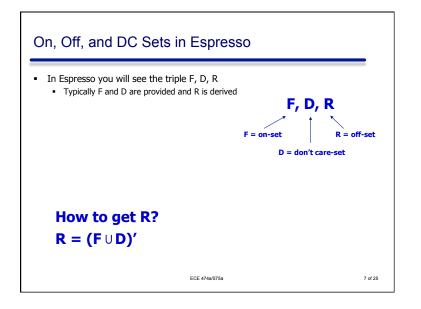
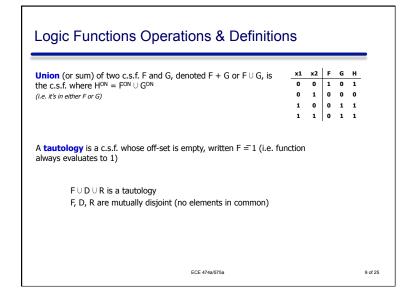
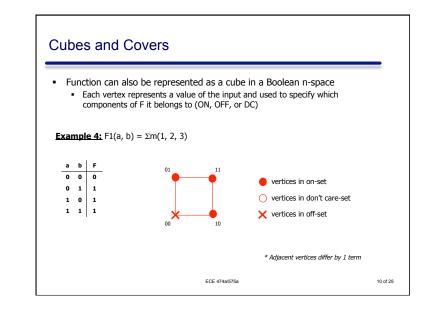


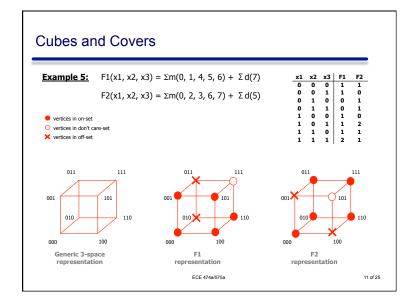
Example 1: $F_1(a, b) = a'; F_2(a, b) = a + b$	а	b	F 1	F2	
n = 2	0	0	1	0	-
m = 2	0	1	1	1	
2	1	0	0	1	
When $m \ge 2$ we have a multiple output function	1	1	0	1	
					$F:B^n \to Y^m$
					For each input combination we map an output combination
Example 2: $F_o(a, b, c) = b' + ac$	а	b	c	F。	
	0	0	0	1	
n = 3	0	0	1	1	
m = 1	0	1	0	0	
When m =1 we have a single output function	-	1	-	0	
5 .		0		1	
		0		1	
		1		0	

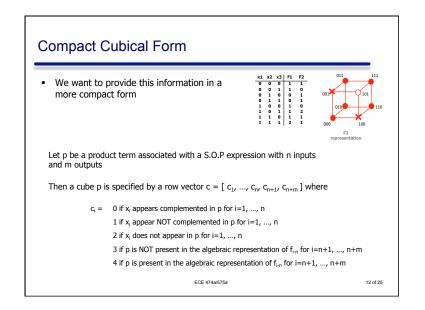

On, Off, and DC Sets				-
- For a given function we can define the on-set $x_i^{ON} \subseteq B^n$	а	b	с	Fo
as the set of input values x such that $F(x) = 1$	0	0	0	1
F ^{ON} = { [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 1] }	0	0 1	1	1
	-	1	-	0
	1	-	0	-
 For a given function we can define the off-set x_i^{OFF} ⊂ Bⁿ 	-	-	1	-
as the set of input values x such that $F(x) = 0$	-	-	0	-
F ^{OFF} = { [0, 1, 0], [0, 1, 1], [1, 1, 0] }	1	1	1	1
 For a given function we can define the don't care-set x_i^{DC} ⊆ E set of input values x such that F(x) = 2 F^{DC} = { } //empty 	ⁿ as	the		
ECE 474a/575a				4 of 25

