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ECE 474A/57A 
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  We now know how to build digital 
circuits 
  How can we build better circuits? 

  Let’s consider two important design 
criteria 
  Delay – the time from inputs changing 

to new correct stable output 
  Size – the number of transistors 

  Assumption 
  Every gate has delay of “1 gate-delay” 
  Every gate input requires 2 transistors 
  Ignore inverters 

16 transistors 
2 gate-delays 
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F1 = wxy + wxy’ 

4 transistors 
1 gate-delay 

F2 = wx 

F2 
w 
x 

= wx(y+y’)  =  wx 

Transforming F1 to F2 represents an 
optimization: Better in all criteria of interest 
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  Two-level logic  
  Circuit with only two levels (ORed AND 

gates) 

  Basically sum-of-products form 
  An equation written as an ORing of 

product terms F = xy + x’y’ 

F 
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y 

x’ 
y’ 

F = a’bc + c’ + de 
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F = ((jk) + l) + mn’ 

F 
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Are these two-level logic? 

F = (rs) • (tu) 

F 

r 
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t 
u 

technically yes, but not what we mean 
in terms of logic minimization 

Two-level Logic Optimization 
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  Optimization - Defined as better in all criteria of interest 
  Delay and size - we consider size minimization only (2-level logic only) 
  In reality requires a balance of many criteria metrics 

  Cost, reliability, time-to-market, etc... 

  Tradeoff - Improves some, but worsens other, criteria of interest 

F = xy + x’y’ 

F 
x 
y 
x’ 
y’ 

F = xyz + xyz’ + x’y’z’ + x’y’z 

F 
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x’ 

x’ 
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y 
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y’ 

y’ 
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z’ 

z’ 

z’ 

Optimization vs. Tradeoff 

14 transistors 
2 gate-delays 

12 transistors 
3 gate-delays 

G2 

w 

x 
y 
z 

G2 = w(x+y) + z 

G1 

w 
x 

w 
y 
z 

G1 = wx + wy + z 

32 transistors 
2 gate-delays 

12 transistors 
2 gate-delays 

  Reduced number of gates 
  Reduced size of gate (i.e. 

number of inputs) 

  Reduced number of gates 
  Increased delay 
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Pareto Points 

Optimizations 

Tradeoffs 

All criteria of interest 
are improved (or at least 
kept the same) 

Some criteria of interest 
are improved, while others 
are worsened 

delay 

si
ze

 

Digital Design 
Copyright © 2006  
Frank Vahid 

si
ze

 

delay 

delay 

  We obviously prefer optimizations, but 
often must accept tradeoffs 
  You can’t build a car that is the most 

comfortable, and has the best fuel 
efficiency, and is the fastest – you have 
to give up something to gain other 
things 

  Many options in solution space 
  Pareto point 

  Point in solution space in which no other 
point better in all metrics 

  Shown in red 
  Pareto points yield the trade-off curve 

si
ze
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  Two-level size optimization using algebraic 
methods 
  Goal: circuit with only two levels (ORed AND 

gates), with minimum transistors 
  Though transistors getting cheaper (Moore’s Law), 

they still cost something 

  Define problem algebraically 
  Sum-of-products yields two levels 

  F = abc + abc’ is sum-of-products; G = w(xy + z) is 
not.  

  Transform sum-of-products equation to have 
fewest literals and terms 

  Each literal and term translates to a gate input, each 
of which translates to about 2 transistors  

  Ignore inverters for simplicity 

F = xyz + xyz’ + x’y’z’ + x’y’z 

F = xy(z + z’) + x’y’(z + z’) 

F = xy*1 + x’y’*1 

F = xy + x’y’ 

F 
x 
y 
x’ 
y’ 

m

n 

= 6 gate inputs * 2 transistor/input   
= 12 transistors 

Example 

Combinational Logic Optimization and Tradeoffs 
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1a.  0 · 0 = 0 
1b.  1 + 1 = 1 
2a.  1 · 1 = 1 
2b.  0 + 0 = 0 
3a.  0 · 1 = 1 · 0 = 0 
3b.  0 + 1 = 1 + 0 = 1 
4a.  If x = 0, then x’ = 1 
4b.  If x = 1, then x’ = 0 
5a.  x · 0 = 0 
5b.  x + 1 = 1 
6a.  x · 1 = x 
6b.  x + 0 = x 
7a.  x · x = x 
7b.  x + x = x 
8a.  x · x’ = 0 
8b.  x + x’ = 1 
9.    x’’ = x 

