

Logic Optimization

- We now know how to build digital circuits
- How can we build better circuits?
- Let's consider two important design criteria

to new correct stable output
Size - the number of transisto
Assumption
- Every gate has delay of "1 gate-delay
- Every gate input requires 2 transistors
- Ignore inverters

Transforming F1 to F2 represents an
optimization: Better in all criteria of interest
ECE 474a557a

Optimization vs. Tradeoff

- Optimization - Defined as better in all criteria of interest
- Delay and size - we consider size minimization only (2-level logic only)
- In reality requires a balance of many criteria metrics

In reality requires a balance of many

- Cost, reliability, time-to-market, etc...
Tradeoff - Improves some, but worsens other, criteria of interes

Pareto Points

Combinational Logic Optimization and Tradeoffs

- We obviously prefer optimizations, but often must accept tradeoffs
- You can't build a car that is the most comfortable, and has the best fuel efficiency, and is the fastest - you have to give up something to gain othe things

Many options in solution space

- Pareto point
- Point in solution space in which no other Point in solution space
point better in all metrics
-. Shown in red
- Shown in red . Pareto points yield the trade-off curve

Optimizations All criteria of interest
are improved (or a t leas are improved (or kept the same

Tradeoffs Some criteria of interest
are improved, while others are improved,
are worsened

Two-level size optimization using algebraic
methods

- Goal: circuit with only two levels (ORed AND gates), with minimum transistors

Though transistors getting cheaper (Moore's Law)
they still cost something
Define problem algebraically

- Sum-of-products yields two levels
- $F=a b c+$ abc' is sum-of-products; $G=w(x y+z)$ is
- Transform sum-of-products equation to have ewest literals and terms
- Each literal and term translates to a agte input, each
of which translates to about 2 transistors of which translates to about 2 transistors
Ignore inverters for simplicity

Example
$\mathrm{F}=\mathrm{xyz}+x y z^{\prime}+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z$
$F=x y\left(z+z^{\prime}\right)+x^{\prime} y^{\prime}\left(z+z^{\prime}\right)$
$F=x y^{*} 1+x^{\prime} y^{\prime *} 1$
$\mathrm{F}=\mathrm{xy}+\mathrm{x}^{\prime} \mathrm{y}^{\prime}$

$=6$ gate inputs * 2 transistorlinput
$=6$ gate inputs
$=12$ transistors

Algebraic Two-Level Size Minimization

 Uniting Theorem- Multiply out to sum-of-products, then apply Uniting Theorem
- $\mathbf{a b}+\mathbf{a} \mathbf{b}^{\prime}=\mathbf{a}\left(\mathbf{b}+\mathbf{b}^{\prime}\right)=\mathbf{a}^{*} \mathbf{1}=\mathbf{a}$
- "Combining terms to eliminate a variable"
- (Formally called the "Uniting theorem")
- Sometimes after combining terms, can combine resulting terms
$=x y z+x y z^{\prime}+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z$
$=x y\left(z+z^{\prime}\right)+x^{\prime} y^{\prime}\left(z+z^{\prime}\right)$
$F=x y^{*} 1+x^{\prime} y^{\prime *} 1$
$\mathrm{F}=\mathrm{x}_{\mathrm{y}}+\mathrm{x}^{\prime} \mathrm{y}^{\prime}$
$G=x y^{\prime} z^{\prime}+x y^{\prime} z+x y z+x y z^{\prime}$
$G=x y^{\prime}\left(z^{\prime}+z\right)+x y(z+z)$
$\mathrm{G}=\mathrm{xy}{ }^{\prime}+\mathrm{xy} \quad$ (now do again)
$G=x\left(y^{\prime}+y\right)$
$G=x$
and

Algebraic Two-Level Size Minimization Duplication

- Duplicating a term sometimes helps
- Note that doesn't change function
- $c+d=c+d+d=c+d+d+d+d \ldots$
$F=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y z$
$F=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y^{\prime} z+x^{\prime} y z$
$F=x^{\prime} y^{\prime}\left(z+z^{\prime}\right)+x^{\prime} z\left(y^{\prime}+y\right)$
$F=x^{\prime} y^{\prime}+x^{\prime} z$