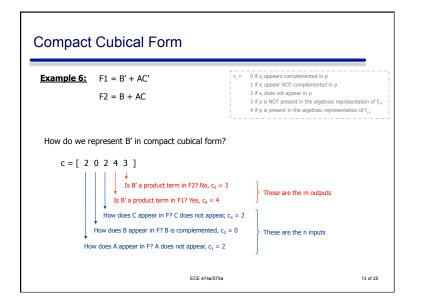
On, Off, and DC Sets				_
Example 3: Given the following truth table, identify F^{ON} , F^{OFF} , and F^{DC}				_
F ^{ON} = { [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0] }	а	b	с	F
	0	0	0	1
F ^{OFF} = { [0, 1, 0], [0, 1, 1] }	0	0	1	1
	-	1	0	0
	-	1	1	0
$F^{DC} = \{ [1, 1, 1] \}$	1	0	0	1
		0	1	1
			0	1
	1	1	1	2
ECE 474a/575a				5 of 25

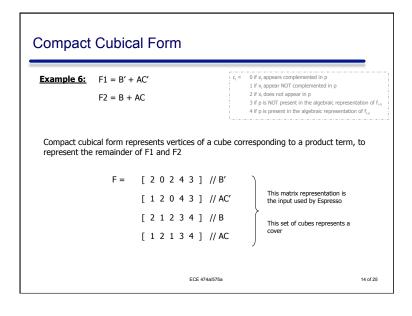

Completely Specified Functions

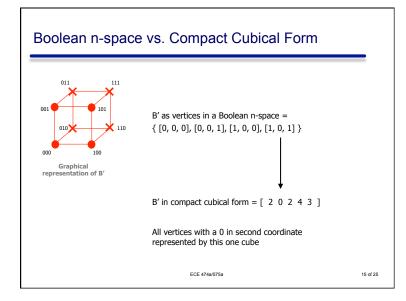

 A completely specified function (c.s.f) is a function where all values of the input map to a 1 or 0 (i.e. no don't care conditions)

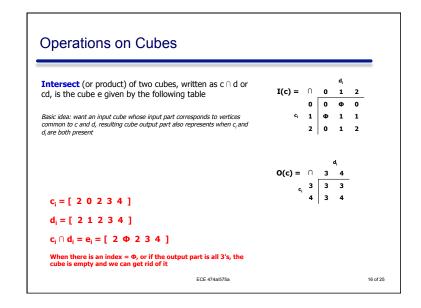

а	b	F1	F2	а	b	с	Fo	а	b	с	F	
0	0	1	0	0	0	0	1	0	0	0	1	
				0	0	1	1	0	0	1	1	
0	1	1	1	0	1	0	0	0	1	0	0	
1	0	0	1	0	1	1	0	0	1	1	0	
				1	0	0	1	1	0	0	1	
1	1	0	1	1	0	1	1	1	0	1	1	
				1	1	0	0	1	1	0	1	
				1	1	1	1	1	1	1	2	