Boolean Algebra 

10a.   x · y = y · x   (Commutative) 
10b.   x + y = y + x 
11a.   x · (y · z)  = (x · y) · z  (Associative) 
11b.   x + (y + z)  = (x + y) + z 
12a.   x · (y + z)  = x · y + x · z  (Distributive) 
12b.   x + (y · z)  = (x + y) · (x + z)  
13a.   x + x · y = x   (Absorption) 
13b.   x · (x + y) = x 
14a.   x · y + x · y’ = x  (Combining) 
14b.   (x + y) · (x + y’) = x 
15a.   (x · y)’ = x’ + y’  (DeMorgan’s Theorem) 
15b.   (x + y)’ = x’ · y’ 
16a.   x + x’ · y = x + y 
16b.   x · (x’ + y) = x · y 

  How do we use Boolean algebra to obtain fewest literals and terms? 
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Algebraic Two-Level Size Minimization 
Uniting Theorem 

a 
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F 
x 
y 
x’ 
y’ 

F 
z’ 
x 
y 

z’ 
x’ 
y’ 

z 
x’ 
y’ 

z 
x 
y 

delay = 2 gate delay 
size = 16 * 2 = 32 transistors 

delay = 2 gate delay 
size = 6 * 2 = 12 transistors 

G = xy’z’ + xy’z + xyz + xyz’ 
G = xy’(z’+z) + xy(z+z’) 
G = xy’ + xy     (now do again) 
G = x(y’+y) 
G = x 

F = xyz + xyz’ + x’y’z’ + x’y’z 
F = xy(z + z’) + x’y’(z + z’) 
F = xy*1 + x’y’*1 
F = xy + x’y’ 

  Multiply out to sum-of-products, then apply Uniting Theorem 
  ab + ab’ = a(b + b’) = a*1 = a 
  “Combining terms to eliminate a variable” 
  (Formally called the “Uniting theorem”)  

  Sometimes after combining terms, can combine resulting terms 
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Algebraic Two-Level Size Minimization 
Duplication 

  Duplicating a term sometimes helps 
  Note that doesn’t change function 
  c + d = c + d + d = c + d + d + d + d ... 

a 
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F = x’y’z’ + x’y’z + x’yz 
F = x’y’z’ + x’y’z + x’y’z + x’yz 
F = x’y’(z+z’) + x’z(y’+y) 
F = x’y’ + x’z 
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Algebraic Two-Level Size Minimization 
Complex and Error Prone 

  Algebraic Manipulation 
  Which “rules” to use and when? 
  Easy to miss “seeing” possible opportunities to combine terms 

a 

Digital Design 
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F(a, b, c, d) = a’b’cd + c’d + ab’d + acd + a’bcd + a’c’d 
F(a, b, c, d) = d 

F(a, b, c) = b’c’ + bc + a’b’ + a’b 
F(a, b, c) = b’c’ + bc + a’b’ 

F(a, b, c, d, e, f, g) = a’b’c + d’e’f + fa + eg + a’bcd’e’f’g + a’bc’efg + c 
F(a, b, c, d, e, f, g) = ? 

ECE 474a/575a  11 of 49 

0 0 0 0 

00 01 11 10 

1 1 

0 

1 0 0 

F yz 
x 

xy’ 

0 1 1 0 

00 01 11 10 

0 1 

0 

1 1 0 

G yz 
x 

z 

0 0 1 0 

00 01 11 10 

1 1 

00 

01 1 0 

0 0 1 0 

0 0 

11 

10 1 0 

H yz 
wx 

yz 

w’xy’ 

K-maps (Karnaugh Maps) 

  Graphical method to help us find 
opportunities to combine terms 
  Graphical method to help us find 

opportunities to combine terms 
  Create map where adjacent minterms 

differ in one variable 
  Can clearly see opportunities to combine 

terms – look for adjacent 1s 
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Example: Minimize G = a + a’b’c’ + b*(c’ + bc’) 

0 0 

Step 3 -  Cover 1s 

Step 4 -  OR terms 

Step 1 - Convert to sum-of-products 

Step 2 - Place 1’s in the appropriate cells 

G = a + a’b’c’ + bc’ + bc’ 