Algebraic Two-Level Size Minimization Complex and Error Prone

- Algebraic Manipulation
- Which "rules" to use and when?
- Easy to miss "seeing" possible opportunities to combine terms
$F(a, b, c)=b^{\prime} c^{\prime}+b c+a^{\prime} b^{\prime}+a^{\prime} b$
$\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{bc}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}$
$F(a, b, c, d)=a^{\prime} b^{\prime} c d+c^{\prime} d+a b b^{\prime} d+a c d+a^{\prime} b c d+a^{\prime} c^{\prime} d$
$F(a, b, c, d)=d$
$F(a, b, c, d, e, f, g)=a^{\prime} b^{\prime} c+d^{\prime} e^{\prime} f+f a+e g+a^{\prime} b c d^{\prime} e^{\prime} f g^{\prime}+a^{\prime} b c^{\prime} e f g+c$ $F(a, b, c, d, e, f, g)=$?
$\square{ }^{\text {pabin poim }}$ ECE 474a/575a

K-maps (Karnaugh Maps)

- Graphical method to help us find opportunities to combine terms
- Graphical method to help us find

Graphicul method to help us find
opportunities to combine terms

- Create map where adjacent minterms
differ in one variable
Can clearly see opportunities to combine terms - look for adjacent is

Two-Level Size Minimization Using K-maps

General K-map method

1. Convert the function's equation into sum-ofproducts form
2. Place 1 s in the appropriate K-map cells for each term
3. Cover all is by drawing the fewest largest circles, with every 1 included at least once write the corresponding term for each circle
4. OR all the resulting terms to create the minimized function.

Example: Minimize G = a + $\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{b}^{*}\left(\mathrm{c}^{\prime}+\mathrm{bc}\right)$
\qquad

$$
G=a+a^{\prime} b^{\prime} c^{\prime}+b c^{\prime}+b c^{\prime}
$$

$$
\text { Step } 2 \text { - Place 1's in the appropriate cells }
$$

Step 3-Cover 1s
Step 4-OR terms

Two-Variable K-Maple Example

- Fill in each cell with corresponding value of F
- Draw circles around adjacent 1's
- Groups of 1,2 or 4
- Circle indicates optimization opportunity
- We can remove a variable
- To obtain function OR all product terms contained in
circles
- Make sure all 1 's are in at least one circle

Three-Variable K-Map Optimization Guidelines

- Circles can cross left/right sides
- Remember, edges are adjacent
- Minterms differ in one variable only
- Circles must have $1,2,4$, or 8 cells $-3,5$, or 7 not allowed
- 3/5/7 doesn't correspond to algebraic transformations that combine terms to eliminate a variable
- Circling all the cells is OK
- Function just equals 1

ECE 474al57a
15 of 49

Generalized Three-Variable K-Map

- Three-Variable Map

a	b	c	F		
0	0	0	m 0		
0	0	1	m 1		
0	1	0	m 2		
0	1	1	m 3		
1	0	0	m 4		
1	0	1	m 5		
1	1	0	m		
1	1	1	m 7		
Truth table					

Truth table

REMEMBER: K-map graphically place minterms next to each other when they differ by one variable
m 1 cannot be placed next to $\mathrm{m} 2\left(\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}\right.$, $\left.\mathrm{a}^{\prime} \mathrm{bc}^{\prime}\right)$

ECE 474a/575a

Three-Variable K-Map Optimization Guidelines

- Two adjacent is means one variables can be eliminated
- Same as in two-variable K -maps

Four adjacent 1s means two variables can be eliminated

- Makes intuitive sense - those two

Makes intuitive sense - those two
variables appear in all combinations, so one must be true

- Draw one big circle - shorthand for the algebraic transformations above
- Four adjacent cells can be in shape of a square

$G=x\left(y^{\prime}\left(z^{2}+2\right)\right.$
$G=x\left(y^{2}+y\right)$
$G=x$
 Draw the biggest iricle
possibile or ryoull
temps mave than reall neeeded
$H=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime} z+x y z$ (xy appears in
combinations)

160 of 49

Three-Variable K-Map Optimization Guidelines

- Okay to cover a 1 twice
- Just like duplicating a term
- Remember, $\mathrm{c}+\mathrm{d}=\mathrm{c}+\mathrm{d}+\mathrm{d}$