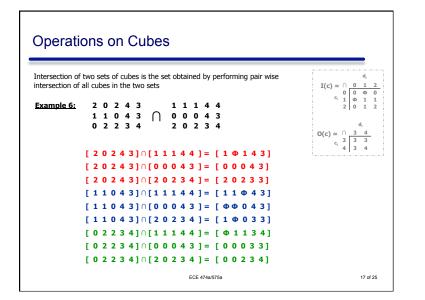


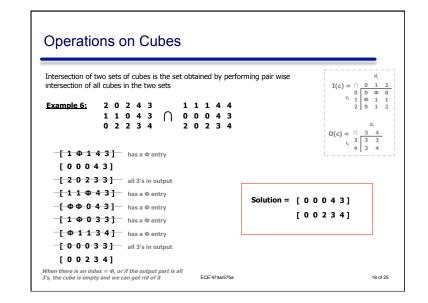

Logic Functions Operations & Definition	าร					
Complement of a c.s.f. (completely specified function) F' is defined as $F^{ON} = F^{OFF}$ and $F^{OFF} = F^{ON}$ (<i>i.e. switch on and off sets</i>)	x1 0 1 1	x2 0 1 0 1	0 1	-		-
Intersect (or product) of two c.s.f. F and G, denoted as F [.] G or F \cap G, is the c.s.f. H where H ^{ON} = F ^{ON} \cap G ^{ON} (<i>i.e. must be in both</i>)	0	x2 0 1	0	G 1 1	0	
Difference between two c.s.f. F and G, denoted as $F - G$, is the c.s.f. H where $H^{ON} = F^{ON} \cap G^{ON}$	1 1 x1 0	0 1 x2 0	1 0 F 0	0 G	0 0 G' 1	
(i.e. it's in F but not in G) ECE 474w575a	0 1	1 0	1	1 0	0 1	0 8 1 of 2

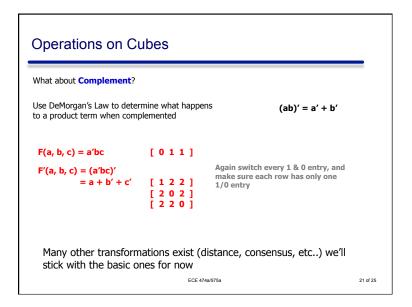


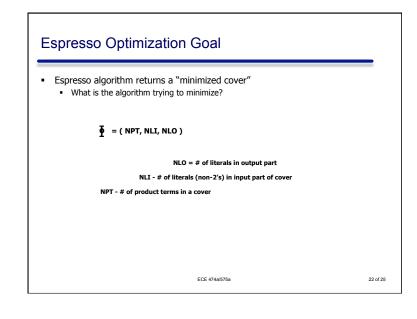


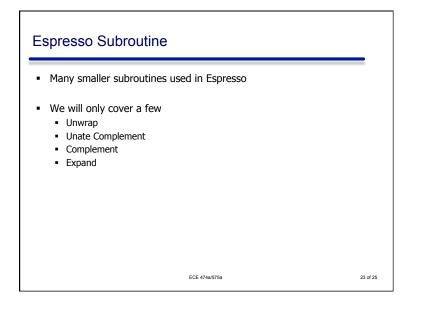


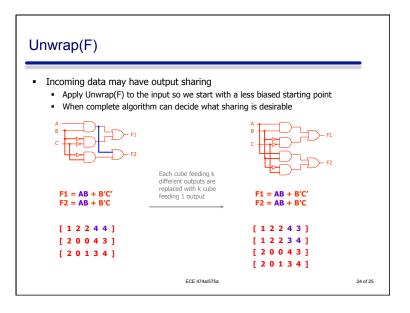


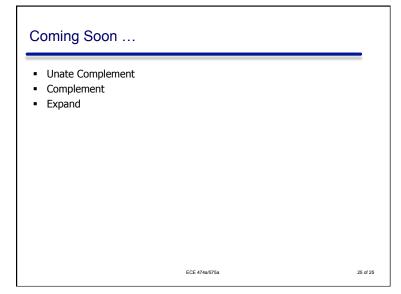









Operations on Cubes	
Union (or sum) of two cubes, written as c ∪ d or c+d, is the set of verticies covered by the input part of either c or d Basic idea: combine all cubes	
c _i = [2 0 2 4 3] d _i = [1 2 0 4 3]	
$c_i \cup d_i = [2 \ 0 \ 2 \ 4 \ 3]$	
[1 2 0 4 3] ECE 474a/575a 19 of 2	25


Operations on C	Cubes							
What about Complement?								
Use DeMorgan's Law to det to a product term when cor		(ab)' = a' + b'						
F(a, b) = a [1] F'(a, b) = a' [0]	simply switch the	single term we can a 1 & 0 entry						
F(a, b, c) = ab F'(a, b, c) = (ab)' = a' + b'	must also	very 1 & 0 entry, but we o make sure each row has 1/0 entry						
	ECE 474a/575a	20 of 25						

