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  State Diagram or Finite-State Machine (FSM) 
  A way to describe desired behavior of 

sequential circuit 
  List states, and transitions among states 

  Laser Timer 
  When button pressed (b=1), turn laser on (x=1) 

for 3 clock cycles 

  Four states 
  Off state 

  Keep laser turned off  
  While b=0 (b’), we are in a wait state 
  When b=1 and rising clock edge (b • clk^), transition 

to On1 state 

  On1 state 
  Turns laser on (x=1) 
  On next rising clock edge (clk^) transition to On2 

state 

  On2/On3 state 
  Also turns laser on (x=1) 
  Transitions on next rising clock edge 

FSM Example: Three-Cycles High Laser Timer 

Controller 
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laser 

  patient 
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O ff 
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  FSM 
  Graphical representation 
  Formal method to describe sequential 

circuits 

  State Table 
  Textual Representation 

  How do we implement a sequential 
circuit? 
  Standard Controller architecture 

  Need to store state 
  State register (encoded state) 

  Need to determine next state 
  Current state and external input to 

combinational logic 
  Need to determine output 

  Current state input to combinational 
logic 
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Controller architecture for 
laser timer example 

Graphical and Textual Sequential Circuit Descriptions 
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  State Table 
  Inputs 

  Current state (encoded) - Two bits 
s1 and s0 encode the current state 

  FSM Input - Input b indicates 
button press 

  Outputs 
  Next state (encoded) - Two bits n1 

and n0 encode the next state 

  FSM Output - Output x controls when 
the laser is on/off 

Outputs Inputs 

Combinational 
logic 

State register 

s1 s0 

n1 

n0 

x b 

clk 

FS
M

 in
pu

ts
 

FS
M

 o
ut

pu
ts

 

s1 s0 b x n1 n0 

State Table Example: Laser Timer (cont’) 
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  State Table 
  Next state 

  Based on current state and FSM 
input what is the next state? 

  FSM Output 
  Output depends on current state 

only (Moore FSM) 
  For each state we are currently 

in, what is the output? 

On2 On1 On3 

O ff 

x=1 x=1 x=1 

x=0 

b ’ 

b 

0 0 
0 1 

0 
0 

1 0 
1 0 

1 
1 

1 1 
1 1 

1 
1 

0 0 
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1 
1 

Outputs Inputs 
s1 s0 b n1 n0 x 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Off 

On1 

On2 

On3 

00 

01 10 11 

State Table Example: Laser Timer (cont’) 
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Create an FSM (state diagram) that describes the desired 
behavior of the circuit 

Capture the FSM Step 1: 

Create the standard architecture by using a state register of 
appropriate width, and combinational logic with inputs being 
the state register bits and the FSM inputs, and outputs being 
the next state bits and the FSM outputs 

Create the architecture Step 2: 

Assign a unique binary number to each state. Each binary 
number representing a state is know as an encoding. Any 
encoding will do as long as they are unique. 

Encode the states Step 3: 

Create a truth table for the combinational logic such that the 
logic will generate the correct FSM output and next state 
signals. Ordering the inputs with state bits first make the truth 
table describe the state behavior, giving us a state table. 

Create the state table Step 4: 

Implement the combinational logic using any method. Implement the 
combinational logic 

Step 5: 

Description Step 

(Condensed) Controller Design Process 
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  Example: Laser Timer 

  Step 1: Capture the FSM 
  Already done 

  Step 2: Create architecture 
  Customize generic controller architecture 

to our system 
  State Register 

  2-bit state register (for 4 states) 
  s1, s0 – current state bits 
  n1, n0 – next state bits 

  FSM Input 
  Button signal b 

  FSM Output 
  Laser control x 

On2 On1 On3 

O ff 
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  Step 3: Encode the states 
  Any encoding with each state  unique 

will work 

  Step 4: Create state table 
  Done this already 

On2 On1 On3 

O ff 

x=1 x=1 x=1 

x=0 

b ’ 

b 

00 

01 10 11 

0 0 
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Outputs Inputs 
s1 s0 b n1 n0 x 
0 0 0 
0 0 1 
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Off 
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On3 

Controller Design: Laser Timer (Cont’) 
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  Step 5: Implement the combinational 
logic 

