
1

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

ECE 474A/57A
Computer-Aided Logic Design

REVIEW
Sequential Logic and RTL Design

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  State Diagram or Finite-State Machine (FSM)
  A way to describe desired behavior of

sequential circuit
  List states, and transitions among states

  Laser Timer
  When button pressed (b=1), turn laser on (x=1)

for 3 clock cycles

  Four states
  Off state

  Keep laser turned off
  While b=0 (b’), we are in a wait state
  When b=1 and rising clock edge (b • clk^), transition

to On1 state

  On1 state
  Turns laser on (x=1)
  On next rising clock edge (clk^) transition to On2

state

  On2/On3 state
  Also turns laser on (x=1)
  Transitions on next rising clock edge

FSM Example: Three-Cycles High Laser Timer

Controller
x

b

clk

laser

 patient

On2 On1 On3

O ff

x=1 x=1 x=1

x=0

b ’

b

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  FSM
  Graphical representation
  Formal method to describe sequential

circuits

  State Table
  Textual Representation

  How do we implement a sequential
circuit?
  Standard Controller architecture

  Need to store state
  State register (encoded state)

  Need to determine next state
  Current state and external input to

combinational logic
  Need to determine output

  Current state input to combinational
logic

On2 On1 On3

O ff

x=1 x=1 x=1

x=0

b ’

b

x

State register clk

n1

n0

Combinational
logic

s1 s0

b

FS
M

 in
pu

ts

FS
M

 o
ut

pu
ts

Controller architecture for
laser timer example

Graphical and Textual Sequential Circuit Descriptions

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  State Table
  Inputs

  Current state (encoded) - Two bits
s1 and s0 encode the current state

  FSM Input - Input b indicates
button press

  Outputs
  Next state (encoded) - Two bits n1

and n0 encode the next state

  FSM Output - Output x controls when
the laser is on/off

Outputs Inputs

Combinational
logic

State register

s1 s0

n1

n0

x b

clk

FS
M

 in
pu

ts

FS
M

 o
ut

pu
ts

s1 s0 b x n1 n0

State Table Example: Laser Timer (cont’)

2

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  State Table
  Next state

  Based on current state and FSM
input what is the next state?

  FSM Output
  Output depends on current state

only (Moore FSM)
  For each state we are currently

in, what is the output?

On2 On1 On3

O ff

x=1 x=1 x=1

x=0

b ’

b

0 0
0 1

0
0

1 0
1 0

1
1

1 1
1 1

1
1

0 0
0 0

1
1

Outputs Inputs
s1 s0 b n1 n0 x
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Off

On1

On2

On3

00

01 10 11

State Table Example: Laser Timer (cont’)

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Create an FSM (state diagram) that describes the desired
behavior of the circuit

Capture the FSM Step 1:

Create the standard architecture by using a state register of
appropriate width, and combinational logic with inputs being
the state register bits and the FSM inputs, and outputs being
the next state bits and the FSM outputs

Create the architecture Step 2:

Assign a unique binary number to each state. Each binary
number representing a state is know as an encoding. Any
encoding will do as long as they are unique.

Encode the states Step 3:

Create a truth table for the combinational logic such that the
logic will generate the correct FSM output and next state
signals. Ordering the inputs with state bits first make the truth
table describe the state behavior, giving us a state table.

Create the state table Step 4:

Implement the combinational logic using any method. Implement the
combinational logic

Step 5:

Description Step

(Condensed) Controller Design Process

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  Example: Laser Timer

  Step 1: Capture the FSM
  Already done

  Step 2: Create architecture
  Customize generic controller architecture

to our system
  State Register

  2-bit state register (for 4 states)
  s1, s0 – current state bits
  n1, n0 – next state bits

  FSM Input
  Button signal b

  FSM Output
  Laser control x

On2 On1 On3

O ff

x=1 x=1 x=1

x=0

b ’

b

x

State register clk

n1

n0

Combinational
logic

s1 s0

b

FS
M

 in
pu

ts

FS
M

 o
ut

pu
ts

Controller Design: Laser Timer

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  Step 3: Encode the states
  Any encoding with each state unique

will work

  Step 4: Create state table
  Done this already

On2 On1 On3

O ff

x=1 x=1 x=1

x=0

b ’

b

00

01 10 11

0 0
0 1

0
0

1 0
1 0

1
1

1 1
1 1

1
1

0 0
0 0

1
1

Outputs Inputs
s1 s0 b n1 n0 x
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Off