G = a + c’ 

a 

1 
bc’ 

1 
a’b’c’ 

1 1 1 1 
0 
1 

00 01 11 10 
G bc 

a 

1 0 0 1 
00 01 11 10 

1 1 
0 
1 1 1 

G bc 
a 

a 

c ’ 

Two-Level Size Minimization Using K-maps 

General K-map method 

1.  Convert the function’s equation into sum-of-
products form 

2.  Place 1s in the appropriate K-map cells for 
each term 

3.  Cover all 1s by drawing the fewest largest 
circles, with every 1 included at least once; 
write the corresponding term for each circle 

4.  OR all the resulting terms to create the 
minimized function. 
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  Fill in each cell with corresponding value of F 
  Draw circles around adjacent 1’s 

  Groups of 1, 2 or 4 

  Circle indicates optimization opportunity 
  We can remove a variable 

  To obtain function OR all product terms contained in 
circles 
  Make sure all 1’s are in at least one circle 

x1 x2 F 

0 0 

0 1 

1 0 

1 1 

1 

0 

1 

1 

1 0 

1 1 

x1 

x2 

0 

0 

1 

1 

x1’x2’ + x1x2’ 

x2’(x1’ + x1) 

x2’(1) 

x2’ 

x1x2’ + x1x2 

x1(x2’ + x2) 

x1(1) 

x1 

F = x1 + x2’ 

Two-Variable K-Maple Example 
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Generalized Three-Variable K-Map 

  Three-Variable Map 

a b F 

Truth table 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

c 

m0 

m1 

m2 

m3 

m4 

m5 

m6 

m7 

Truth table 

a 

bc 

0 

1 

m0 m1 

m5 m4 

00 01 

m3 m2 

m6 m7 

11 10 

m1 cannot be placed next to m2 (a’b’c, a’bc’) 

REMEMBER: K-map graphically place minterms 
next to each other when they differ by one variable 

m1 can be placed next to m3 (a’b’c, a’bc) 
m2 can be placed next to m3 (a’bc’, a’bc) 

ECE 474a/575a  15 of 49 

Three-Variable K-Map Optimization Guidelines 

  Circles can cross left/right sides 
  Remember, edges are adjacent 

  Minterms differ in one variable only 

  Circles must have 1, 2, 4, or 8 cells – 3, 5, or 7 
not allowed 
  3/5/7 doesn’t correspond to algebraic 

transformations that combine terms to eliminate 
a variable 

  Circling all the cells is OK 
  Function just equals 1  

1 1 1 1 1 

00 01 11 10 

1 1 

0 

1 1 1 

E yz 
x 

0 1 0 0 

00 01 11 10 

1 0 

0 

1 0 1 

K yz 
x 

xz ’ 

x ’ y ’ z 

0 0 0 0 

00 01 11 10 

1 1 

0 

1 1 0 

L yz 
x 
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Three-Variable K-Map Optimization Guidelines 

G = xyz + xyz’  
G = xy(z+ z’) 
G = xy 

  Two adjacent 1s means one variables 
can be eliminated 
  Same as in two-variable K-maps 

  Four adjacent 1s means two variables 
can be eliminated 
  Makes intuitive sense – those two 

variables appear in all combinations, 
so one must be true  

  Draw one big circle – shorthand for 
the algebraic transformations above 

  Four adjacent cells can be in shape of 
a square 

0 0 0 0 

00 01 11 10 

0 0 

0 

1 1 1 

G yz 
x 

xy 

H = x’y’z + x’yz + xy’z + xyz 
(xy appears in all 
combinations) 

0 1 1 0 

00 01 11 10 

0 1 

0 

1 1 0 

H yz 
x 

z 

G = xy’z’ + xy’z + xyz + xyz’ 
G = x(y’z’+ y’z + yz + yz’) (must be true) 
G = x(y’(z’+z) + y(z+z’)) 
G = x(y’+y) 
G = x 

Draw the biggest circle 
possible, or you’ll have more 
terms than really needed 

0 0 0 0 

00 01 11 10 

1 1 

0 

1 1 1 

G yz 
x 

x 
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Three-Variable K-Map Optimization Guidelines 

