
1

ECE 474a/575a 1 of 18

ECE 474A/57A
Computer-Aided Logic Design

Lecture 6B
Hierarchical/Concurrent State Machine

Models (HCFSM)

Slides Modified From: Embedded Systems
Design: A Unified Hardware/Software

Introduction, (c) 2000 Vahid/Givargis

ECE 474a/575a 2 of 18

Outline

  Models vs. Languages

  State Machine Model
  FSM/FSMD
  HCFSM and Statecharts Language
  Program-State Machine (PSM) Model

  Concurrent Process Model
  Communication
  Synchronization
  Implementation

  Dataflow Model

ECE 474a/575a 3 of 18

  Describing embedded system’s
processing behavior extremely difficult
  Complexity increasing with increasing

IC capacity

  Desired behavior often not fully
understood in beginning
  Many implementation bugs due to

description mistakes/omissions

Introduction

washing machines, small games, etc.
required hundreds of lines of code

TV set-top boxes, cell phones, etc. required
hundreds of thousands of lines of code

ECE 474a/575a 4 of 18

An example of trying to be precise in English

  English (or other natural
language) common starting point

  Precise description difficult/
impossible

  Example: Motor Vehicle Code is
thousands of pages long

California Vehicle Code: Right-of-way of crosswalks

21950. (a) The driver of a vehicle shall yield the right-
of-way to a pedestrian crossing the roadway within
any marked crosswalk or within any unmarked
crosswalk at an intersection, except as otherwise
provided in this chapter.

(b) This section does not relieve a pedestrian from
the duty of using due care for his or her safety. No
pedestrian may suddenly leave a curb or other place
of safety and walk or run into the path of a vehicle
that is so close as to constitute an immediate hazard.
No pedestrian may unnecessarily stop or delay traffic
while in a marked or unmarked crosswalk.

(c) The driver of a vehicle approaching a pedestrian
within any marked or unmarked crosswalk shall
exercise all due care and shall reduce the speed of
the vehicle or take any other action relating to the
operation of the vehicle as necessary to safeguard
the safety of the pedestrian …

2

ECE 474a/575a 5 of 18

Models and languages

  How can we (precisely) capture behavior?
  We may think of languages (C, C++), but computation model is the key

  Common computation models:
  Sequential program model

  Statements, rules for composing statements, semantics for executing them

  Communicating process model
  Multiple sequential programs running concurrently

  State machine model
  For control dominated systems, monitors control inputs, sets control outputs

  Dataflow model
  For data dominated systems, transforms input data streams into output streams

  Object-oriented model
  For breaking complex software into simpler, well-defined pieces

ECE 474a/575a 6 of 18

Models vs. languages

Models

Languages

Sequential
programming

C++ C Java

State
machine

Data-
flow

  Computation models describe system
behavior
  Conceptual notion, e.g., recipe,

sequential program
  Languages capture models

  Concrete form, e.g., English, C
  Variety of languages can capture one

model
  E.g., sequential program model  C,C

++, Java
  One language can capture variety of

models
  E.g., C++ → sequential program

model, object-oriented model, state
machine model

  Certain languages better at capturing
certain computation models

ECE 474a/575a 7 of 18

Text versus Graphics

  Models versus languages not to be confused with text versus graphics
  Text and graphics are just two types of languages

  Text: letters, numbers
  Graphics: circles, arrows (plus some letters, numbers)

X = 1;

Y = X + 1;

X = 1

Y = X + 1

ECE 474a/575a 8 of 18

Introductory example: An elevator controller

Partial English description
“Move the elevator either up or down to reach the requested floor. Once at the
requested floor, open the door for at least 10 seconds, and keep it open until the
requested floor changes. Ensure the door is never open while moving. Don’t
change directions unless there are no higher requests when moving up or no
lower requests when moving down…”

  Simple elevator controller
  Request Resolver resolves various floor

requests into single requested floor
  Unit Control moves elevator to this requested

floor buttons
inside
elevator

Unit
Control

down
open

floor

Request
Resolver

up/down
buttons on
each floor

req

up

b1

bN

up1

upN
dn1

dnN

3

ECE 474a/575a 9 of 18

Introductory example: An elevator controller

  Try capturing in a sequential programming model
like C

buttons
inside
elevator

Unit
Control

down
open

floor

Request
Resolver

up/down
buttons on
each floor

req

up

b1

bN

up1

upN
dn1

dnN

* You might have come up with something
having even more if statements

void UnitControl() {
 up = down = 0; open = 1;

 while (1) {
 while (req == floor);
 open = 0;

 if (req > floor){ up = 1; }
 else {down = 1;}

 while (req != floor);
 up = down = 0;
 open = 1;
 delay(10);
 }
}

void RequestResolver() {
 while (1) {

 req = ...

 }
}

void main() {
 Call concurrently:
 UnitControl() and
 RequestResolver()
}

Inputs: int floor; bit b1..bN; up1..upN-1; dn2..dnN;
Outputs: bit up, down, open;
Global variables: int req;

ECE 474a/575a 10 of 18

Finite-state machine (FSM) model

  Trying to capture this behavior as
sequential program is a bit
awkward

  Instead, we might consider an FSM
model, describing the system as
  Possible states

  Idle, GoingUp, GoingDn, DoorOpen

  Possible transitions from one state
to another based on input
  req > floor, req < floor, etc.