The two oircles are shorthand for:
$==x y z+x+y z=+x y z+x y z+x y z$

- No need to cover 1 s more than once

Yields extra terms - not minimized

Four-Variable K-Maple Example

- Minimize: $\mathrm{H}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}\left(c d^{\prime}+\mathrm{c}^{\prime} \mathrm{d}^{\prime}\right)+\mathrm{ab} \mathrm{c}^{\prime} \mathrm{c}^{\prime}+\mathrm{ab} \mathrm{b}^{\prime} c d^{\prime}+\mathrm{a} b d+\mathrm{a}^{\prime} b c d^{\prime}$
- Convert to sum-of-products
$=a b^{\prime} c d^{\prime}+a b^{\prime} c^{\prime} d^{\prime}+a b^{\prime} c^{\prime} d^{\prime}+$ $a b^{\prime} c d^{\prime}+a a^{\prime} b d+a a^{\prime} b c d^{\prime}$

Four-Variable K-Maple Example - Continued

Minimize: $\mathrm{H}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}\left(c d^{\prime}+\mathrm{c}^{\prime} \mathrm{d}^{\prime}\right)+\mathrm{ab} \mathrm{c}^{\prime} \mathrm{c}^{\prime}+\mathrm{ab} \mathrm{b}^{\prime} \mathrm{cd}^{\prime}+\mathrm{a}$ 'bd + a'bcd'

1. Convert to sum-of-products
$H=a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a b^{\prime} c^{\prime} d^{\prime}+$ $a b^{\prime} c d^{\prime}+a^{\prime} b d+a^{\prime} b c d^{\prime}$
2. Place 1 s in K -map cells

Four-Variable K-Maple Example - Continued

- Minimize: $\mathrm{H}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}\left(c d^{\prime}+\mathrm{c}^{\prime} \mathrm{d}^{\prime}\right)+\mathrm{ab} \mathrm{b}^{\prime} \mathrm{c}^{\prime} \mathrm{d}^{\prime}+\mathrm{ab} \mathrm{b}^{\prime} c d^{\prime}+\mathrm{a}^{\prime} b d+\mathrm{a}^{\prime} b c d^{\prime}$

1. Convert to sum-of-products

> = a'b'cd' + a'b'c'd' + ab'c'd' $a b^{\prime} c d^{\prime}+a^{\prime} b d+a^{\prime} b c d^{\prime}$
2. Place 1 s in K -map cells
3. Cover 1 s

b'd'
Funny-looking circle, but remember that left
Funny-Iooking circle, but remember that
right adjacent, and top/bottom adjicent
ECE 47aal57a

Four-Variable K-Maple Example - Continued

Minimize: $\mathrm{H}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}\left(c d^{\prime}+\mathrm{c}^{\prime} \mathrm{d}^{\prime}\right)+\mathrm{ab} \mathrm{c}^{\prime} \mathrm{d}^{\prime}+\mathrm{ab} \mathrm{b}^{\prime} c d^{\prime}+\mathrm{a}^{\prime} b d+\mathrm{a}^{\prime} b c d^{\prime}$

1. Convert to sum-of-products
= $a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a b^{\prime} c^{\prime} d^{\prime}+$ $a b^{\prime} c d^{\prime}+a^{\prime} b d+a^{\prime} b c d^{\prime}$
2. Place 1 s in K -map cells
3. Cover 1 s
4. OR resulting terms

Larger N-Variable K-Maps

- Graphical minimizing by hand

- 5 and 6 variable maps exist, but hard to use

May not yield minimum cover depending on order we choose
Minimization thus typically done by automated tools

$e=0$
Five-variable Map

ECE 47aal57a

Six-variable Map

$$
\text { 5a } 230049
$$

Don't Care Input Combinations

- Don't Care Input
- Input combination that the designer doesn't care what the output is
- i.e. input condition can never occur

Thus, make output be 1 or 0 for those cases in
a way that best minimizes the equation
Represented as \mathbf{X} s in K-map

ECE 474a/575a

Simplified Notation for Sum-of-Products Form

Generalized Three-Variable K-Map

Instead of listing each product, simply list the minterm number
$\mathrm{F}(\mathrm{a}, \mathrm{b})=\Sigma \mathrm{m}(0,2)=\mathrm{m} 0+\mathrm{m} 2$