0 1 0 0 

00 01 11 10 

1 1 

0 

1 1 1 

I yz 

x 

x 

y ’ z 

The two circles are shorthand for: 
I = x’y’z + xy’z’ + xy’z + xyz + xyz’ 
I = x’y’z + xy’z + xy’z’ + xy’z + xyz + xyz’ 
I = (x’y’z + xy’z) + (xy’z’ + xy’z + xyz + xyz’) 
I = (y’z) + (x) 

  Okay to cover a 1 twice 
  Just like duplicating a term 

  Remember, c + d = c + d + d 

  No need to cover 1s more than once 
  Yields extra terms – not minimized 

1 1 0 0 

00 01 11 10 

0 1 

0 

1 1 0 

J yz 

x 

xz 

y ’ z x ’ y ’ 
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Four-Variable K-Map Optimization Guidelines 

G=z 

F=w’xy’+yz 

  Four-variable K-map follows same principle 
  Left/right adjacent 
  Top/bottom also adjacent 

  Adjacent cells differ in one variable 
  Two adjacent 1’s mean two variables can be 

eliminated 
  Four adjacent 1s means two variables can be 

eliminated 
  Eight adjacent 1s means three variables can be 

eliminated 
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Four-Variable K-Maple Example 

c 
00 01 11 10 

00 
01 
11 
10 

H d 
ab 

  Minimize: H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + a’bd + a’bcd’ 

1.  Convert to sum-of-products 
        H = a’b’cd’ + a’b’c’d’ + ab’c’d’ +  
               ab’cd’ + a’bd + a’bcd’ 
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Four-Variable K-Maple Example - Continued 

c 
00 01 11 10 

00 
01 
11 
10 

H d 
ab 

0 0 
0 
0 0 0 0 

0 0 

1 

a’b’c’d’ 

1 
ab’c’d’ 

1 1 

a’bd 

1 

a’b’cd’ 

1 ab’cd’ 

1 

a’bcd’ 

  Minimize: H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + a’bd + a’bcd’ 

1.  Convert to sum-of-products 
        H = a’b’cd’ + a’b’c’d’ + ab’c’d’ +  
               ab’cd’ + a’bd + a’bcd’ 

2.  Place 1s in K-map cells 
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Four-Variable K-Maple Example - Continued 

  Minimize: H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + a’bd + a’bcd’ 

1.  Convert to sum-of-products 
        H = a’b’cd’ + a’b’c’d’ + ab’c’d’ +  
               ab’cd’ + a’bd + a’bcd’ 

2.  Place 1s in K-map cells 

3.  Cover 1s 

a’bd 
a’bc 

1 1 
1 1 1 

1 1 

c 
00 01 11 10 

00 
01 
11 
10 

H d 
ab 

0 0 
0 
0 0 0 0 

0 0 

Funny-looking circle, but remember that left/
right adjacent, and top/bottom adjacent 

b’d’ 
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Four-Variable K-Maple Example - Continued 

H = b’d’ + a’bc + a’bd 

  Minimize: H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + a’bd + a’bcd’ 

1.  Convert to sum-of-products 
        H = a’b’cd’ + a’b’c’d’ + ab’c’d’ +  
               ab’cd’ + a’bd + a’bcd’ 

2.  Place 1s in K-map cells 

3.  Cover 1s 

4.  OR resulting terms 
a’bd 

a’bc 

1 1 
1 1 1 

1 1 

c 
00 01 11 10 

00 
01 
11 
10 

H d 
ab 

0 0 
0 
0 0 0 0 

0 0 

b’d’ 
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Larger N-Variable K-Maps 