On1

On2

On3

Controller Design: Laser Timer (Cont’)

3

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  Step 5: Implement the combinational
logic

On2 On1 On3

O ff

x=1 x=1 x=1

x=0

b ’

b

00

01 10 11

0 0
0 1

0
0

1 0
1 0

1
1

1 1
1 1

1
1

0 0
0 0

1
1

Outputs Inputs
s1 s0 b n1 n0 x
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Off

On1

On2

On3

n1 = s1’s0b’ + s1’s0b + s1s0’b’ + s1s0’b
n1 = s1’s0 + s1s0’

n0 = s1’s0’b + s1s0’b’ + s1s0’b
n0 = s1’s0’b + s1s0’

x = s1’s0’b + s1s0’b’ + s1s0’b
x = s1 + s0

Controller Design: Laser Timer (Cont’)

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

x = s1 + s0	

n1 = s1’s0 + s1s0’
n0 = s1’s0’b + s1s0’

n1

n0

s0 s1
clk

Combinational Logic

State register

b

FSM outputs FSM inputs
x

  Step 5: Implement combinational logic
(cont)

x

State register clk

n1

n0

Combinational
logic

s1 s0

b

FS
M

 in
pu

ts

FS
M

 o
ut

pu
ts

Controller Design: Laser Timer (Cont’)

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  FSM defined by quintuple
  M = (Σ, Γ, S, δ, λ, so)

  Σ is the input alphabet
  Γ is the output alphabet
  S is a finite set of states
  δ is the transition function, δ: X x S→S

  Given and input and state, what is the
next state

  λ is the output function, λ: S → Y
  Mealy FSM, λ: X x S → Y

  so is the initial state

On2 On1 On3

O ff

x=1 x=1 x=1

x=0

b ’

b

Outputs: x
Inputs: b

FSM Formal Definition

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  Formally specify the Laser Timer FSM
  M = (Σ, Γ, S, δ, λ, so)

On2 On1 On3

O ff

x=1 x=1 x=1

x=0

b ’

b

Outputs: x
Inputs: b

FSM Formal Definition

LaserTimer = (Σ, Γ, S, δ, λ, qo), where

Σ is the input alphabet

Σ = {0, 1}

Γ = {0, 1}

Y is the output alphabet
S = {Off, On1, On2, On3}

S is a finite set of states
δ(Off, 0) = Off, δ(Off, 1) = On1
δ(On1, 0) = On2, δ(On1, 1) = On2
δ(On2, 0) = On3, δ(On2, 1) =On3
δ(On3, 0) = Off, δ(On3, 1) = Off δ is the transition function, δ: X x S→S

Given and input and state, what is the next state
λ(Off) = 0, λ(On1) = 1, λ(On2) = 1, λ(On3) = 1

λ is the output funciton, λ: S → Y
so = Off

so is the initial state

4

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

  Why does the timing change?
  More detailed view of FSM implementation architecture

clk

I O

State register

Combinational
Logic

S

N

clk

I

O

State register

Next State
Logic

S

N

FSM Output
Logic

Moore FSM

Next state logic – function of
present state and FSM inputs

Output logic - function of
present state only

clk

I

O

State register

Next State
Logic

S

N

FSM Output
Logic

Mealy FSM

Next state logic – function of
present state and FSM inputs

Output logic - function of
present state and FSM inputs

Moore vs. Mealy FSM - Architecture

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

ECE 474A/57A
Computer-Aided Logic Design

Register-Transfer Level (RTL) Design

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Method

Describe the system’s desired behavior as a high-level state
machine. The state machine consists of states and
transitions. The state machine is “high-level” because the
transition conditions and the state actions are more than just
Boolean operations on bit inputs and outputs

Capture the high-level
FSM

Step 1:

Create a datapath to carry out the data operations on the
high-level state machine

Create a datapath Step 2:

Connect the datapath to the controller block. Connect external
Boolean inputs and output to the controller block

Connect the datapath
to the controller

Step 3:

Convert the high-level state machine to a finite-state machine
(FSM) for the controller, by replacing data operations with
setting and reading of control signals to and from the datapath

Derive the controller’s
FSM

Step 4:

Description Step

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Method
Soda Dispenser Example

