
1

ECE 474a/575a 1 of 25

ECE 474A/57A
Computer-Aided Logic Design

Logic Optimization:
Espresso Representations and Basic

Operations

ECE 474a/575a 2 of 25

Function Definition

  Assume you have a logic function with n-input variables and m-
output variables

  Logic function is simply a mapping of input combinations to output
values

Let B = {0, 1} //input alphabet is 1 or 0

 Y = {0, 1, 2} // output alphabet is 1, 0, or 2 (don’t care)

F : Bn → Ym where x = [x1, …, xn] Є Bn is the input

 and y = [y1, …, ym] is the output of F

ECE 474a/575a 3 of 25

Function Mapping

Example 1: F1(a, b) = a’; F2(a, b) = a + b a b F1 F2

0 0 1 0

0 1 1 1

1 0 0 1

1 1 0 1

n = 2

m = 2

When m ≥ 2 we have a multiple output function

Example 2: Fo (a, b, c) = b’ + ac a b c Fo

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

n = 3

m = 1

When m =1 we have a single output function

F : Bn → Ym

For each input
combination we map to
an output combination

ECE 474a/575a 4 of 25

On, Off, and DC Sets

  For a given function we can define the on-set xi
ON Bn

as the set of input values x such that F(x) = 1
a b c Fo

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

FON = { [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 1] }

  For a given function we can define the off-set xi
OFF Bn

as the set of input values x such that F(x) = 0

FOFF = { [0, 1, 0], [0, 1, 1], [1, 1, 0] }

  For a given function we can define the don’t care-set xi
DC Bn as the

set of input values x such that F(x) = 2

FDC = { } //empty

2

ECE 474a/575a 5 of 25

On, Off, and DC Sets

a b c F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 2

FON = { [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0] }

FOFF = { [0, 1, 0], [0, 1, 1] }

FDC = { [1, 1, 1] }

Example 3: Given the following truth table, identify FON, FOFF, and FDC

ECE 474a/575a 6 of 25

Completely Specified Functions

  A completely specified function (c.s.f) is a function where all values of the
input map to a 1 or 0 (i.e. no don’t care conditions)

a b F1 F2

0 0 1 0

0 1 1 1

1 0 0 1

1 1 0 1

a b c Fo

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

a b c F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 2

Ex 1 and 2 are completely specified
functions

Ex 3 is not a completely specified
function

ECE 474a/575a 7 of 25

On, Off, and DC Sets in Espresso

  In Espresso you will see the triple F, D, R
  Typically F and D are provided and R is derived

D = don’t care-set

F = on-set R = off-set

F, D, R

How to get R?
R = (F ⋃ D)’

ECE 474a/575a 8 of 25

Logic Functions Operations & Definitions

x1 x2 F G G’ H

0 0 0 0 1 0

0 1 1 1 0 0

1 0 1 0 1 1

1 1 1 1 0 0

x1 x2 F F’

0 0 0 1

0 1 1 0

1 0 0 0

1 1 0 1

Complement of a c.s.f. (completely specified function) F’ is
defined as F’ON = FOFF and F’OFF = FON

(i.e. switch on and off sets)

Intersect (or product) of two c.s.f. F and G, denoted as F·G or
F ⋂ G, is the c.s.f. H where HON = FON ⋂ GON
(i.e. must be in both)

Difference between two c.s.f. F and G, denoted as F – G, is the
c.s.f. H where HON = FON ⋂ G’ON
(i.e. it’s in F but not in G)

x1 x2 F G H

0 0 0 1 0

0 1 1 1 1

1 0 1 0 0

1 1 0 0 0

3

ECE 474a/575a 9 of 25

Logic Functions Operations & Definitions

Union (or sum) of two c.s.f. F and G, denoted F + G or F ⋃ G, is
the c.s.f. where HON = FON ⋃ GON
(i.e. it’s in either F or G)

A tautology is a c.s.f. whose off-set is empty, written F = 1 (i.e. function
always evaluates to 1)

F ⋃ D ⋃ R is a tautology
F, D, R are mutually disjoint (no elements in common)

x1 x2 F G H

0 0 1 0 1

0 1 0 0 0

1 0 0 1 1

1 1 0 1 1

ECE 474a/575a 10 of 25

Cubes and Covers

  Function can also be represented as a cube in a Boolean n-space
  Each vertex represents a value of the input and used to specify which

components of F it belongs to (ON, OFF, or DC)