On2 On1 On3 

O ff 

x=1 x=1 x=1 

x=0 

b ’ 
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0 0 0 
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0 1 1 
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1 1 1 

Off 

On1 

On2 

On3 

n1 = s1’s0b’ + s1’s0b + s1s0’b’ + s1s0’b 
n1 = s1’s0 + s1s0’ 

n0 = s1’s0’b + s1s0’b’ + s1s0’b 
n0 = s1’s0’b + s1s0’ 

x = s1’s0’b + s1s0’b’ + s1s0’b 
x = s1 + s0 

Controller Design: Laser Timer (Cont’) 
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x = s1 + s0	

n1 = s1’s0 + s1s0’ 
n0 = s1’s0’b + s1s0’ 

n1 

n0 

s0 s1 
clk 

Combinational Logic 

State register 

b 

FSM outputs FSM inputs 
x 

  Step 5: Implement combinational logic 
(cont) 
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  FSM defined by quintuple  
  M = (Σ, Γ, S, δ, λ, so) 

  Σ is the input alphabet 
  Γ is the output alphabet 
  S is a finite set of states 
  δ is the transition function, δ: X x S→S 

  Given and input and state, what is the 
next state 

  λ is the output function, λ: S → Y 
  Mealy FSM, λ: X x S  → Y 

  so is the initial state 

On2 On1 On3 

O ff 

x=1 x=1 x=1 

x=0 

b ’ 

b 

Outputs: x 
Inputs: b 

FSM Formal Definition 
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  Formally specify the Laser Timer FSM 
  M = (Σ, Γ, S, δ, λ, so) 

On2 On1 On3 

O ff 

x=1 x=1 x=1 

x=0 

b ’ 

b 

Outputs: x 
Inputs: b 

FSM Formal Definition 

LaserTimer = (Σ, Γ, S, δ, λ, qo), where  

Σ is the input alphabet 

Σ = {0, 1} 

Γ = {0, 1} 

Y is the output alphabet 
S = {Off, On1, On2, On3} 

S is a finite set of states 
δ(Off, 0) = Off,      δ(Off, 1) = On1 
δ(On1, 0) = On2,   δ(On1, 1) = On2 
δ(On2, 0) = On3,   δ(On2, 1) =On3 
δ(On3, 0) = Off,     δ(On3, 1) = Off δ is the transition function, δ: X x S→S 

Given and input and state, what is the next state 
λ(Off) = 0, λ(On1) = 1, λ(On2) = 1, λ(On3) = 1 

λ is the output funciton, λ: S → Y 
so = Off 

so is the initial state 
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  Why does the timing change? 
  More detailed view of FSM implementation architecture 

clk 

I O 

State register 

Combinational 
Logic 
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N 

clk 

I 

O 

State register 

Next State 
Logic 

S 

N 

FSM Output 
Logic 

Moore FSM 

Next state logic – function of 
present state and FSM inputs 

Output logic - function of 
present state only 

clk 

I 

O 

State register 

Next State 
Logic 

S 

N 

FSM Output 
Logic 

Mealy FSM 

Next state logic – function of 
present state and FSM inputs 

Output logic - function of 
present state and FSM inputs 

Moore vs. Mealy FSM - Architecture 
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RTL Design Method 

Describe the system’s desired behavior as a high-level state 
machine. The state machine consists of states and 
transitions. The state machine is “high-level” because the 
transition conditions and the state actions are more than just 
Boolean operations on bit inputs and outputs 

Capture the  high-level 
FSM 

Step 1: 

Create a datapath to carry out the data operations on the 
high-level state machine 

Create a datapath Step 2: 

Connect the datapath to the controller block. Connect external 
Boolean inputs and output to the controller block 

Connect the datapath 
to the controller 

Step 3: 

Convert the high-level state  machine to a finite-state machine 
(FSM) for the controller, by replacing data operations with 
setting and reading of control signals to and from the datapath 

Derive the controller’s 
FSM 

Step 4: 

Description Step 
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RTL Design Method 
Soda Dispenser Example 

  Soda dispenser 
  c: bit input, 1 when coin deposited 
  a: 8-bit input having value of deposited coin 
  s: 8-bit input having cost of a soda 
  d: bit output, processor sets to 1 when total 

value of deposited coins equals or exceeds 
cost of a soda 

How can we precisely describe this processor’s behavior? 