  Graphical minimizing by hand  
  5 and 6 variable maps exist, but hard to use  

  May not yield minimum cover depending on 
order we choose 
  Is error prone  

  Minimization thus typically done by automated 
tools 

ab 

cd 
00 01 11 10 

00 

01 

m0 m1 

m5 m4 

m3 m2 

m6 m7 

11 

10 

m12 m13 

m9 m8 

m15 m14 

m10 m11 

ab 

cd 
00 01 11 10 

00 

01 

m16 m17 

m21 m20 

m19 m18 

m22 m23 

11 

10 

m28 m29 

m25 m24 

m31 m30 

m26 m27 

e = 0 e = 1 

Five-variable Map 
Six-variable Map 

ab 

cd 
00 01 11 10 

00 

01 

m0 m1 

m5 m4 

m3 m2 

m6 m7 

11 

10 

m12 m13 

m9 m8 

m15 m14 

m10 m11 

ab 

cd 
00 01 11 10 

00 

01 

m16 m17 

m21 m20 

m19 m18 

m22 m23 

11 

10 

m28 m29 

m25 m24 

m31 m30 

m26 m27 

ef = 00 ef = 01 

ab 

cd 
00 01 11 10 

00 

01 

m32 m33 

m37 m36 

m35 m34 

m38 m39 

11 

10 

m44 m45 

m41 m40 

m47 m46 

m42 m43 

ab 

cd 
00 01 11 10 

00 

01 

m48 m49 

m53 m52 

m51 m50 

m54 m55 

11 

10 

m60 m61 

m57 m56 

m63 m62 

m58 m59 

ef = 10 ef = 11 
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Don’t Care Input Combinations 

x 0 0 0 
00 01 11 10 

1 1 
0 
1 x 1 

G bc 
a 

a 

a b c Z 
0 0 0 x 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 x 

abc = 000 and abc = 111 
are unused inputs 

including this term 
doesn’t help us 

including this term enables 
better minimization 

  Don’t Care Input 
  Input combination that the designer doesn’t 

care what the output is 
  i.e. input condition can never occur 

  Thus, make output be 1 or 0 for those cases in 
a way that best minimizes the equation 

  Represented as Xs in K-map 
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  Instead of listing each product, simply list the minterm number 
  F(a, b) = ∑m(0, 2) = m0 + m2 

  m – minterms, M – maxterms 

  010 – 002 - a’b’ 

  210 – 102 - ab’ 

Simplified Notation for Sum-of-Products Form 

a b F 

0 0 

0 1 

1 0 

1 1 

1 

0 

1 

0 

1 0 

1 1 

a 

b 

0 

0 

1 

1 

0 1 

3 2 
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Generalized Three-Variable K-Map 

  F(a, b) = ∑m(4, 5, 6, 7) 

  Don’t forget column 01 is followed by 11 

a b F 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

c 

0 

0 

0 

0 

1 

1 

1 

1 

a 

bc 

0 

1 

0 0 

1 1 

00 01 

0 0 

1 1 

11 10 

0 1 

5 4 

3 2 

6 7 
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Generalized Three-Variable K-Map 

  F(a, b) = ∑m(0, 1) + ∑d(4, 5) 

  d – don’t cares 

a b F 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

c 

1 

1 

0 

0 

x 

x 

0 

0 

a 

bc 

0 

1 

1 1 

x x 

00 01 

0 0 

0 0 

11 10 

0 1 

5 4 

3 2 

6 7 
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Four-Variable K-Maple Example 

  F(a, b, c, d) = ∑m(4, 5, 11, 15)  
  Don’t forget in 4-variable K-map, columns and rows are out of sequence too (00, 01, 11, 10) 

c 
00 01 11 10 

00 

01 

11 

10 

H d 
ab 

c F d 

0 
1 
0 
1 
0 
1 
0 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
0 
0 
0 
1 
1 
0 
0 

0 
1 
0 
1 
0 
1 
0 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
0 
0 
1 
0 
0 
0 
1 

b 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

a 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

0 0 1 0 

0 0 1 0 

1 1 0 0 

0 0 0 0 

8 9 11 10 

12 13 15 14 

4 5 7 6 

0 1 3 2 
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Exact Algorithms vs. Heuristic 

  Algorithm 
  Finite set of instructions/steps to solve a problem 
  Terminates in finite time at a known end state 

  Many algorithms can exist that solve the same problem 
  What makes one algorithm better than another? 

  Optimality – “best” quality solution found 
  Efficiency – “good” quality solution found fast 

  Exact Algorithm 
  Finds optimal solution 
  May not be efficient 

  Heuristic 
  Efficient 
  Finds good solution, but not necessarily optimal 
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Quine-McCluskey Overview 

  Exact Algorithm 
  Developed in the mid-50’s 
  Finds the minimized representation of a Boolean function 
  Provides systematic way of generating all prime implicants then extracting a minimum set 

of primes covering the on-set 
  Accomplishes this by repeatedly applying the Uniting theorem 