Example 4: F1(a, b) = Σm(1, 2, 3)

a b F

0 0 0

0 1 1

1 0 1

1 1 1

vertices in on-set

* Adjacent vertices differ by 1 term

vertices in don’t care-set

vertices in off-set

01 11

00 10

ECE 474a/575a 11 of 25

Cubes and Covers

Example 5:

vertices in on-set

vertices in don’t care-set

vertices in off-set

F1(x1, x2, x3) = Σm(0, 1, 4, 5, 6) + Σd(7)

F2(x1, x2, x3) = Σm(0, 2, 3, 6, 7) + Σd(5)

x1 x2 x3 F1 F2

0 0 0 1 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 2
1 1 0 1 1
1 1 1 2 1

Generic 3-space
representation

001 101

000 100

011 111

010 110

F1
representation

001 101

000 100

011 111

010 110

001 101

000 100

011 111

010 110

F2
representation

ECE 474a/575a 12 of 25

Compact Cubical Form

  We want to provide this information in a
more compact form

x1 x2 x3 F1 F2

0 0 0 1 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 2
1 1 0 1 1
1 1 1 2 1

001 101

000 100

011 111

010 110

F2
representation

Let p be a product term associated with a S.O.P expression with n inputs
and m outputs

Then a cube p is specified by a row vector c = [c1, …, cn, cn+1, cn+m] where

ci = 0 if xi appears complemented in p for i=1, …, n

1 if xi appear NOT complemented in p for i=1, …, n

2 if xi does not appear in p for i=1, …, n

3 if p is NOT present in the algebraic representation of fi-n for i=n+1, …, n+m

4 if p is present in the algebraic representation of fi-n for i=n+1, …, n+m

4

ECE 474a/575a 13 of 25

Compact Cubical Form

Example 6: F1 = B’ + AC’

F2 = B + AC

How do we represent B’ in compact cubical form?

c = [2 0 2 4 3]

ci = 0 if xi appears complemented in p

1 if xi appear NOT complemented in p

2 if xi does not appear in p

3 if p is NOT present in the algebraic representation of fi-n

4 if p is present in the algebraic representation of fi-n

How does A appear in F? A does not appear, c1 = 2

How does B appear in F? B is complemented, c2 = 0

How does C appear in F? C does not appear, c3 = 2

Is B’ a product term in F1? Yes, c4 = 4

Is B’ a product term in F2? No, c5 = 3
These are the m outputs

These are the n inputs

ECE 474a/575a 14 of 25

Compact Cubical Form

Example 6: F1 = B’ + AC’

F2 = B + AC

Compact cubical form represents vertices of a cube corresponding to a product term, to
represent the remainder of F1 and F2

[2 0 2 4 3] // B’

ci = 0 if xi appears complemented in p

1 if xi appear NOT complemented in p

2 if xi does not appear in p

3 if p is NOT present in the algebraic representation of fi-n

4 if p is present in the algebraic representation of fi-n

[1 2 0 4 3] // AC’

[2 1 2 3 4] // B

[1 2 1 3 4] // AC

F =

This matrix representation is
the input used by Espresso

This set of cubes represents a
cover

ECE 474a/575a 15 of 25

Boolean n-space vs. Compact Cubical Form

B’ in compact cubical form = [2 0 2 4 3]

All vertices with a 0 in second coordinate
represented by this one cube

001 101

000 100

011 111

010 110

Graphical
representation of B’

B’ as vertices in a Boolean n-space =
{ [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1] }

ECE 474a/575a 16 of 25

Operations on Cubes

Intersect (or product) of two cubes, written as c ⋂ d or
cd, is the cube e given by the following table

Basic idea: want an input cube whose input part corresponds to vertices
common to c and d, resulting cube output part also represents when ci and
di are both present

0 1 2

0 0 Φ 0

1 Φ 1 1

2 0 1 2

ci

di

I(c) = ∩

3 4

3 3 3

4 3 4
ci

di

O(c) = ∩

ci = [2 0 2 3 4]

di = [2 1 2 3 4]

ci ∩ di = ei = [2 Φ 2 3 4]

When there is an index = Φ, or if the output part is all 3’s, the
cube is empty and we can get rid of it

5

ECE 474a/575a 17 of 25

Operations on Cubes

0 1 2
0 0 Φ 0
1 Φ 1 1
2 0 1 2

Intersection of two sets of cubes is the set obtained by performing pair wise
intersection of all cubes in the two sets

ci

di

I(c) = ∩

3 4
3 3 3
4 3 4

ci

di

O(c) = ∩

Example 6: 2 0 2 4 3
1 1 0 4 3
0 2 2 3 4

1 1 1 4 4
0 0 0 4 3
2 0 2 3 4

∩

[2 0 2 4 3] ∩ [1 1 1 4 4] =

[2 0 2 4 3] ∩ [0 0 0 4 3] =

[2 0 2 4 3] ∩ [2 0 2 3 4] =

[1 1 0 4 3] ∩ [1 1 1 4 4] =

[1 1 0 4 3] ∩ [0 0 0 4 3] =

[1 1 0 4 3] ∩ [2 0 2 3 4] =

[0 2 2 3 4] ∩ [1 1 1 4 4] =

[0 2 2 3 4] ∩ [0 0 0 4 3] =

[0 2 2 3 4] ∩ [2 0 2 3 4] =

[1 Φ 1 4 3]

