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ECE 474A/57A 
Computer-Aided Logic Design 

Logic Optimization: 
Espresso Representations and Basic 

Operations 
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Function Definition 

  Assume you have a logic function with n-input variables and m-
output variables 

  Logic function is simply a mapping of input combinations to output 
values 

Let  B = {0, 1} //input alphabet is 1 or 0 

 Y = {0, 1, 2} // output alphabet is 1, 0, or 2 (don’t care) 

F : Bn → Ym where x = [x1, …, xn] Є Bn is the input  

 and y = [y1, …, ym] is the output of F 
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Function Mapping 

Example 1: F1(a, b) = a’; F2(a, b) = a + b a b F1 F2 

0 0 1 0 

0 1 1 1 

1 0 0 1 

1 1 0 1 

n = 2 

m = 2 

When m ≥ 2 we have a multiple output function 

Example 2: Fo (a, b, c) = b’ + ac a b c Fo 

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 1 

n = 3 

m = 1 

When m =1 we have a single output function 

F : Bn → Ym 

For each input 
combination we map to 
an output combination 
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On, Off, and DC Sets 

  For a given function we can define the on-set xi
ON      Bn 

as the set of input values x such that F(x) = 1 
a b c Fo 

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 1 

FON = { [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 1] } 

  For a given function we can define the off-set xi
OFF      Bn 

as the set of input values x such that F(x) = 0 

FOFF = { [0, 1, 0], [0, 1, 1], [1, 1, 0] } 

  For a given function we can define the don’t care-set xi
DC      Bn as the 

set of input values x such that F(x) = 2 

FDC = {   }       //empty 
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On, Off, and DC Sets 

a b c F 

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 2 

FON = { [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0] } 

FOFF = { [0, 1, 0], [0, 1, 1] } 

FDC = { [1, 1, 1]  } 

Example 3: Given the following truth table, identify FON, FOFF, and FDC 
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Completely Specified Functions 

  A completely specified function (c.s.f) is a function where all values of the 
input map to a 1 or 0 (i.e. no don’t care conditions) 

a b F1 F2 

0 0 1 0 

0 1 1 1 

1 0 0 1 

1 1 0 1 

a b c Fo 

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 1 

a b c F 

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 2 

Ex 1 and 2 are completely specified 
functions 

Ex 3 is not a completely specified 
function 
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On, Off, and DC Sets in Espresso 

  In Espresso you will see the triple F, D, R 
  Typically F and D are provided and R is derived 

D = don’t care-set 

F = on-set R = off-set 

F, D, R 

How to get R? 
R = (F ⋃ D)’ 
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Logic Functions Operations & Definitions 

x1 x2 F G G’ H

0 0 0 0 1 0

0 1 1 1 0 0

1 0 1 0 1 1

1 1 1 1 0 0

x1 x2 F F’ 

0 0 0 1 

0 1 1 0 

1 0 0 0 

1 1 0 1 

Complement of a c.s.f. (completely specified function) F’ is 
defined as F’ON = FOFF and F’OFF = FON 

(i.e. switch on and off sets) 

Intersect (or product) of two c.s.f. F and G, denoted as F·G or 
F ⋂ G, is the c.s.f. H where HON = FON ⋂ GON  
(i.e. must be in both) 

Difference between two c.s.f. F and G, denoted as F – G, is the 
c.s.f. H where HON = FON ⋂ G’ON  
(i.e. it’s in F but not in G) 

x1 x2 F G H

0 0 0 1 0

0 1 1 1 1

1 0 1 0 0

1 1 0 0 0



3 

ECE 474a/575a  9 of 25 

Logic Functions Operations & Definitions 

Union (or sum) of two c.s.f. F and G, denoted F + G or F ⋃ G, is 
the c.s.f. where HON = FON ⋃ GON  
(i.e. it’s in either F or G) 

A tautology is a c.s.f. whose off-set is empty, written F = 1 (i.e. function 
always evaluates to 1) 

F ⋃ D ⋃ R is a tautology 
F, D, R are mutually disjoint (no elements in common) 

x1 x2 F G H 

0 0 1 0 1 

0 1 0 0 0 

1 0 0 1 1 

1 1 0 1 1 
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Cubes and Covers 

  Function can also be represented as a cube in a Boolean n-space 
  Each vertex represents a value of the input and used to specify which 

components of F it belongs to (ON, OFF, or DC) 

Example 4: F1(a, b) = Σm(1, 2, 3) 

a b F 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

vertices in on-set 

* Adjacent vertices differ by 1 term 

vertices in don’t care-set 

vertices in off-set 

01 11 

00 10 
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Cubes and Covers 

Example 5: 

vertices in on-set 

vertices in don’t care-set 

vertices in off-set 

F1(x1, x2, x3) = Σm(0, 1, 4, 5, 6) + Σd(7) 