a s 

c 

d 

Soda dispenser 
processor 

50 

0 
0 

total : 0 

a s 

c 

d 

Soda dispenser 
processor 

25 50 

0 
1 

total : 25 
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c 
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Soda dispenser 
processor 

50 

0 
0 

total : 25 

a s 

c 

d 

Soda dispenser 
processor 

25 50 

0 
1 

total : 50 

a s 

c 

d 

Soda dispenser 
processor 

50 

0 
0 

total : 50 

a s 

c 

d 

Soda dispenser 
processor 

50 

0 
0 

total : 0 

a s 

c 

d 

Soda dispenser 
processor 

50 

1 
0 

total : 50 

a s 

c 

d 

Soda dispenser 
processor 
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RTL Design Method 
Soda Dispenser - Step 1: Capture the high-level FSM 

  Step 1: Describe behavior using high-level FSM 
  Start with inputs/output of system 
  Declare local register tot 
  Init state 

  Don’t dispense soda (d=0), clear running total 
(tot=0) 

  Wait state 
  Wait for coin, if see coin go to Add state 

  Add state 
  Update total value:  tot = tot + a 

  Remember, a is present coin’s value 
  Go back to Wait state 

  In Wait state 
  If tot < = s, Wait 
  If tot >= s, go to Disp(ense) state 

  Disp state 
  Set d=1 (dispense soda) 
  Return to Init state 

Inputs: c (bit), a (8 bits), s (8 bits) 
Outputs: d (bit) 
Local registers: tot (8 bits) 

c’•(tot<s) 

d=1 

Init 

d=0 
tot=0 

Wait 
Add 

c 

tot=tot+a 

Disp 

c’•(tot<s)’ 

8 8 a s 

c 

d 

Soda dispenser 
processor 
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RTL Design Method 
FSM vs. High-level FSM 

  Created a high-level FSM, not an FSM, 
because 
  Multi-bit (data) inputs a and s 
  Local register tot 
  Data operations tot=0, tot<s, tot=tot

+a. 

  High-level state machines are useful, 
  Data types beyond just bits 
  Local registers 
  Arithmetic equations/expressions 

Inputs: c (bit), a (8 bits), s (8 bits) 
Outputs: d (bit) 
Local registers: tot (8 bits) 

c’•(tot<s) 

d=1 

Init 

d=0 
tot=0 

Wait 
Add 

c 

tot=tot+a 

Disp 

c’•(tot<s)’ 

Digital Design 
Copyright © 2006  
Frank Vahid 

ECE 474a/575a 

RTL Design Method 
Soda Dispenser - Step 2: Create a datapath 

  Step 2: Create a Datapath 
  What’s going in and out of 

datapath? 
  Multi-bit values – a, s 

  Need tot register 
  Need 8-bit comparator to 

compare s and tot 
  Need 8-bit adder to 

perform tot = tot + a 

Inputs: c (bit), a (8 bits), s (8 bits) 
Outputs: d (bit) 
Local registers: tot (8 bits) 

Disp 

c’*(tot<s) 

d=1 

Init 

d=0 
tot=0 

Wait 
Add 

c 

tot=tot+a 

c’*(tot<s)’ 

tot_ld 

tot_clr 
ld 
clr 

tot 

Datapath 

8 

tot_lt_s 8-bit 
< 

8 

8-bit 
adder 

8 

8 

s a 
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RTL Design Method 
Soda Dispenser - Step 3: Connect the datapath to a controller 

  Step 3: connect datapath to controller 
  Controller’s inputs 

  External input c (coin detected) 
  Input from datapath comparator’s output, which we named tot_lt_s 