  Soda dispenser
  c: bit input, 1 when coin deposited
  a: 8-bit input having value of deposited coin
  s: 8-bit input having cost of a soda
  d: bit output, processor sets to 1 when total

value of deposited coins equals or exceeds
cost of a soda

How can we precisely describe this processor’s behavior?

a s

c

d

Soda dispenser
processor

50

0
0

total : 0

a s

c

d

Soda dispenser
processor

25 50

0
1

total : 25

a s

c

d

Soda dispenser
processor

50

0
0

total : 25

a s

c

d

Soda dispenser
processor

25 50

0
1

total : 50

a s

c

d

Soda dispenser
processor

50

0
0

total : 50

a s

c

d

Soda dispenser
processor

50

0
0

total : 0

a s

c

d

Soda dispenser
processor

50

1
0

total : 50

a s

c

d

Soda dispenser
processor

5

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Method
Soda Dispenser - Step 1: Capture the high-level FSM

  Step 1: Describe behavior using high-level FSM
  Start with inputs/output of system
  Declare local register tot
  Init state

  Don’t dispense soda (d=0), clear running total
(tot=0)

  Wait state
  Wait for coin, if see coin go to Add state

  Add state
  Update total value: tot = tot + a

  Remember, a is present coin’s value
  Go back to Wait state

  In Wait state
  If tot < = s, Wait
  If tot >= s, go to Disp(ense) state

  Disp state
  Set d=1 (dispense soda)
  Return to Init state

Inputs: c (bit), a (8 bits), s (8 bits)
Outputs: d (bit)
Local registers: tot (8 bits)

c’•(tot<s)

d=1

Init

d=0
tot=0

Wait
Add

c

tot=tot+a

Disp

c’•(tot<s)’

8 8 a s

c

d

Soda dispenser
processor

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Method
FSM vs. High-level FSM

  Created a high-level FSM, not an FSM,
because
  Multi-bit (data) inputs a and s
  Local register tot
  Data operations tot=0, tot<s, tot=tot

+a.

  High-level state machines are useful,
  Data types beyond just bits
  Local registers
  Arithmetic equations/expressions

Inputs: c (bit), a (8 bits), s (8 bits)
Outputs: d (bit)
Local registers: tot (8 bits)

c’•(tot<s)

d=1

Init

d=0
tot=0

Wait
Add

c

tot=tot+a

Disp

c’•(tot<s)’

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Method
Soda Dispenser - Step 2: Create a datapath

  Step 2: Create a Datapath
  What’s going in and out of

datapath?
  Multi-bit values – a, s

  Need tot register
  Need 8-bit comparator to

compare s and tot
  Need 8-bit adder to

perform tot = tot + a

Inputs: c (bit), a (8 bits), s (8 bits)
Outputs: d (bit)
Local registers: tot (8 bits)

Disp

c’*(tot<s)

d=1

Init

d=0
tot=0

Wait
Add

c

tot=tot+a

c’*(tot<s)’

tot_ld

tot_clr
ld
clr

tot

Datapath

8

tot_lt_s 8-bit
<

8

8-bit
adder

8

8

s a

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Method
Soda Dispenser - Step 3: Connect the datapath to a controller

  Step 3: connect datapath to controller
  Controller’s inputs

  External input c (coin detected)
  Input from datapath comparator’s output, which we named tot_lt_s

  Controller’s outputs
  External output d (dispense soda)
  Outputs to datapath to load and clear the tot register

tot_lt_s

clr
tot

Datapath

8-bit
<

8

8-bit
adder

8

8

s a

Controller

8

ld
tot_ld

tot_clr
c

d

6

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Method
Soda Dispenser - Step 4: Derive the controller’s FSM

tot_lt_s

tot_clr
tot_ld

Controller Datapath

s

c
d

a
8 8   Step 4: Derive the Controller’s FSM

  Same states and arcs as high-level state
machine

  Transitions and state assignment are bit
operations
  Set/read datapath control signals for all

datapath operations and conditions

Inputs: c (bit), tot_lt_s (bit)
Outputs: d(bit), tot_ld (bit), tot_clr (bit)

d=1

d=0

c

c

d
tot_ld
tot_clr

tot_lt_s
tot_clr=1

c’ • tot_lt_s’

c’ • tot_lt_s

tot_ld=1

Inputs: c (bit), a (8 bits), s (8 bits)
Outputs: d (bit)
Local registers: tot (8 bits)

c’•(tot<s)

d=1

Init

d=0
tot=0

Wait
Add

c

tot=tot+a

Disp

c’•(tot<s)’