  Uniting theorem: ab + ab’ = a(b+b’) = a*1 = a 
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F(a, b, c) = a’b’c + ab 

variables: a, b, c 

on-set: a’b’c, abc’, abc 

minterms: a’b’c 

off-set: a’b’c’, a’bc’, a’bc, ab’c’, ab’c  

ab abc 

abc’ 

Review Definitions 

  Minterm 
  product term whose literals include every 

variable of the function exactly once in true 
or complemented form 

  On-set 
  All minterms that define when F=1 

  Off-set 
  All minterms that define when F=0  
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1 1 0 

0 

0 

00 01 11 10 

1 

0 

1 1 1 

G bc 
a 

a’b’ ab 

4 prime 
implicants 

2 essential 
prime 
implicants 

0 1 0 0 

00 01 11 10 

0 0 

0 

1 1 1 

F bc 
a 

ab 
abc’ 
abc 

a’b’c 4 implicants 

0 1 0 0 

00 01 11 10 

0 0 

0 

1 1 1 

F bc 
a 

ab 

a’b’c 2 prime 
Implicants 

Review Definitions 

  Implicant 
  Any product term (minterm or other) that when 

1 causes F=1 
  On K-map, any legal (but not necessarily largest) 

circle 

  Prime implicant 
  Maximally expanded implicant – any further 

expansion would cover 1s not in on-set 

  Essential prime implicant 
  The only prime implicant that covers a particular 

minterm in a function’s on-set 
  Importance: We must include all essential PIs in 

a function’s cover 
  In contrast, some, but not all, non-essential PIs 

will be included  
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Quine-McCluskey Algorithm 

1.  Find all the prime implicants 
2.  Find all the essential prime implicants 
3.  Select a minimal set of remaining prime implicants that covers the on-set of the 

function 
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a’b’c’ 

a’b’c 

ab’c 

abc’ 

abc 

(0)  000 

(1)  001 

(5)  101 

(6) 110 

(7) 111 

G0 

G1 

G2 

G3 

(0)  000 

(1)  001 

(5)  101 

(6)  110 

(7)  111 

group G0 contains all minterms containing zero 1’s 

group G1 contains all minterms containing one 1 

group G2 contains all minterms containing two 1’s 

group G3 contains all minterms containing three 1’s 

this grouping strategy will help us 
compare the minterms systematically 

Minimize F = a’b’c’ + a’b’c + ab’c + abc’ + abc 

Step 1: Find all the prime implicants 
  List all elements of on-set and don’t care set, represented as a binary number 
  Group minterms according to the number of 1’s in the minterm 

Quine-McCluskey – Example 1 
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(0)  000 

(1)  001 

(5)  101 

(6)  110 

(7)  111 

G0 

G1 

G2 

G3 

no new implicants are generated – end 
of step 1 

we have found all prime implicants 
(ones without check marks) 

(0,1)  00- G0 

(6,7)  11- 

(5,7)  1-1 G2 

(1,5) -01 G1 

Quine-McCluskey – Example 1 

Step 1: Find all the prime implicants(cont’) 
  Compare each entry in Gi to each entry in Gi+1 

  If they differ by 1 bit, we can apply the uniting theorem and eliminate a literal 
  Add check to minterm/implicant to remind us that it is not a prime implicant (combined with another element to 

form a larger implicant) 
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0 1 5 6 7 

(0,1)  00- 

(5,7)  1-1 

(6,7)  11- 

(1,5) -01 

F = a’b’c’ + a’b’c + ab’c + abc’ + abc 
(000) (001) (101) (110) (111) 

derived in 
Step1 

Quine-McCluskey – Example 1 

Step 2: Find all essential prime implicants 
  Create prime implicant chart 

  Columns are minterm indicies, rows are the prime implicants we determined 
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0 1 5 6 7 

(0,1)  00- 

(5,7)  1-1 

(6,7)  11- 

(1,5) -01 

Step 2: Find all essential prime implicants (cont’) 
  Place “X” in a row if the prime implicant covers the minterm 
  Essential prime implicants are found by looking for rows with a single “X” 

  If minterm is covered by one and only one prime implicant – it’s an essential prime implicant 

  Add essential prime implicants to the cover 

essential prime 
implicants 

Cover: 

F = a’b’ + ab 

Quine-McCluskey – Example 1 
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0 1 5 6 7 

(0,1)  00- 

(5,7)  1-1 

(6,7)  11- 

(1,5) -01 

Cover: 