  Controller’s outputs 
  External output d (dispense soda) 
  Outputs to datapath to load and clear the tot register 

tot_lt_s 

clr 
tot 

Datapath 

8-bit 
< 

8 

8-bit 
adder 

8 

8 

s a 

Controller 

8 

ld 
tot_ld 

tot_clr 
c 

d 



6 

Digital Design 
Copyright © 2006  
Frank Vahid 

ECE 474a/575a 

RTL Design Method 
Soda Dispenser - Step 4: Derive the controller’s FSM 

tot_lt_s 

tot_clr 
tot_ld 

Controller Datapath 

s 

c 
d 

a 
8 8   Step 4: Derive the Controller’s FSM 

  Same states and arcs as high-level state 
machine 

  Transitions and state assignment are bit 
operations 
  Set/read datapath control signals for all 

datapath operations and conditions 

Inputs: c (bit), tot_lt_s (bit) 
Outputs:  d(bit), tot_ld (bit), tot_clr (bit) 

d=1 

d=0 

c 

c 

d 
tot_ld 
tot_clr 

tot_lt_s 
tot_clr=1 

c’ • tot_lt_s’ 

c’ • tot_lt_s 

tot_ld=1 

Inputs: c (bit), a (8 bits), s (8 bits) 
Outputs: d (bit) 
Local registers: tot (8 bits) 

c’•(tot<s) 

d=1 

Init 

d=0 
tot=0 

Wait 
Add 

c 

tot=tot+a 

Disp 

c’•(tot<s)’ 

Disp 

Init Wait 

Add 
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RTL Design Method 
Soda Dispenser - Completing the design 

  Once we have FSM 
  Implement the FSM as a state 

register and logic 
  State table shown on right 

Inputs: c (bit), tot_lt_s (bit) 
Outputs:  d(bit), tot_ld (bit), tot_clr (bit) 

d=1 

d=0 

c 

c 

d 
tot_ld 
tot_clr 

tot_lt_s 
tot_clr=1 

c’ • tot_lt_s’ 

c’ • tot_lt_s 

tot_ld=1 

Disp 

Init Wait 

Add 
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Laser-Based Distance Measurer 
Step 1: Capture a high-level state machine 

  Example of how to create a high-level state machine to describe desired 
processor behavior 

  Laser-based distance measurement – pulse laser, measure time T to sense 
reflection 
  Laser light travels at speed of light, 3*108 m/sec  
  Distance is thus D = T sec * 3*108 m/sec  / 2 

Object of 
interest 

D 

2D = T sec * 3*108 m/sec 
sensor 

laser 
T (in seconds) 
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Laser-Based Distance Measurer 
Step 1 : Capture a high-level state machine 

  Inputs/outputs 
  B: bit input, from button to begin measurement 
  L: bit output, activates laser 
  S: bit input, senses laser reflection 
  D: 16-bit output, displays computed distance  

sensor 

laser 
T (in seconds) 

Laser-based 
distance 
measurer 16 

from button 

to display S 

L 

D 

B 
to laser 

from sensor 
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Laser-Based Distance Measurer 
Step 1 : Capture a high-level state machine 

Laser-based 
distance measurer 

16 

from button 

to display 
S 

L 

D 

B 
to laser 

from sensor 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) 

L = 0 
D = 0 

(turn laser off) 
(set distance = 0) 

a 

S0 ? 

  Step 1: Create high-level state machine 
  Begin by declaring inputs and outputs 
  Create initial state, name it S0 

  Initialize laser to off (L=0) 
  Initialize displayed distance to 0 (D=0) 
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Laser-Based Distance Measurer 
Step 1 : Capture a high-level state machine 

Q: What should S2 do? 

A: Turn on the laser a 

Laser-based 
distance measurer 

16 

from button 

to display 
S 

L 

D 

B 
to laser 

from sensor 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) 

  Add another state, call S1, that waits for a button press 
  B’ – stay in S1, keep waiting 
  B – go to a new state S2 

S0 

L = 0 
D = 0 

a 

S1 

B’ (button not pressed) 

S2 B 
(button pressed) 
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Laser-Based Distance Measurer 
Step 1 : Capture a high-level state machine 

Q: What do next? 
A: Start timer, wait to sense reflection 

a 

Laser-based 
distance measurer 

16 

from button 

to display 
S 

L 

D 

B 
to laser 

from sensor 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) 

  Add a state S2 that turns on the laser (L=1) 
  Then turn off laser (L=0) in a state S3 

L = 1 
(laser on) 

S0 S1 S2 

L = 0 
D = 0 

Dctr = 0 

B’ 

B 

a 

S3 

L=0 
(laser off) 
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Laser-Based Distance Measurer 
Step 1 : Capture a high-level state machine 