Disp

Init Wait

Add

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Method
Soda Dispenser - Completing the design

  Once we have FSM
  Implement the FSM as a state

register and logic
  State table shown on right

Inputs: c (bit), tot_lt_s (bit)
Outputs: d(bit), tot_ld (bit), tot_clr (bit)

d=1

d=0

c

c

d
tot_ld
tot_clr

tot_lt_s
tot_clr=1

c’ • tot_lt_s’

c’ • tot_lt_s

tot_ld=1

Disp

Init Wait

Add

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
Step 1: Capture a high-level state machine

  Example of how to create a high-level state machine to describe desired
processor behavior

  Laser-based distance measurement – pulse laser, measure time T to sense
reflection
  Laser light travels at speed of light, 3*108 m/sec
  Distance is thus D = T sec * 3*108 m/sec / 2

Object of
interest

D

2D = T sec * 3*108 m/sec
sensor

laser
T (in seconds)

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
Step 1 : Capture a high-level state machine

  Inputs/outputs
  B: bit input, from button to begin measurement
  L: bit output, activates laser
  S: bit input, senses laser reflection
  D: 16-bit output, displays computed distance

sensor

laser
T (in seconds)

Laser-based
distance
measurer 16

from button

to display S

L

D

B
to laser

from sensor

7

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
Step 1 : Capture a high-level state machine

Laser-based
distance measurer

16

from button

to display
S

L

D

B
to laser

from sensor

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

L = 0
D = 0

(turn laser off)
(set distance = 0)

a

S0 ?

  Step 1: Create high-level state machine
  Begin by declaring inputs and outputs
  Create initial state, name it S0

  Initialize laser to off (L=0)
  Initialize displayed distance to 0 (D=0)

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
Step 1 : Capture a high-level state machine

Q: What should S2 do?

A: Turn on the laser a

Laser-based
distance measurer

16

from button

to display
S

L

D

B
to laser

from sensor

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

  Add another state, call S1, that waits for a button press
  B’ – stay in S1, keep waiting
  B – go to a new state S2

S0

L = 0
D = 0

a

S1

B’ (button not pressed)

S2 B
(button pressed)

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
Step 1 : Capture a high-level state machine

Q: What do next?
A: Start timer, wait to sense reflection

a

Laser-based
distance measurer

16

from button

to display
S

L

D

B
to laser

from sensor

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

  Add a state S2 that turns on the laser (L=1)
  Then turn off laser (L=0) in a state S3

L = 1
(laser on)

S0 S1 S2

L = 0
D = 0

Dctr = 0

B’

B

a

S3

L=0
(laser off)

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
Step 1 : Capture a high-level state machine

Laser-based
distance measurer

16

from button

to display
S

L

D

B
to laser

from sensor Local Registers: Dctr (16 bits)

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

  Stay in S3 until sense reflection (S)
  To measure time, count cycles for which we are in S3

  To count, declare local register Dctr
  Increment Dctr each cycle in S3
  Initialize Dctr to 0 in S1. S2 would have been O.K. too

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B’ S’

B S (reflection)

(no reflection)

?

a

8

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
Step 1 : Capture a high-level state machine

  Once reflection detected (S), go to new state S4
  Calculate distance
  Assuming clock frequency is 3x108, Dctr holds number of meters, so D=Dctr/2

  After S4, go back to S1 to wait for button again

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B’ S’

B S
D = Dctr / 2 (calculate D)

S4

a

Local Registers: Dctr (16 bits)

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits) Laser-based

distance measurer

16

from button

to display
S

L

D

B
to laser

from sensor

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
Step 2: Create a Datapath

  Datapath must
  Implement data storage
  Implement data computations

  Look at high-level state machine, do three substeps
a)  Make data inputs/outputs be datapath inputs/outputs
b)  Instantiate declared registers into the datapath (also instantiate a

register for each data output)
c)  Examine every state and transition, and instantiate datapath

components and connections to implement any data computations

Instantiate: to introduce a new
component into a design.

