the on
set of the function (cont’)
  Based on which minterms are left, add minimal set of prime implicants to cover

ECE 474a/575a 40 of 49

Quine-McCluskey – Example 1

  Summary
  Is this an optimal solution?

  YES.
  We generate all the minterms and make sure they are all covered by the prime implicants

  Is the solution unique?
  NOT NECESSARILY.
  There could be different sets of minimum covers.

11

ECE 474a/575a 41 of 49

Minimize F = w’x’y’z’ + w’x’yz + w’x’yz’ + w’xy’z’ + w’xyz + w’xyz’ + wxy’z + wxyz + wx’y’z +
wx’yz

Step 1: Find all the prime implicants
  List all elements of on-set and don’t care set, represented as a binary number
  Group minterms according to the number of 1’s in the minterm

w’xyz’ (6) 0110

wxy’z (13) 1101

wxyz (15) 1111

wx’y’z (9) 1001

wx’yz (11) 1011

w’x’y’z’ (0) 0000

w’x’yz (3) 0011

w’x’yz’ (2) 0010

w’xy’z’ (4) 0100

w’xyz (7) 0111

G4

G0

G1

G2

G3

(6) 0110

(13) 1101

(15) 1111

(9) 1001

(11) 1011

(0) 0000

(3) 0011

(2) 0010

(4) 0100

(7) 0111

Quine-McCluskey – Example 2

ECE 474a/575a 42 of 49

Step 1: Find all the prime implicants (cont’)
  Compare each entry in Gi to each entry in Gi+1

  If they differ by 1 bit, we can apply the uniting theorem and eliminate a literal
  Add check to minterm/implicant to remind us that it is not a prime implicant

G4

G0

G1

G2

G3

(6) 0110

(13) 1101

(15) 1111

(9) 1001

(11) 1011

(0) 0000

(3) 0011

(2) 0010

(4) 0100

(7) 0111

(2,9) ? N

(4,3) ? N
(4,6) 01-0 (4,6) ?

no new implicants are
generated – end of step 1

G1 (2,3) 001-

(2,3) ?

G0 (0,2) 00-0
(0,2) ?

(0,4) 0-00
(0,4) ?

(2,6) 0-10

(2,6) ?

G0

G1

G2

(0,2,4,6) 0--0

(9,11,13,15) 1--1

(2,3,6,7) 0-1-

(3,7,11,15) --11

G3

G2 (3,7) 0-11

(9,13) 1-01

(3,11) -011

(9,11) 10-1

(6,7) 011-

(7,15) -111
(11,15) 1-11
(13,15) 11-1

(4,9) ? N

(3,7) ?

(3,11) ?

(3,13) ? N
(6,7) ?

(6,11) ? N

(6,13) ? N
(9,7) ? N

(9,11) ?

(9,13) ?
(7,15) ?

(11,15) ?

(13,15) ?

Quine-McCluskey – Example 2

ECE 474a/575a 43 of 49

Step 2: Find all essential prime implicants
  Create prime implicant chart

  Columns are minterm indicies, rows are the prime implicants we determined
  Place “X” in a row if the prime implicant covers the minterm
  Essential prime implicants are found by looking for rows with a single “X”

  Add essential prime implicant to the cover

0 3 6 9 13 2 4 7 11 15

(0,2,4, 6) 0--0

(9,11,13,15) 1--1

(2,3,6,7) 0-1-

(3,7,11,15) --11

Cover:

F = w’z’ + wz

Quine-McCluskey – Example 2

essential prime
implicants

ECE 474a/575a 44 of 49

Step 3: Select a minimal set of remaining prime implicants that covers the on
set of the function
  Cross out all minterms covered by the prime implicants
  Based on which minterms are left, add minimal set of prime implicants to cover

0 3 6 9 13 2 4 7 11 15

(0,2,4, 6) 0--0

(9,11,13,15) 1--1

(2,3,6,7) 0-1-

(3,7,11,15) --11

Cover:

F = w’z’ + wz + yz

Minterm 3 and 7 remain – either prime implicant (2,3,6,7) or (3,7,11,15) will work

Quine-McCluskey – Example 2

12

ECE 474a/575a 45 of 49

2 7 9 15 6 8 13

(2,6) 0-10

(9, 13) 10-1

(8,9) -001

(6,7) 011-

(13, 15) 1-11

(7, 15) -111

essential prime
implicants

Cover:

F = w’yz’ + x’y’z

Quine-McCluskey – Example 3
Petrick’s Method

  What if determining minimum prime implicant cover is not so easy?
  Assume we have the implicant table below

  Determine prime implicants, add to cover

ECE 474a/575a 46 of 49

Cover:

F = w’yz’ + x’y’z

2 7 9 15 6 8 13

(2,6) 0-10

(9, 13) 10-1

(8,9) -001

(6,7) 011-

(13, 15) 1-11

(7, 15) -111

Quine-McCluskey – Example 3
Petrick’s Method

  Example 3 (cont’)
  Remove minterms covered by prime implicants
  Leaves 3 minters – m7, m13, and m15

  Which remaining prime implicants should we use to obtain the minimum cover?

ECE 474a/575a 47 of 49

1.  Reduce prime implicant chart by
eliminating prime implicant rows and
corresponding columns

2.  Label rows of reduced prime implicant
chart P1, P2 …

3.  Form logical equation which is true when
all columns are covered

4.  Reduce to minimum sum of products by
multiplying out and applying X + XY = X

5.  Each term in solution represents a
covering solution
•  Count number of terms in each, choose

one corresponding to the minimum
number

P2

P1

P4

P3

Petrick’s Method – used to determine minimum cover

P = (P1 + P3)(P2 + P4)(P3 + P4)

P = (P1 + P3)(P2P3 +P2P4 +P4P3 + P4P4)

P = (P1 + P3)(P2P3 +P2P4 +P4P3 + P4)
P4P4 = P4

P4 + P4P3 = P4
P = (P1 + P3)(P2P3 +P2P4 +P4)

P = (P1 + P3)(P2P3 + P4)
P4 + P2P4 = P4

P3P2P3 = P2P3
P = P1P2P3 + P1P4 + P3P2P3 + P3P4

P = P1P2P3 + P1P4 + P2P3 + P3P4

Any of these provide
minimum cover

more terms than
other solutions

2 7 9 15 6 8 13

(2,6) 0-10

(9, 13) 10-1

(8,9) -001

(6,7) 011-

(13, 15) 1-11

(7, 15) -111

Quine-McCluskey – Example 3
Petrick’s Method

Actually - P1P2P3 + P2P3 = P2P3, so
we can eliminate term altogether

ECE 474a/575a 48 of 49

2 7 9 15 6 8 13

(2,6) 0-10

P2 (9, 13) 10-1

(8,9) -001

P1 (6,7) 011-

P4 (13, 15) 1-11

P3 (7, 15) -111

Minimum prime implicant cover list:
(option 1 - P1P4) w’xy,wyz

(option 2 - P2P3) wx’z, xyz

(option 3 - P3P4) xyz, wyz

Minimized Equation F = w’yz’ + x’y’z + xyz + wyz

P = P1P4 + P2P3 + P3P4

Any of these provide minimum cover
(equal number of “circles”)

w’yz’, x’y’z
Essential Prime Implicants

Quine-McCluskey – Example 3
Petrick’s Method

  Final cover = essential prime implicants +
minimum prime implicant cover

13

ECE 474a/575a 49 of 49

Quine-McCluskey

  What about don’t cares?
  Alternative methods to determine Minimum Cover

  Row vs. Column Dominance