  Actions that occur in each state
  up = 1, down, open, and

timer_start = 0

u is up, d is down, o is open
t is timer_start

Idle

GoingUp

req > floor

req < floor

!(req > floor)

!(timer < 10)

req < floor

Door
Open

GoingDn

req >
floor

u,d,o, t =
1,0,0,0

u,d,o,t =
0,0,1,0

u,d,o,t =
0,1,0,0

u,d,o,t =
0,0,1,1 req == floor

!(req<floor)

timer < 10

ECE 474a/575a 11 of 18

Formal definition

  Formal FSM definition M = (X, Y, S, δ, λ, so)
  X is the input alphabet
  Y is the output alphabet
  S is a finite set of states
  δ is the transition function, δ: X x S→S

  Given and input and state, what is the next state
  λ is the output function, λ: S → Y

  Mealy FSM, λ: X x S → Y
  so is the initial state

  HLFSM
  Convert later to a FSM + D

Covered in
Earlier Lectures

ECE 474a/575a 12 of 18

HCFSM and the Statecharts language

  Hierarchical/concurrent state
machine model (HCFSM)
  Extension to state machine model to

support hierarchy and concurrency

  States can be decomposed into
another state machine
  With hierarchy has identical

functionality as Without hierarchy,
but has one less transition (z)

  Known as OR-decomposition

  States can execute concurrently
  Known as AND-decomposition

A1 z

B

A2 z

x y w

Without hierarchy

A1 z

B

A2

x y

A

w

With hierarchy

C1

C2

x y

C

B

D1

D2

u v

D

Concurrency

4

ECE 474a/575a 13 of 18

HCFSM and the Statecharts language

  Statecharts
  Graphical language to capture

HCFSM

  Numerous additional constructs
available to improve state capture
  history

  Enter most recently visited when
return instead of initial state

  timeout
  transition with time limit as

condition
  transition taken if source state

active for defined time limit

  many others - joins, forks,
conditional, selections, …

C1 C2 timeout(5)

Timeout

History

A1 z

B

A2

x y

A

w
H

ECE 474a/575a 14 of 18

UnitControl with FireMode
Without Hierarchy

UnitControl

  FireMode - When fire is true, move elevator to 1st floor and open door

u is up, d is down, o is open
t is timer_start

Idle

GoingUp

req > floor

req < floor

!(req > floor)

!(timer < 10)

req < floor

Door
Open

GoingDn

req >
floor

u,d,o, t =
1,0,0,0

u,d,o,t =
0,0,1,0

u,d,o,t =
0,1,0,0

u,d,o,t =
0,0,1,1 req == floor

!(req<floor)

timer < 10

fire

fire

fire

fire Fire
GoingDn

floor>1

u,d,o,t =
0,1,0,0

!fire

Fire
DrOpen floor==1

fire

u,d,o,t =
0,0,1,0

ECE 474a/575a 15 of 18

UnitControl with FireMode
Without Hierarchy

UnitControl

  FireMode - When fire is true, move elevator to 1st floor and open door

u is up, d is down, o is open
t is timer_start

Idle

GoingUp

req > floor

req < floor

!(req > floor)

!(timer < 10)

req < floor

Door
Open

GoingDn

req >
floor

u,d,o, t =
1,0,0,0

u,d,o,t =
0,0,1,0

u,d,o,t =
0,1,0,0

u,d,o,t =
0,0,1,1 req == floor

!(req<floor)

timer < 10

fire

Fire
GoingDn

floor>1

u,d,o,t =
0,1,0,0

!fire

Fire
DrOpen floor==1

u,d,o,t =
0,0,1,0

Normal
Mode

Fire Mode

ECE 474a/575a 16 of 18

UnitControl with FireMode

NormalMode

FireMode

fire !fire

UnitControl

ElevatorController

RequestResolver

...

  Also add concurrency to our
model

5

ECE 474a/575a 17 of 18

Program-state machine model (PSM)
HCFSM plus sequential program model

up = down = 0; open = 1;
while (1) {
 while (req == floor);
 open = 0;
 if (req > floor) { up = 1;}
 else {down = 1;}
 while (req != floor);
 open = 1;
 delay(10);
}

NormalMode

FireMode

up = 0; down = 1; open = 0;
while (floor > 1);
up = 0; down = 0; open = 1;

fire !fire

UnitControl

ElevatorController

RequestResolver

...
req = ...
...

int req;
  Program-State Machine

(PSM)
  Extends state machine to

allow use of sequential
code or FSM to define state
actions

  Includes hierarchy and
concurrency extensions of
HCFSM

  Stricter hierarchy than
HCFSM used in Statecharts

  Examples
  SpecCharts: extension of

VHDL SpecC: extension of
C

Black square originating within FireMode indicates !
fire is a transition-on-completion taken only if the

condition is true and program state is complete

ECE 474a/575a 18 of 18

Summary

  Computation models are distinct from
languages

  Finding appropriate model to capture
embedded system is an important step
  Model shapes the way we think of the system
  Language should capture model easily

  Ideally should have features that directly
capture constructs of model

  Many choices
  Sequential program model is popular
  State machine models good for control

  Extensions like HCFSM provide additional power

  Concurrent process model for multi-task
systems
  Communication and synchronization methods

exist, scheduling is critical

  Dataflow model good for signal processing

Models

Languages

Sequential
programming

C++ C Java

State
machine

Data-
flow