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
 Step 2: Create a Datapath

Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B ‘ S ‘

B S
D = Dctr / 2

S4

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits) a)  Make data inputs/outputs

be datapath inputs/outputs

b)  Instantiate declared
registers into the datapath
(also instantiate a register
for each data output)

c)  Examine every state and
transition, and instantiate
datapath components and
connections to implement
any data computations

a)  Make data inputs/outputs
be datapath inputs/outputs

b)  Instantiate declared
registers into the datapath
(also instantiate a register
for each data output)

c)  Examine every state and
transition, and instantiate
datapath components and
connections to implement
any data computations

a)  Make data inputs/outputs
be datapath inputs/outputs

b)  Instantiate declared
registers into the datapath
(also instantiate a register
for each data output)

c)  Examine every state and
transition, and instantiate
datapath components and
connections to implement
any data computations

Q

Dctr: 16-bit
up-counter

16

D

Datapath

Q

I Dreg : 16-bit
register

a

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
 Step 2: Create a Datapath

Q

Dctr: 16-bit
up-counter

Datapath

Dreg_clr

Dctr_clr

Dctr_cnt

Dreg_ld

clear

load

clear

count

Q

I Dreg : 16-bit
register

16

D

a

a)  Make data inputs/outputs
be datapath inputs/outputs

b)  Instantiate declared
registers into the datapath
(also instantiate a register
for each data output)

c)  Examine every state and
transition, and instantiate
datapath components and
connections to implement
any data computations

Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B ‘ S ‘

B S
D = Dctr / 2

S4

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

16

16

>>1

9

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Laser-Based Distance Measurer
Step 3: Connecting the Datapath to a Controller

  Laser-based distance
measurer example

  Easy – just connect
all control signals
between controller
and datapath

300 M H z Clock
D

B L

S

16
to display

from button
Controller

to laser
from sensor

Datapath

Dreg_clr
Dreg_ld
Dctr_clr
Dctr_cnt

clear
count clear

load
Q Q

I Dctr: 16-bit
up-counter Dreg: 16-bit

register
16
D

Datapath
Dreg_clr
Dctr_clr
Dctr_cnt
Dreg_ld

Digital Design
Copyright © 2006
Frank Vahid

Laser-Based Distance Measurer
Step 4: Deriving the Controller’s FSM

  FSM has same structure as high-level state machine
  Inputs/outputs all bits now
  Replace data operations by bit operations using datapath

300 M H z Clock

D

B
L

S

16

t o displ a y

f r om but t on
C o n t r oller

t o laser

f r om sensor

D a tap a th

D r eg_clr

D r eg_ld

D c tr_clr

D c tr_c n t

a

Local Registers: Dctr (16 bits)

S0 S1 S2 S3

L = 0
D = 0

L = 1 L=0
Dctr = Dctr + 1

Dctr = 0

B ‘ S ‘

B S
D = Dctr / 2

S4

Inputs: B, S (1 bit each)
Outputs: L (bit), D (16 bits)

ECE 474a/575a

Inputs: B, S
Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_cnt

S0 S1 S2 S3

B’ S’

B S
S4

L = 0
Dreg_clr = 1
(laser off)
(clear D reg)

Dctr_clr = 1
(clear count)

L = 1
(laser on)

L = 0
Dctr_cnt = 1
(laser off)
(count up)

Dreg_ld = 1
Dctr_cnt = 0
(load D reg with Dctr/2)
(stop counting)

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Video Compression – Sum of Absolute Differences

  Video is a series of frames (e.g., 30 per second)
  Most frames similar to previous frame

  Compression idea: just send difference from previous frame

Digitized
frame 2

1 Mbyte

Frame 2

Digitized
frame 1

Frame 1

1 Mbyte
(a)

Digitized
frame 1

Frame 1

1 Mbyte
(b)

Only difference: UFO

a Difference of
2 from 1

0.01 Mbyte

Frame 2

Just send
difference

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Video Compression – Sum of Absolute Differences

  Need to quickly determine whether two frames are similar enough to just
send difference for second frame
  Compare corresponding 16x16 “blocks”

  Treat 16x16 block as 256-byte array

  Compute the absolute value of the difference of each array item
  Sum those differences – if above a threshold, send complete frame for second

frame; if below, can use difference method (using another technique, not
described)

Frame 2 Frame 1
compare

Each is a pixel, assume
represented as 1 byte
(actually, a color picture might
have 3 bytes per pixel, for
intensity of red, green, and
blue components of pixel)

10

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Video Compression – Sum of Absolute Differences

  Want fast sum-of-absolute-differences (SAD) component
  When go=1, sums the differences of element pairs in arrays A and B, outputs that

sum

B

A

go

SAD

sad

256-byte array

256-byte array
integer

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Video Compression – Sum of Absolute Differences