Laser-based 
distance measurer 

16 

from button 

to display 
S 

L 

D 

B 
to laser 

from sensor Local Registers: Dctr (16 bits) 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) 

  Stay in S3 until sense reflection (S) 
  To measure time, count cycles for which we are in S3 

  To count, declare local register Dctr 
  Increment Dctr each cycle in S3 
  Initialize Dctr to 0 in S1. S2 would have been O.K. too 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L=0 
Dctr = Dctr + 1 

Dctr = 0 

B’ S’ 

B S (reflection) 

(no reflection) 

? 

a 
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Laser-Based Distance Measurer 
Step 1 : Capture a high-level state machine 

  Once reflection detected (S), go to new state S4 
  Calculate distance  
  Assuming clock frequency is 3x108, Dctr holds number of meters, so D=Dctr/2 

  After S4, go back to S1 to wait for button again 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L=0 
Dctr = Dctr + 1 

Dctr = 0 

B’ S’ 

B S 
D = Dctr / 2 (calculate D) 

S4 

a 

Local Registers: Dctr (16 bits) 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) Laser-based 

distance measurer 

16 

from button 

to display 
S 

L 

D 

B 
to laser 

from sensor 
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Laser-Based Distance Measurer 
Step 2: Create a Datapath 

  Datapath must 
  Implement data storage 
  Implement data computations 

  Look at high-level state machine, do three substeps 
a)  Make data inputs/outputs be datapath inputs/outputs 
b)  Instantiate declared registers into the datapath (also instantiate a 

register for each data output) 
c)  Examine every state and transition, and instantiate datapath 

components and connections to implement any data computations 

Instantiate: to introduce a new 
component into a design. 
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Laser-Based Distance Measurer 
 Step 2: Create a Datapath 

Local Registers: Dctr (16 bits) 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L=0 
Dctr = Dctr + 1 

Dctr = 0 

B ‘ S ‘ 

B S 
D = Dctr / 2 

S4 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) a)  Make data inputs/outputs 

be datapath inputs/outputs 

b)  Instantiate declared 
registers into the datapath 
(also instantiate a register 
for each data output) 

c)  Examine every state and 
transition, and instantiate 
datapath components and 
connections to implement 
any data computations 

a)  Make data inputs/outputs 
be datapath inputs/outputs 

b)  Instantiate declared 
registers into the datapath 
(also instantiate a register 
for each data output) 

c)  Examine every state and 
transition, and instantiate 
datapath components and 
connections to implement 
any data computations 

a)  Make data inputs/outputs 
be datapath inputs/outputs 

b)  Instantiate declared 
registers into the datapath 
(also instantiate a register 
for each data output) 

c)  Examine every state and 
transition, and instantiate 
datapath components and 
connections to implement 
any data computations 

Q 

Dctr: 16-bit 
up-counter 

16 

D 

Datapath 

Q 

I Dreg : 16-bit 
register 

a 
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Laser-Based Distance Measurer 
 Step 2: Create a Datapath 

Q 

Dctr: 16-bit 
up-counter 

Datapath 

Dreg_clr 

Dctr_clr 

Dctr_cnt 

Dreg_ld 

clear 

load 

clear 

count 

Q 

I Dreg : 16-bit 
register 

16 

D 

a 

a)  Make data inputs/outputs 
be datapath inputs/outputs 

b)  Instantiate declared 
registers into the datapath 
(also instantiate a register 
for each data output) 

c)  Examine every state and 
transition, and instantiate 
datapath components and 
connections to implement 
any data computations 

Local Registers: Dctr (16 bits) 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L=0 
Dctr = Dctr + 1 

Dctr = 0 

B ‘ S ‘ 

B S 
D = Dctr / 2 

S4 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) 

16 

16 

>>1 
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Laser-Based Distance Measurer 
Step 3: Connecting the Datapath to a Controller 

  Laser-based distance 
measurer example 

  Easy – just connect 
all control signals 
between controller 
and datapath 

300 M H z Clock 
D 

B L 

S 

16 
to display 

from button 
Controller 

to laser 
from sensor 

Datapath 

Dreg_clr 
Dreg_ld 
Dctr_clr 
Dctr_cnt 

clear 
count clear 

load 
Q Q 

I Dctr: 16-bit 
up-counter Dreg: 16-bit 

register 
16 
D 

Datapath 
Dreg_clr 
Dctr_clr 
Dctr_cnt 
Dreg_ld 
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Laser-Based Distance Measurer 
Step 4: Deriving the Controller’s FSM 