F = a’b’ + ab 

Quine-McCluskey – Example 1 

Step 3: Select a minimal set of remaining prime implicants that covers the on 
set of the function 
  Step 2 determined essential prime implicants, and added to cover 

  Essential prime implicants may cover other minterms, cross out all minterms covered by the prime implicants 
  Minterm only needs to be covered once 
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0 1 5 6 7 

(0,1)  00- 

(5,7)  1-1 

(6,7)  11- 

(1,5) -01 

Cover: 

F = a’b’ + ab 

Only minterm 5 remains – either prime 
implicant (1,5) or (5,7) will work 

+ b’c 

Quine-McCluskey – Example 1 

Step 3: Select a minimal set of remaining prime implicants that covers the on 
set of the function (cont’) 
  Based on which minterms are left, add minimal set of prime implicants to cover 
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Quine-McCluskey – Example 1 

  Summary 
  Is this an optimal solution? 

  YES.  
  We generate all the minterms and make sure they are all covered by the prime implicants 

  Is the solution unique? 
  NOT NECESSARILY.  
  There could be different sets of minimum covers. 
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Minimize F = w’x’y’z’ + w’x’yz + w’x’yz’ + w’xy’z’ + w’xyz + w’xyz’ + wxy’z + wxyz + wx’y’z + 
wx’yz 

Step 1: Find all the prime implicants 
  List all elements of on-set and don’t care set, represented as a binary number 
  Group minterms according to the number of 1’s in the minterm 

w’xyz’ (6) 0110 

wxy’z (13) 1101 

wxyz (15)  1111 

wx’y’z (9) 1001 

wx’yz (11) 1011 

w’x’y’z’ (0)  0000 

w’x’yz (3)  0011 

w’x’yz’ (2)  0010 

w’xy’z’ (4) 0100 

w’xyz (7) 0111 

G4 

G0 

G1 

G2 

G3 

(6)  0110 

(13)  1101 

(15)  1111 

(9)  1001 

(11)  1011 

(0)  0000 

(3)  0011 

(2)  0010 

(4)  0100 

(7)  0111 

Quine-McCluskey – Example 2 
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Step 1: Find all the prime implicants (cont’) 
  Compare each entry in Gi to each entry in Gi+1 

  If they differ by 1 bit, we can apply the uniting theorem and eliminate a literal 
  Add check to minterm/implicant to remind us that it is not a prime implicant 

G4 

G0 

G1 

G2 

G3 

(6)  0110 

(13)  1101 

(15)  1111 

(9)  1001 

(11)  1011 

(0)  0000 

(3)  0011 

(2)  0010 

(4)  0100 

(7)  0111 

(2,9) ? N 

(4,3) ? N 
(4,6)  01-0 (4,6) ? 

no new implicants are 
generated – end of step 1 

G1 (2,3)  001- 

(2,3) ? 

G0 (0,2)  00-0 
(0,2) ? 

(0,4)  0-00 
(0,4) ? 

(2,6)  0-10 

(2,6) ? 

G0 

G1 

G2 

(0,2,4,6)  0--0 

(9,11,13,15)  1--1 

(2,3,6,7)  0-1- 

(3,7,11,15)  --11 

G3 

G2 (3,7)  0-11 

(9,13)  1-01 

(3,11)  -011 

(9,11)  10-1 

(6,7)  011- 

(7,15)  -111 
(11,15)  1-11 
(13,15)  11-1 

(4,9) ? N 

(3,7) ? 

(3,11) ? 

(3,13) ? N 
(6,7) ? 

(6,11) ? N 

(6,13) ? N 
(9,7) ? N 

(9,11) ? 

(9,13) ? 
(7,15) ? 

(11,15) ? 

(13,15) ? 