  Step 1: Create high-level state
machine
  S0 - wait for go
  S1- initialize sum and index
  S2 - check if done (i>=256)
  S3 - add difference to sum,

increment index
  S4 - done, write to output sad_reg

B

A

go

SAD

sad

Inputs: A, B (256 byte memory); go (bit)
Outputs: sad (32 bits)
Local registers: sum, sad_reg (32 bits); i (9 bits)

!go S0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ r eg = sum

S2
i<256

(i<256)’

a

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Video Compression – Sum of Absolute Differences

  Step 2: Create datapath

Inputs: A, B (256 byte memory); go (bit)
Outputs: sad (32 bits)
Local registers: sum, sad_reg (32 bits); i (9 bits)

!go S0

go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ reg=sum

S2

i<256

(i<256)’

i_lt_256

i_inc

i_clr

sum_ld

sum_clr

sad_reg_ld

Datapath

sum

sad_reg

sad

AB_addr A_data B_data

< 256
9

32

8

8

8 8

32 32

32

i –

+

abs

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Video Compression – Sum of Absolute Differences

  Step 3: Connect to controller
  Step 4: Replace high-level state machine by FSM

i_lt_256

i_inc

i_clr

sum_ld

sum_clr

sad_reg_ld

Datapath

sum

sad_reg

sad

AB_addr A_data B_data

< 256
9

32

8

8

8 8

32 32

32

i –

+

abs

!go S0

go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ reg=sum

S2

i<256

(i<256)’

Controller

go AB_ r d

sum_clr=1
i_clr=1

i_lt_256

i_inc=1

i_lt_256’

sum_ld=1;
AB_rd=1

sad_reg_ld=1

11

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Video Compression – Sum of Absolute Differences

  Comparing software and custom circuit
SAD
  Circuit: Two states (S2 & S3) for each

i, 256 i’s 512 clock cycles
  Software: Loop (for i = 1 to 256), but

for each i, must move memory to local
registers, subtract, compute absolute
value, add to sum, increment i – say
about 6 cycles per array item 256*6
= 1536 cycles

  Circuit is about 3 times (300%) faster

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S2
i<256

(i<256)’

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Pitfalls and Good Practice

  Common pitfall: Assuming register is
update in the state it’s written

  Example
  Final value of Q? Final state?
  Answers may surprise you

  Value of Q unknown
  Final state is C, not D

  Why?
  State A: R=99 and Q=R happen

simultaneously
  State B: R not updated with R+1

until next clock cycle, simultaneously
with state register being updated

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

RTL Design Pitfalls and Good Practice

  Solutions
  Read register in

following state (Q=R)
  Insert extra state so that

conditions use updated
value

  Other solutions are
possible, depends on the
example

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Determining Clock Frequency

  Designers of digital circuits often want
fastest performance
  Means want high clock frequency

  Frequency limited by longest
register-to-register delay
  Known as critical path
  If clock is any faster, incorrect data may

be stored into register
  Longest path on right is 2 ns

  Ignoring wire delays, and register setup
and hold times, for simplicity

a

+

b

c

2 ns
del a y

clk

12

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Critical Path

  Example shows four paths
  a to c through + (2 ns)
  a to d through + and * (7 ns)
  b to d through + and * (7 ns)
  b to d through * (5 ns)

  Longest path is thus 7 ns
  Fastest frequency

  1 / 7 ns = 142 MHz

+ *

c d

7 ns 7 ns
5 ns
delay 2 ns

delay

Max
(2,7,7,5)
= 7 ns

a b

5
ns

7
ns

7

ns

2
ns

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Critical Path Considering Wire Delays

  Real wires have delay too
  Must include in critical path

  Example shows two paths
  Each is 0.5 + 2 + 0.5 = 3 ns

  Trend
  1980s/1990s: Wire delays were tiny

compared to logic delays
  But wire delays not shrinking as fast as logic

delays
  Wire delays may even be greater than logic

delays!