F2(x1, x2, x3) = Σm(0, 2, 3, 6, 7) + Σd(5) 

x1 x2 x3 F1 F2 

0 0 0 1 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 1 2 
1 1 0 1 1 
1 1 1 2 1 

Generic 3-space 
representation 

001 101 

000 100 

011 111 

010 110 

F1 
representation 

001 101 

000 100 

011 111 

010 110 

001 101 

000 100 

011 111 

010 110 

F2 
representation 
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Compact Cubical Form 

  We want to provide this information in a 
more compact form 

x1 x2 x3 F1 F2 

0 0 0 1 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 1 2 
1 1 0 1 1 
1 1 1 2 1 

001 101 

000 100 

011 111 

010 110 

F2 
representation 

Let p be a product term associated with a S.O.P expression with n inputs 
and m outputs 

Then a cube p is specified by a row vector c = [ c1, …, cn, cn+1, cn+m ] where  

ci =   0 if xi appears complemented in p for i=1, …, n  

1 if xi appear NOT complemented in p for i=1, …, n   

2 if xi does not appear in p for i=1, …, n  

3 if p is NOT present in the algebraic representation of fi-n for i=n+1, …, n+m  

4 if p is present in the algebraic representation of fi-n for i=n+1, …, n+m  
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Compact Cubical Form 

Example 6: F1 = B’ + AC’ 

F2 = B + AC 

How do we represent B’ in compact cubical form? 

c = [  2  0  2  4  3  ] 

ci =   0 if xi appears complemented in p 

1 if xi appear NOT complemented in p 

2 if xi does not appear in p 

3 if p is NOT present in the algebraic representation of fi-n 

4 if p is present in the algebraic representation of fi-n 

How does A appear in F? A does not appear, c1 = 2 

How does B appear in F? B is complemented, c2 = 0 

How does C appear in F? C does not appear, c3 = 2 

Is B’ a product term in F1? Yes, c4 = 4 

Is B’ a product term in F2? No, c5 = 3 
These are the m outputs 

These are the n inputs 
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Compact Cubical Form 

Example 6: F1 = B’ + AC’ 

F2 = B + AC 

Compact cubical form represents vertices of a cube corresponding to a product term, to 
represent the remainder of F1 and F2 

[  2  0  2  4  3  ]   // B’ 

ci =   0 if xi appears complemented in p 

1 if xi appear NOT complemented in p 

2 if xi does not appear in p 

3 if p is NOT present in the algebraic representation of fi-n 

4 if p is present in the algebraic representation of fi-n 

[  1  2  0  4  3  ]   // AC’ 

[  2  1  2  3  4  ]   // B 

[  1  2  1  3  4  ]   // AC 

F = 

This matrix representation is 
the input used by Espresso 

This set of cubes represents a 
cover 
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Boolean n-space vs. Compact Cubical Form 

B’ in compact cubical form = [  2  0  2  4  3  ]  

All vertices with a 0 in second coordinate 
represented by this one cube 

001 101 

000 100 

011 111 

010 110 

Graphical 
representation of B’ 

B’ as vertices in a Boolean n-space = 
{ [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1] } 
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Operations on Cubes 

Intersect (or product) of two cubes, written as c ⋂ d or 
cd, is the cube e given by the following table 

Basic idea: want an input cube whose input part corresponds to vertices 
common to c and d, resulting cube output part also represents when ci and 
di are both present 

0 1 2 

0 0 Φ 0 

1 Φ 1 1 

2 0 1 2 

ci 

di 

I(c) =  ∩ 

3 4 

3 3 3 

4 3 4 
ci 

di 

O(c) =  ∩ 

ci = [  2  0  2  3  4  ] 

di = [  2  1  2  3  4  ] 

ci ∩ di = ei = [  2  Φ  2  3  4  ] 

When there is an index = Φ, or if the output part is all 3’s, the 
cube is empty and we can get rid of it 
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Operations on Cubes 

0 1 2 
0 0 Φ 0 
1 Φ 1 1 
2 0 1 2 

Intersection of two sets of cubes is the set obtained by performing pair wise 
intersection of all cubes in the two sets 

ci 

di 

I(c) =  ∩ 

3 4 
3 3 3 
4 3 4 

ci 

di 

O(c) =  ∩ 

Example 6: 2 0 2 4 3 
1 1 0 4 3 
0 2 2 3 4 

1 1 1 4 4 
0 0 0 4 3 
2 0 2 3 4 

∩

[  2  0  2  4  3 ] ∩ [ 1  1  1  4  4  ] =  

[  2  0  2  4  3 ] ∩ [ 0  0  0  4  3  ] =  

[  2  0  2  4  3 ] ∩ [ 2  0  2  3  4  ] =  

[  1  1  0  4  3 ] ∩ [ 1  1  1  4  4  ] =  

[  1  1  0  4  3 ] ∩ [ 0  0  0  4  3  ] =  

[  1  1  0  4  3 ] ∩ [ 2  0  2  3  4  ] =  

[  0  2  2  3  4 ] ∩ [ 1  1  1  4  4  ] =  

[  0  2  2  3  4 ] ∩ [ 0  0  0  4  3  ] =  

[  0  2  2  3  4 ] ∩ [ 2  0  2  3  4  ] =  

[  1  Φ  1  4  3 ] 