- m - minterms, M - maxterms
- $0_{10}-00_{2}-a^{\prime \prime} b^{\prime}$
- $2_{10}-10_{2}-a b^{\prime}$

- $\mathrm{F}(\mathrm{a}, \mathrm{b})=\sum \mathrm{m}(4,5,6,7)$
- Don't forget column 01 is followed by 11

a	b	c	F
0	0	0	0

0	0	1	0
0	1	0	0

0	1	0	0
0	1	1	0

0	1	1	0

$\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1\end{array}$

1	0	1	1
1	1	0	1

1	1	1	1

Generalized Three-Variable K-Map

Four-Variable K-Maple Example

- $F(a, b)=\sum m(0,1)+\sum d(4,5)$
$F(a, b, c, d)=\Sigma m(4,5,11,15)$
- Don't forget in 4 -variable K -map, columns and rows are out of sequence too $(00,01,11,10)$

ECE 474a/575a

Exact Algorithms vs. Heuristic

- Algorithm
- Finite set of instructions/steps to solve a problem
- Terminates in finite time at a known end state
- Many algorithms can exist that solve the same problem

What makes one algorithm better than another?

- Optimality - "best" quality solution found
- Efficiency - "good" quality solution found fast
- Exact Algorithm
- Finds optimal solution
- May not be efficient
- Heuristic
- Efficient
- Finds good solution, but not necessarily optimal

Review Definitions

- Minterm

- product term whose literals include every variable of the function exactly once in true or complemented form
- On-set
- All minterms that define when $\mathrm{F}=1$
- Off-set

All minterms that define when $\mathrm{F}=0$
$\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}+\mathrm{ab}$
variables: a, b, c
minterms: a'b'c

$$
\text { 神 }{\underset{\mathrm{\Sigma}}{\mathrm{abc}}}_{\mathrm{abc}}^{a}
$$

on-set: a'b'c, abc', abc
off-set: a'b'c', a'bc', a'bc, ab'c', ab'c

Quine-McCluskey Overview

Exact Algorithm

- Developed in the mid-50's
- Finds the minimized representation of a Boolean function

Provides systematic way of generating all prime implicants then extracting a minimum set of primes covering the on-set

- Accomplishes this by repeatedly applying the Uniting theorem
- Uniting theorem: $a b+a b^{\prime}=a\left(b+b^{\prime}\right)=a * 1=a$

Review Definitions

- Implicant
- Any product term (minterm or other) that when

1 causes $\mathrm{F}=1$
On K-map, any legal (but not necessarily largest)
circle
Prime implicant

- Maximally expanded implicant - any further expansion would cover 1s not in on-set
- Essential prime implicant
- The only prime implicant that covers a particular minterm in a function's on-set
- Importance: We must include all essential Pis in

In contrast, some, but not all, non-essential PIs will be included

prime
implicant ab

Note: We use k-maps are for illustation purposes only | 32 o 49 |
| :---: |

Quine-McCluskey Algorithm

1. Find all the prime implicants
2. Find all the essential prime implicants
3. Find all the essential prime implicants
4. Select a minimal set of remaining prime implicants that covers the on-set of the function

Quine-McCluskey - Example 1

Minimize $F=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a b \prime c+a b c \prime+a b c$

Step 1: Find all the prime implicants

- List all elements of on-set and don't care set, represented as a binary number
- Group minterms according to the number of 1 1's in the minterm

$\rightarrow(0) 000$	G0		000	group G 0 contains all minterms containing zero 1 's
${ }^{\prime} \mathrm{c} \longrightarrow$ (1) 001	G1		001	group G 1 contains all minterms containing one 1
$\mathrm{ab}^{\prime} \mathrm{c} \longrightarrow$ (5) 101	G2	(5)	101	group G 2 contains all minterms containing two 1's
$a \mathrm{ab} \mathrm{c}^{\prime} \longrightarrow$ (6) 110		(6)	110	
$a b c \longrightarrow(7) 111$	G3	(7)	111	group G3 contains all minterms containing three 1 's

Quine-McCluskey - Example 1

Quine-McCluskey - Example 1

Step 2: Find all essential prime implicants

- Create prime implicant chart
- Columns are minterm indicies, rows are the prime implicants we determined

Compare each entry in Gi to each entry in Gi+1

- Add check to minterm/mimplicant to remind us that it is not a prime implicant (combined with another element to