  Must also consider register setup and hold
times, also add to path

  Then add some time to the computed path,
just to be safe
  e.g., if path is 3 ns, say 4 ns instead

a

+

b

c

2 ns

3
ns

0.5 ns 0.5 ns

0.5 ns

clk

3
ns

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

A Circuit May Have Numerous Paths

  Paths can exist
  In the datapath
  In the controller
  Between the controller and

datapath
  May be hundreds or thousands of

paths

  Timing analysis tools that evaluate
all possible paths automatically
very helpful

Combinational logic

c
tot_lt_s

clk

n1

d
tot_ld

tot_lt_s

t ot_clr

s0 s1

n0

State register

s
8 8

8

8

a

ld
clr tot

Datapath

8-bit
< 8-bit

adder

(c)

(b) (a)

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Behavioral Level Design: C to Gates

  Earlier sum-of-absolute-differences example
  Started with high-level state machine
  C code is an even better starting point --

easier to understand

a

!go S0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ r eg = sum

S2
i<256

(i<256)’

i n t SAD (byte A[256], byte B[256]) // not quite C syntax
{
 uint sum; short uint I;
 sum = 0;
 i = 0;
 while (i < 256) {
 sum = sum + abs(A[i] – B[i]);
 i = i + 1;
 }

return sum;
}

C code

13

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Behavioral-Level Design
Start with C (or Similar Language)

  Replace first step of RTL design method by two steps
  Capture in C, then convert C to high-level state machine
  How convert from C to high-level state machine?

Step 1A: Capture in C

Step 1B: Convert to high-level state machine

a

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Converting from C to High-Level State Machine

  Convert each C construct to equivalent
states and transitions

  Assignment statement
  Becomes one state with assignment

  If-then statement
  Becomes state with condition check,

transitioning to “then” statements if
condition true, otherwise to ending
state
  “then” statements would also be

converted to states

target = expression; target=
expression

(then stmts) if (cond) {
 // then stmts
}

!cond
cond

(end)

a

a

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Converting from C to High-Level State Machine

  If-then-else
  Becomes state with condition check,

transitioning to “then” statements if
condition true, or to “else” statements
if condition false

  While loop statement
  Becomes state with condition check,

transitioning to while loop’s statements
if true, then transitioning back to
condition check

if (cond) {
 // then stmts
}
else {
 // else stmts
}

!cond
cond

(end)

(then stmts) (else stmts)

while (cond) {
 // while stmts
}

!cond
cond

(while stmts)

(end)

a

a

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Simple Example of Converting from C to High-Level
State Machine

  Simple example: Computing the maximum of two numbers
  Convert if-then-else statement to states (b)
  Then convert assignment statements to states (c)

(end)

(c)

X>Y

!(X>Y)

(end)

(then stmts) (else stmts)

(b)

X>Y

!(X>Y)

Max=X Max=Y

(a)

Inputs: uint X, Y
Outputs: uint Max

if (X > Y) {

}
else {

}

Max = X;

Max = Y;
a a

14

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Example: Converting Sum-of-Absolute-Differences C code
to High-Level State Machine

  Convert each construct to states
  Simplify when possible, e.g.,

merge states

!go go

sum=0
i=0

sum=0

i=0

!go go

!go go

sum=0
i=0

while stmts

!(i<256)

i<256

sad =
sum

!go go

sum=0
i=0

!(i<256)

i<256

sum=sum
 + abs
i = i + 1

a

!(!go)

!go
while stmts

 sum = sum + abs(A[i] - B[i]);

Inputs: byte A[256], B[256]
bit go;

Output: int sad
main()
{
 uint sum; short uint I;
 while (1) {

sum = 0;
i = 0;

while (!go);

while (i < 256) {

 i = i + 1;
}
sad = sum;

}
}

!go go

sum=0
i=0

!(i<256)

i<256

sad =
sum

sum=sum
 + abs
i = i + 1

Digital Design
Copyright © 2006
Frank Vahid

ECE 474a/575a

Example: Converting Sum-of-Absolute-Differences C code
to High-Level State Machine

  From high-level state machine, follow RTL design method to create circuit
  Thus, can convert C to gates using straightforward automatable process

  Not all C constructs can be efficiently converted
  Use C subset if intended for circuit
  Can use languages other than C, of course

 sum = sum + abs(A[i] - B[i]);

Inputs: byte A[256, B[256]
bit go;

Output: int sad
main()
{
 uint sum; short uint I;
 while (1) {

sum = 0;
i = 0;

while (!go);

while (i < 256) {

 i = i + 1;
}
sad = sum;

}
}

!go go

sum=0
i=0

!(i<256)

i<256

sad =
sum

sum=sum
 + abs
i = i + 1