  FSM has same structure as high-level state machine 
  Inputs/outputs all bits now 
  Replace data operations by bit operations using datapath 

300 M H z Clock 

D 

B 
L 

S 

16 

t o displ a y 

f r om but t on 
C o n t r oller 

t o laser 

f r om sensor 

D a tap a th 

D r eg_clr 

D r eg_ld 

D c tr_clr 

D c tr_c n t 

a 

Local Registers: Dctr (16 bits) 

S0 S1 S2 S3 

L = 0 
D = 0 

L = 1 L=0 
Dctr = Dctr + 1 

Dctr = 0 

B ‘ S ‘ 

B S 
D = Dctr / 2 

S4 

Inputs: B, S (1 bit each) 
Outputs: L (bit), D (16 bits) 

ECE 474a/575a 

Inputs: B, S 
Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt 

S0 S1 S2 S3 

B’ S’ 

B S 
S4 

L = 0 
Dreg_clr = 1 
(laser off) 
(clear D reg) 

Dctr_clr = 1 
(clear count) 

L = 1 
(laser on) 

L = 0 
Dctr_cnt = 1 
(laser off) 
(count up) 

Dreg_ld = 1 
Dctr_cnt = 0 
(load D reg with Dctr/2) 
(stop counting) 
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Video Compression – Sum of Absolute Differences 

  Video is a series of frames (e.g., 30 per second) 
  Most frames similar to previous frame 

  Compression idea: just send difference from previous frame 

Digitized 
frame 2 

1 Mbyte 

Frame 2 

Digitized 
frame 1 

Frame 1 

1 Mbyte 
( a ) 

Digitized 
frame 1 

Frame 1 

1 Mbyte 
( b ) 

Only difference: UFO 

a Difference of 
2 from 1 

0.01 Mbyte 

Frame 2 

Just send 
difference 
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Video Compression – Sum of Absolute Differences 

  Need to quickly determine whether two frames are similar enough to just 
send difference for second frame 
  Compare corresponding 16x16 “blocks” 

  Treat 16x16 block as 256-byte array 

  Compute the absolute value of the difference of each array item 
  Sum those differences – if above a threshold, send complete frame for second 

frame; if below, can use difference method (using another technique, not 
described) 

Frame 2 Frame 1 
compare 

Each is a pixel, assume 
represented as 1 byte 
(actually, a color picture might 
have 3 bytes per pixel, for 
intensity of red, green, and 
blue components of pixel) 
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Video Compression – Sum of Absolute Differences 

  Want fast sum-of-absolute-differences (SAD) component 
  When go=1, sums the differences of element pairs in arrays A and B, outputs that 

sum 

B 

A 

go 

SAD 

sad 

256-byte array 

256-byte array 
integer 
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Video Compression – Sum of Absolute Differences 

  Step 1: Create high-level state 
machine  
  S0 - wait for go 
  S1- initialize sum and index  
  S2 - check if done (i>=256) 
  S3 - add difference to sum, 

increment index 
  S4 - done, write to output sad_reg 

B 

A 

go 

SAD 

sad 

Inputs: A, B (256 byte memory); go (bit) 
Outputs: sad (32 bits) 
Local registers: sum, sad_reg (32 bits); i (9 bits) 

!go S0 
go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ r eg = sum 

S2 
i<256 

(i<256)’ 

a 
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Video Compression – Sum of Absolute Differences 

  Step 2: Create datapath 

Inputs: A, B (256 byte memory); go (bit) 
Outputs: sad (32 bits) 
Local registers: sum, sad_reg (32 bits); i (9 bits) 

!go S0 

go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ reg=sum 

S2 

i<256 

(i<256)’ 

i_lt_256 

i_inc 

i_clr 

sum_ld 

sum_clr 

sad_reg_ld 

Datapath 

sum 

sad_reg 

sad 

AB_addr A_data B_data 

< 256 
9 

32 

8 

8 

8 8 

32 32 

32 

i – 

+ 

abs 
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Video Compression – Sum of Absolute Differences 