Add check to minterm/iin
form a arger implicant)

Quine-McCluskey - Example 1

Step 2: Find all essential prime implicants (cont')

- Place " X " in a row if the prime implicant covers the minterm
- Essential prime implicants are found by looking for rows with a single " X "
- If minterm is covered by one and only one prime implicant - it's an essential prime implicant

Add essential prime implicants to the cover
$\underset{\text { essential prime }}{\text { implicants }}$

Quine-McCluskey - Example 1

Step 3: Select a minimal set of remaining prime implicants that covers the on
set of the function (cont')

- Based on which minterms are left, add minimal set of prime implicants to cover

ECE 47aal57a

Quine-McCluskey - Example 1

Quine-McCluskey - Example 1

Step 3: Select a minimal set of remaining prime implicants that covers the on
set of the function
Step 2 determined essential prime implicants, and added to cover

- Essential prime implicants may cover other minterms, cross out all minterms covered by the prime implicants
- Minterm only needs to be covered once

- Summary
- Is this an optimal solution?
- YEs.
- We generate all the minterms and make sure they are all covered by the prime implicants
- Is the solution unique?
- not necessarily
- There could be different sets of minimum covers.

Quine-McCluskey - Example 2

Minimize $F=w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z+w^{\prime} x^{\prime} y z^{\prime}+w^{\prime} x y^{\prime} z^{\prime}+w^{\prime} x y z+w^{\prime} x y z^{\prime}+w x y^{\prime} z+w x y z+w x^{\prime} y^{\prime} z+$ wx'yz

Step 1: Find all the prime implicants

- List all elements of on-set and don't care set, represented as a binary number
- Group minterms according to the number of 1 's in the minterm

Quine-McCluskey - Example 2

Step 2: Find all essential prime implicants

Create prime implicant chart
Place " X " in in ar ow int it the indicies, rows are the prime implicants we determine
Place " X " in a row if the prime implicant covers the minterm
Essential prime implicants are found by looking for rows with a single " X "

- Add essential prime implicant to the cover

Quine-McCluskey - Example 2

Step 3: Select a minimal set of remaining prime implicants that covers the on
set of the function

- Cross out all minterms covered by the prime implicants

Based on which minterms are left, add minimal set of prime implicants to cover

Quine-McCluskey - Example 3
 Petrick's Method

- What if determining minimum prime implicant cover is not so easy?

Assume we have the implicant table below

- Determine prime implicants, add to cover

Quine-McCluskey - Example 3

Petrick's Method
Petrick's Method - used to determine minimum cover

1. Reduce prime implicant chart by eliminating prime implicant rows and eliminating prime implic
corresponding columns
Label rows of reduced prime implicant chart P1, P2 ...
Form logical equation which is true when all columns are covered
2. Reduce to minimum sum of products by multiplying out and applying $\mathrm{X}+\mathrm{XY}=\mathrm{X}$
3. Each term in solution represents
covering solution
Count number of terms in each, choose one corresponding to the minimum
\qquad Actually - P1P2P3 $^{2}+$ PPP3 $_{2}=P 2 P 3$,
we can eliminiate term altogether Other solution
ECE 47atas57a

Quine-McCluskey - Example 3

Petrick's Method

- Example 3 (cont')
- Remove minterms covered by prime implicants
- Leaves 3 minters - m 7 , m 13 , and m 15
- Which remaining prime implicants should we use to obtain the minimum cover?

Quine-McCluskey - Example 3
 Petrick's Method

- \quad Final cover $=$ essential prime implicants + minimum prime implicant cover

Essential Prime Implicants
w'yz', x'y'z
Minimum prime implicant cover lis:
(option 1 - P1P4) w'xy,wyz (option 2-P2P3) wx'z, xyz (option 3 - P3P4) xyz, wyz

$\underbrace{\mathrm{P}=\mathrm{P}_{1} 1 \mathrm{P} 4+\mathrm{P} 2 \mathrm{P} 3+\mathrm{P} 3 \mathrm{P} 4}_{\begin{array}{c}\text { Any of these provide minimum cover } \\ \text { (equal number of "circles") }\end{array}}$

Quine-McCluskey

- What about don't cares?

Alternative methods to determ

- Row vs. Column Dominance