Quine-McCluskey – Example 2 
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Step 2: Find all essential prime implicants 
  Create prime implicant chart 

  Columns are minterm indicies, rows are the prime implicants we determined 
  Place “X” in a row if the prime implicant covers the minterm 
  Essential prime implicants are found by looking for rows with a single “X” 

  Add essential prime implicant to the cover 

0 3 6 9 13 2 4 7 11 15 

(0,2,4, 6)  0--0 

(9,11,13,15)  1--1 

(2,3,6,7)  0-1- 

(3,7,11,15)  --11 

Cover: 

F = w’z’ + wz 

Quine-McCluskey – Example 2 

essential prime 
implicants 
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Step 3: Select a minimal set of remaining prime implicants that covers the on 
set of the function 
  Cross out all minterms covered by the prime implicants 
  Based on which minterms are left, add minimal set of prime implicants to cover 

0 3 6 9 13 2 4 7 11 15 

(0,2,4, 6)  0--0 

(9,11,13,15)  1--1 

(2,3,6,7)  0-1- 

(3,7,11,15)  --11 

Cover: 

F = w’z’ + wz + yz 

Minterm 3 and 7 remain – either prime implicant (2,3,6,7) or (3,7,11,15) will work 

Quine-McCluskey – Example 2 
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2 7 9 15 6 8 13 

(2,6) 0-10 

(9, 13) 10-1 

(8,9) -001 

(6,7) 011- 

(13, 15) 1-11 

(7, 15) -111 

essential prime 
implicants 

Cover: 

F = w’yz’ + x’y’z 

Quine-McCluskey – Example 3 
Petrick’s Method 

  What if determining minimum prime implicant cover is not so easy? 
  Assume we have the implicant table below 

  Determine prime implicants, add to cover 
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Cover: 

F = w’yz’ + x’y’z 

2 7 9 15 6 8 13 

(2,6) 0-10 

(9, 13) 10-1 

(8,9) -001 

(6,7) 011- 

(13, 15) 1-11 

(7, 15) -111 

Quine-McCluskey – Example 3 
Petrick’s Method 

  Example 3 (cont’) 
  Remove minterms covered by prime implicants 
  Leaves 3 minters – m7, m13, and m15 

  Which remaining prime implicants should we use to obtain the minimum cover? 
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1.  Reduce prime implicant chart by 
eliminating prime implicant rows and 
corresponding columns 

2.  Label rows of  reduced prime implicant 
chart P1, P2 … 

3.  Form logical equation which is true when 
all columns are covered 

4.  Reduce to minimum sum of products by 
multiplying out and applying X + XY = X 

5.  Each term in solution represents a 
covering solution 
•  Count number of terms in each, choose 

one corresponding to the minimum 
number 

P2 

P1 

P4 

P3 

Petrick’s Method – used to determine minimum cover 

P = (P1 + P3)(P2 + P4)(P3 + P4) 

P = (P1 + P3)(P2P3 +P2P4 +P4P3 + P4P4) 

P = (P1 + P3)(P2P3 +P2P4 +P4P3 + P4) 
P4P4 = P4 

P4 + P4P3 = P4 
P = (P1 + P3)(P2P3 +P2P4 +P4) 

P = (P1 + P3)(P2P3 + P4) 
P4 + P2P4 = P4 

P3P2P3 = P2P3 
P = P1P2P3 + P1P4 + P3P2P3 + P3P4 

P = P1P2P3 + P1P4 + P2P3 + P3P4 

Any of these provide 
minimum cover 

more terms than 
other solutions 

2 7 9 15 6 8 13 

(2,6) 0-10 

(9, 13) 10-1 

(8,9) -001 

(6,7) 011- 

(13, 15) 1-11 

(7, 15) -111 

Quine-McCluskey – Example 3 
Petrick’s Method 

Actually - P1P2P3 + P2P3 = P2P3, so 
we can eliminate term altogether 
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2 7 9 15 6 8 13 

(2,6) 0-10 

P2 (9, 13) 10-1 

(8,9) -001 

P1 (6,7) 011- 

P4 (13, 15) 1-11 

P3 (7, 15) -111 

Minimum prime implicant cover list: 
(option 1 - P1P4) w’xy,wyz  

(option 2 - P2P3) wx’z, xyz  

(option 3 - P3P4) xyz, wyz 

Minimized Equation F = w’yz’ + x’y’z + xyz + wyz 

P = P1P4 + P2P3 + P3P4 

Any of these provide minimum cover 
(equal number of “circles”) 

w’yz’, x’y’z 
Essential Prime Implicants 

Quine-McCluskey – Example 3 
Petrick’s Method 

  Final cover = essential prime implicants + 
minimum prime implicant cover 
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Quine-McCluskey 

  What about don’t cares? 
  Alternative methods to determine Minimum Cover 

  Row vs. Column Dominance 