[  0  0  0  4  3 ] 

[  2  0  2  3  3 ] 

[  1  1  Φ  4  3 ] 

[  Φ Φ  0  4  3 ] 

[  1  Φ  0  3  3 ] 

[  Φ  1  1  3  4 ] 

[  0  0  0  3  3 ]  

[  0  0  2  3  4 ] 
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Operations on Cubes 

0 1 2 
0 0 Φ 0 
1 Φ 1 1 
2 0 1 2 

Intersection of two sets of cubes is the set obtained by performing pair wise 
intersection of all cubes in the two sets 

ci 

di 

I(c) =  ∩ 

3 4 
3 3 3 
4 3 4 

ci 

di 

O(c) =  ∩ 

Example 6: 2 0 2 4 3 
1 1 0 4 3 
0 2 2 3 4 

1 1 1 4 4 
0 0 0 4 3 
2 0 2 3 4 

∩

[  1  Φ  1  4  3 ] 

[  0  0  0  4  3 ] 

[  2  0  2  3  3 ] 

[  1  1  Φ  4  3 ] 

[  Φ Φ  0  4  3 ] 

[  1  Φ  0  3  3 ] 

[  Φ  1  1  3  4 ] 

[  0  0  0  3  3 ]  

[  0  0  2  3  4 ] 

has a Φ entry  

all 3’s in output 

has a Φ entry  

has a Φ entry  

has a Φ entry  

has a Φ entry  

all 3’s in output 

[  0  0  0  4  3 ] 

[  0  0  2  3  4 ] 

Solution =  

When there is an index = Φ, or if the output part is all 
3’s, the cube is empty and we can get rid of it 
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Operations on Cubes 

Union (or sum) of two cubes, written as c ⋃ d or c+d, is the set of verticies covered by 
the input part of either c or d 

Basic idea: combine all cubes 

ci = [  2  0  2  4  3  ] 

di = [  1  2  0  4  3  ] 

ci ⋃ di = [  2  0  2  4  3  ] 

[  1  2  0  4  3  ] 
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Operations on Cubes 

What about Complement?  

Use DeMorgan’s Law to determine what happens 
to a product term when complemented 

(ab)’ = a’ + b’ 

F(a, b) = a  [  1  2  ] 

F’(a, b) = a’  [  0  2  ] 

If the cube has a single term we can 
simply switch the 1 & 0 entry 

F(a, b, c) = ab   [  1  1  2  ] 

F’(a, b, c) = (ab)’
switch every 1 & 0 entry, but we 
must also make sure each row has 
only one 1/0 entry = a’ + b’ [  0  2  2  ] 

[  2  0  2  ] 
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Operations on Cubes 

What about Complement?  

Use DeMorgan’s Law to determine what happens 
to a product term when complemented 

(ab)’ = a’ + b’ 

F(a, b, c) = a’bc   [  0  1  1  ] 

F’(a, b, c) = (a’bc)’
   

Again switch every 1 & 0 entry, and  
make sure each row has only one 
1/0 entry = a + b’ + c’ [  1  2  2  ] 

[  2  0  2  ] 
[  2  2  0  ] 

Many other transformations exist (distance, consensus, etc..) we’ll 
stick with the basic ones for now 
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Espresso Optimization Goal 

  Espresso algorithm returns a “minimized cover” 
  What is the algorithm trying to minimize? 

= ( NPT, NLI, NLO ) I o 

NLO = # of literals in output part 

NPT - # of product terms in a cover 

NLI - # of literals (non-2’s) in input part of cover 
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Espresso Subroutine 

  Many smaller subroutines used in Espresso 

  We will only cover a few 
  Unwrap 
  Unate Complement 
  Complement 
  Expand 
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Unwrap(F) 

  Incoming data may have output sharing 
  Apply Unwrap(F) to the input so we start with a less biased starting point 
  When complete algorithm can decide what sharing is desirable 

F1 = AB + B’C’ 
F2 = AB + B’C 

A 
B 

F1 

C 

F2 

[  1  2  2  4  4  ] 

[  2  0  0  4  3  ] 

[  2  0  1  3  4  ] 

F1 = AB + B’C’ 
F2 = AB + B’C 

A 
B 

F1 

C 

F2 

[  1  2  2  3  4  ] 

[  2  0  0  4  3  ] 

[  2  0  1  3  4  ] 

[  1  2  2  4  3  ] 

Each cube feeding k 
different outputs are 
replaced with k cube 
feeding 1 output 



7 

ECE 474a/575a  25 of 25 

Coming Soon … 

  Unate Complement 
  Complement 
  Expand 