  Step 3: Connect to controller 
  Step 4: Replace high-level state machine by FSM 

i_lt_256 

i_inc 

i_clr 

sum_ld 

sum_clr 

sad_reg_ld 

Datapath 

sum 

sad_reg 

sad 

AB_addr A_data B_data 

< 256 
9 

32 

8 

8 

8 8 

32 32 

32 

i – 

+ 

abs 

!go S0 

go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ reg=sum 

S2 

i<256 

(i<256)’ 

Controller 

go AB_ r d 

sum_clr=1 
i_clr=1 

i_lt_256 

i_inc=1 

i_lt_256’ 

sum_ld=1; 
AB_rd=1 

sad_reg_ld=1 
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Video Compression – Sum of Absolute Differences 

  Comparing software and custom circuit 
SAD  
  Circuit: Two states (S2 & S3) for each 

i, 256 i’s 512 clock cycles 
  Software: Loop (for i = 1 to 256), but 

for each i, must move memory to local 
registers, subtract, compute absolute 
value, add to sum, increment i – say 
about 6 cycles per array item  256*6 
= 1536 cycles 

  Circuit is about 3 times (300%) faster 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S2 
i<256 

(i<256)’ 
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RTL Design Pitfalls and Good Practice 

  Common pitfall: Assuming register is 
update in the state it’s written 

  Example 
  Final value of Q? Final state? 
  Answers may surprise you 

  Value of Q unknown 
  Final state is C, not D 

  Why? 
  State A: R=99 and Q=R happen 

simultaneously 
  State B: R not updated with R+1 

until next clock cycle, simultaneously 
with state register being updated 
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RTL Design Pitfalls and Good Practice 

  Solutions 
  Read register in 

following state (Q=R) 
  Insert extra state so that 

conditions use updated 
value 

  Other solutions are 
possible, depends on the 
example 
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Determining Clock Frequency 

  Designers of digital circuits often want 
fastest performance 
  Means want high clock frequency 

  Frequency limited by longest 
register-to-register delay 
  Known as critical path 
  If clock is any faster, incorrect data may 

be stored into register 
  Longest path on right is 2 ns 

  Ignoring wire delays, and register setup 
and hold times, for simplicity 

a 

+ 

b 

c 

2 ns 
del a y 

clk 
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Critical Path 

  Example shows four paths 
  a to c through + (2 ns) 
  a to d through + and * (7 ns) 
  b to d through + and * (7 ns) 
  b to d through * (5 ns) 

  Longest path is thus 7 ns 
  Fastest frequency 

  1 / 7 ns = 142 MHz 

+ * 

c d 

7 ns 7 ns 
5 ns 
delay 2 ns 

delay 

Max 
(2,7,7,5) 
= 7 ns 

a b 

5 
ns

 

7 
ns

 
7 

ns
 

2 
ns
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Critical Path Considering Wire Delays 

  Real wires have delay too 
  Must include in critical path 

  Example shows two paths 
  Each is 0.5 + 2 + 0.5 = 3 ns 

  Trend 
  1980s/1990s: Wire delays were tiny 

compared to logic delays 
  But wire delays not shrinking as fast as logic 

delays 
  Wire delays may even be greater than logic 

delays! 

  Must also consider register setup and hold 
times, also add to path 

  Then add some time to the computed path, 
just to be safe 
  e.g., if path is 3 ns, say 4 ns instead 

a 

+ 

b 

c 

2 ns 

3 
ns
 

0.5 ns 0.5 ns 

0.5 ns 

clk 

3 
ns
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A Circuit May Have Numerous Paths 

  Paths can exist 
  In the datapath 
  In the controller 
  Between the controller and 

datapath 
  May be hundreds or thousands of 

paths 

  Timing analysis tools that evaluate 
all possible paths automatically 
very helpful 

Combinational logic 

c 
tot_lt_s 

clk 

n1 

d 
tot_ld 

tot_lt_s 

t ot_clr 

s0 s1 

n0 

State register 

s 
8 8 

8 

8 

a 

ld 
clr tot 

Datapath 

8-bit 
< 8-bit 

adder 

( c ) 

( b ) ( a ) 
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Behavioral Level Design: C to Gates 