[0 0 0 4 3]

[2 0 2 3 3]

[1 1 Φ 4 3]

[Φ Φ 0 4 3]

[1 Φ 0 3 3]

[Φ 1 1 3 4]

[0 0 0 3 3]

[0 0 2 3 4]

ECE 474a/575a 18 of 25

Operations on Cubes

0 1 2
0 0 Φ 0
1 Φ 1 1
2 0 1 2

Intersection of two sets of cubes is the set obtained by performing pair wise
intersection of all cubes in the two sets

ci

di

I(c) = ∩

3 4
3 3 3
4 3 4

ci

di

O(c) = ∩

Example 6: 2 0 2 4 3
1 1 0 4 3
0 2 2 3 4

1 1 1 4 4
0 0 0 4 3
2 0 2 3 4

∩

[1 Φ 1 4 3]

[0 0 0 4 3]

[2 0 2 3 3]

[1 1 Φ 4 3]

[Φ Φ 0 4 3]

[1 Φ 0 3 3]

[Φ 1 1 3 4]

[0 0 0 3 3]

[0 0 2 3 4]

has a Φ entry

all 3’s in output

has a Φ entry

has a Φ entry

has a Φ entry

has a Φ entry

all 3’s in output

[0 0 0 4 3]

[0 0 2 3 4]

Solution =

When there is an index = Φ, or if the output part is all
3’s, the cube is empty and we can get rid of it

ECE 474a/575a 19 of 25

Operations on Cubes

Union (or sum) of two cubes, written as c ⋃ d or c+d, is the set of verticies covered by
the input part of either c or d

Basic idea: combine all cubes

ci = [2 0 2 4 3]

di = [1 2 0 4 3]

ci ⋃ di = [2 0 2 4 3]

[1 2 0 4 3]

ECE 474a/575a 20 of 25

Operations on Cubes

What about Complement?

Use DeMorgan’s Law to determine what happens
to a product term when complemented

(ab)’ = a’ + b’

F(a, b) = a [1 2]

F’(a, b) = a’ [0 2]

If the cube has a single term we can
simply switch the 1 & 0 entry

F(a, b, c) = ab [1 1 2]

F’(a, b, c) = (ab)’
switch every 1 & 0 entry, but we
must also make sure each row has
only one 1/0 entry = a’ + b’ [0 2 2]

[2 0 2]

6

ECE 474a/575a 21 of 25

Operations on Cubes

What about Complement?

Use DeMorgan’s Law to determine what happens
to a product term when complemented

(ab)’ = a’ + b’

F(a, b, c) = a’bc [0 1 1]

F’(a, b, c) = (a’bc)’

Again switch every 1 & 0 entry, and
make sure each row has only one
1/0 entry = a + b’ + c’ [1 2 2]

[2 0 2]
[2 2 0]

Many other transformations exist (distance, consensus, etc..) we’ll
stick with the basic ones for now

ECE 474a/575a 22 of 25

Espresso Optimization Goal

  Espresso algorithm returns a “minimized cover”
  What is the algorithm trying to minimize?

= (NPT, NLI, NLO) I o

NLO = # of literals in output part

NPT - # of product terms in a cover

NLI - # of literals (non-2’s) in input part of cover

ECE 474a/575a 23 of 25

Espresso Subroutine

  Many smaller subroutines used in Espresso

  We will only cover a few
  Unwrap
  Unate Complement
  Complement
  Expand

ECE 474a/575a 24 of 25

Unwrap(F)

  Incoming data may have output sharing
  Apply Unwrap(F) to the input so we start with a less biased starting point
  When complete algorithm can decide what sharing is desirable

F1 = AB + B’C’
F2 = AB + B’C

A
B

F1

C

F2

[1 2 2 4 4]

[2 0 0 4 3]

[2 0 1 3 4]

F1 = AB + B’C’
F2 = AB + B’C

A
B

F1

C

F2

[1 2 2 3 4]

[2 0 0 4 3]

[2 0 1 3 4]

[1 2 2 4 3]

Each cube feeding k
different outputs are
replaced with k cube
feeding 1 output

7

ECE 474a/575a 25 of 25

Coming Soon …

  Unate Complement
  Complement
  Expand