  Earlier sum-of-absolute-differences example 
  Started with high-level state machine 
  C code is an even better starting point -- 

easier to understand 

a 

!go S0 
go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ r eg = sum 

S2 
i<256 

(i<256)’ 

i n t SAD (byte A[256], byte B[256]) // not quite C syntax 
{ 
     uint sum; short uint I; 
     sum = 0; 
     i = 0; 
     while (i < 256) { 
          sum = sum + abs(A[i] – B[i]); 
          i = i + 1; 
     } 

return sum; 
} 

C code 
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Behavioral-Level Design 
Start with C (or Similar Language) 

  Replace first step of RTL design method by two steps 
  Capture in C, then convert C to high-level state machine 
  How convert from C to high-level state machine? 

Step 1A: Capture in C 

Step 1B: Convert to high-level state machine 

a 
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Converting from C to High-Level State Machine 

  Convert each C construct to equivalent 
states and transitions 

  Assignment statement 
  Becomes one state with assignment 

  If-then statement 
  Becomes state with condition check, 

transitioning to “then” statements if 
condition true, otherwise to ending 
state 
  “then” statements would also be 

converted to states 

target = expression; target= 
expression 

(then stmts) if (cond) { 
    // then stmts 
} 

!cond 
cond 

(end) 

a 

a 
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Converting from C to High-Level State Machine 

  If-then-else 
  Becomes state with condition check, 

transitioning to “then” statements if 
condition true, or to “else” statements 
if condition false 

  While loop statement 
  Becomes state with condition check, 

transitioning to while loop’s statements 
if true, then transitioning back to 
condition check 

if (cond) { 
    // then stmts 
} 
else { 
   // else stmts 
} 

!cond 
cond 

(end) 

(then stmts) (else stmts) 

while (cond) { 
    // while stmts 
} 

!cond 
cond 

(while stmts) 

(end) 

a 

a 
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Simple Example of Converting from C to High-Level 
State Machine 

  Simple example: Computing the maximum of two numbers 
  Convert if-then-else statement to states (b) 
  Then convert assignment statements to states (c) 

(end) 

(c) 

X>Y 

!(X>Y) 

(end) 

(then stmts) (else stmts) 

(b) 

X>Y 

!(X>Y) 

Max=X Max=Y 

(a) 

Inputs: uint X, Y 
Outputs: uint Max 

if (X > Y) { 

} 
else { 

} 

Max = X; 

Max = Y; 
a a 
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Example: Converting Sum-of-Absolute-Differences C code 
to High-Level State Machine 

  Convert each construct to states 
  Simplify when possible, e.g., 

merge states 

!go go 

sum=0 
i=0 

sum=0 

i=0 

!go go 

!go go 

sum=0 
i=0 

while stmts 

!(i<256) 

i<256 

sad = 
sum 

!go go 

sum=0 
i=0 

!(i<256) 

i<256 

sum=sum 
 + abs 
i = i + 1 

a 

!(!go) 

!go 
while stmts 

    sum = sum + abs(A[i] - B[i]); 

Inputs: byte A[256], B[256] 
bit go; 

Output: int sad 
main() 
{ 
   uint sum; short uint I; 
   while (1) { 

sum = 0; 
i = 0; 

while (!go); 

while (i < 256) { 

    i = i + 1; 
} 
sad = sum; 

} 
} 

!go go 

sum=0 
i=0 

!(i<256) 

i<256 

sad = 
sum 

sum=sum 
 + abs 
i = i + 1 
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Example: Converting Sum-of-Absolute-Differences C code 
to High-Level State Machine 

  From high-level state machine, follow RTL design method to create circuit 
  Thus, can convert C to gates using straightforward automatable process 

  Not all C constructs can be efficiently converted 
  Use C subset if intended for circuit 
  Can use languages other than C, of course 

    sum = sum + abs(A[i] - B[i]); 

Inputs: byte A[256, B[256] 
bit go; 

Output: int sad 
main() 
{ 
   uint sum; short uint I; 
   while (1) { 

sum = 0; 
i = 0; 

while (!go); 

while (i < 256) { 

    i = i + 1; 
} 
sad = sum; 

} 
} 

!go go 

sum=0 
i=0 

!(i<256) 

i<256 

sad = 
sum 

sum=sum 
 + abs 
i = i + 1 


