```
ECE 474A/57A
Computer-Aided Logic Design
```


Logic Optimization:

Espresso Representations and Basic Operations

Function Mapping			
Example 1: $\mathrm{F}_{1}(\mathrm{a}, \mathrm{b})=\mathrm{a}^{\prime} ; \mathrm{F}_{2}(\mathrm{a}, \mathrm{b})=\mathrm{a}+\mathrm{b}$	a \mathbf{b} \mathbf{F}_{1}		
	$\begin{array}{lll}0 & 0 & 1\end{array}$		
$m=2$	0 l		
	100	1	
When $\mathrm{m} \geq 2$ we have a multiple output function	$\begin{array}{lll}1 & 1 & 0\end{array}$	1	
			$\mathrm{F}: \mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{Y}^{\mathrm{m}}$
			For each input combination we map to an output combination
Example 2: $\mathrm{F}_{\mathrm{o}}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{b}^{\prime}+\mathrm{ac}$	a blelf	F_{o}	
	000	1	
$\mathrm{n}=3$ m	$00_{0} 0$	1	
$\mathrm{m}=1$	$0 \begin{array}{lll}0 & 1 & 0\end{array}$	0	
When $\mathrm{m}=1$ we have a single output function	$\begin{array}{lll}0 & 1 & 1\end{array}$	0	
	100	1	
	1001	1	
	$\begin{array}{lll}1 & 1 & 0\end{array}$	0	
	$\begin{array}{lll}1 & 1 & 1\end{array}$	1	3025

Function Definition

- Assume you have a logic function with n-input variables and moutput variables

Let $B=\{0,1\} / /$ input alphabet is $\mathbf{1}$ or 0 $\mathbf{Y}=\{0,1,2\} / /$ output alphabet is $\mathbf{1 , 0}$, or $\mathbf{2}$ (don't care)

- Logic function is simply a mapping of input combinations to output values
$\mathrm{F}: \mathrm{B}^{\mathrm{n}} \rightarrow \mathbf{Y}^{\mathrm{m}}$ where $\mathrm{x}=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \in \mathrm{B}^{\mathrm{n}}$ is the input and $y=\left[y_{1}, \ldots, y_{m}\right]$ is the output of F

On, Off, and DC Sets

- For a given function we can define the on-set $x_{i}{ }^{0 N} \subseteq B^{n}$ as the set of input values x such that $F(x)=1$
$\mathrm{FON}^{\mathrm{O}}=\{[0,0,0],[0,0,1],[1,0,0],[1,0,1],[1,1,1]\}$
- For a given function we can define the off-set $x_{i}^{0 F F} \subseteq B^{n}$ as the set of input values x such that $F(x)=0$

$$
F^{\text {OFF }}=\{[0,1,0],[0,1,1],[1,1,0]\}
$$

For a given function we can define the don't care-set $\mathrm{x}_{\mathrm{i}}{ }^{\mathrm{DC}} \subseteq \mathrm{B}^{\mathrm{n}}$ as the set of input values x such that $F(x)=2$

$$
\text { FDC }=\{ \} \quad / / e m p t y
$$

On, Off, and DC Sets

Example 3: Given the following truth table, identify FON, FOFF, and FDC
$F^{O N}=\{[0,0,0],[0,0,1],[1,0,0],[1,0,1],[1,1,0]\}$
Foff $^{\text {O }}\{[\mathbf{0}, \mathbf{1}, \mathbf{0},[0,1,1]\}$
$F^{D C}=\{[1,1,1]\}$

Completely Specified Functions

- A completely specified function (c.s.f) is a function where all values of the input map to a 1 or 0 (i.e. no don't care conditions)

Ex 1 and 2 are completely specified functions

a	b	F	$F 2$					
0	0	1	0			b	b	c
0	0	0	1					
0	1	1	1		0	0	1	1
0	1	1	0	0				
1	0	0	1		0	1	1	0
1	0	1	0	0	1			
1	1	0	1		1	0	1	1
					1	1	0	0
				1	1	1	1	

Ex 3 is not a completely specified function

a	b	c	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	2

Logic Functions Operations \& Definitions

Complement of a c.s.f. (completely specified function) F^{\prime} is defined as $\mathrm{F}^{\prime O N}=\mathrm{F}^{\circ \mathrm{OFF}}$ and $\mathrm{F}^{\prime \mathrm{OFF}}=\mathrm{F}^{\mathrm{ON}}$ (i.e. switch on and off sets)	$\times 1 \times 2$		F \mathbf{F}^{\prime}			
	0	0				
	0	1	$1 \begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$	0		
	1	0		0		
	1	1	01			
Intersect (or product) of two c.s.f. F and G , denoted as $\mathrm{F} \cdot \mathrm{G}$ or $\mathrm{F} \cap \mathrm{G}$, is the c.s.f. H where $\mathrm{H}^{\circ \mathrm{N}}=\mathrm{FON} \cap \mathrm{G}^{\circ \mathrm{N}}$ (i.e. must be in both)	${ }^{1} 1$	$\times 2$	F		н	
	0	0	01		0	
	0	1			1	
	1	0		1		0
			\%	${ }_{6} 0$		${ }^{\prime}$
Difference between two c.s.f. F and G, denoted as F - G, is the c.s.f. H where $\mathrm{H}^{\mathrm{ON}}=\mathrm{F}^{O N} \cap \mathrm{G}^{\prime O N}$ (i.e. it's in F but not in G)		$\times 2$				
		0	0	0	1	0
	0	1	1	1	0	0
ECE 47aas55a		0	1	0	1	${ }_{8}{ }^{1} 25$

Logic Functions Operations \& Definitions

Cubes and Covers

Union (or sum) of two c.s.f. F and G, denoted F +G or $\mathrm{F} \cup \mathrm{G}$, is the C.s.f where HON $=$ FON \cup GON

$\mathbf{x} 1$	\mathbf{x}	F	G	H
0	0	1	0	1

0	1	0	1	
0	1	0	0	0

0	1	0	0	0
1	0	0	1	1

1	0	0	1	1
1	1	0	1	1

A tautology is a c.s.f. whose off-set is empty, written $\mathrm{F}=1$ (i.e. function always evaluates to 1)
$F \cup D \cup R$ is a tautology
F, D, R are mutually disjoint (no elements in common)

Cubes and Covers

Example 5: $\quad \mathrm{F} 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)=\Sigma \mathrm{m}(0,1,4,5,6)+\Sigma \mathrm{d}(7)$

$$
\mathrm{F} 2(\mathrm{x} 1, \mathrm{x} 2, x 3)=\Sigma \mathrm{m}(0,2,3,6,7)+\sum \mathrm{d}(5)
$$

- vertices in on-set
- vertices in don't care-set
x vertices in off-set

x	x 2	$\times 3$	F 1	F 2
0	0	0	1	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	2
1	1	0	1	1
1	1	1	2	1

Generic 3 -space
representation
110

$$
\begin{gathered}
\text { F1 } \\
\text { representation }
\end{gathered}
$$

$\stackrel{\text { F2 }}{\text { representation }}$
entation

- Function can also be represented as a cube in a Boolean n -space

Each vertex represents a value of the input and used to specify which Each vertex represents a value (ON OFF or DC)

Example 4: $\mathrm{F} 1(\mathrm{a}, \mathrm{b})=\mathrm{Im}(1,2,3)$

a	b	F
0	0	0

$\begin{array}{lll}0 & 1 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 1 \\ 1 & 0 & 1\end{array}$

1	0	1
1	1	1

vertices in on-set

Oertices in don't care-set
X vertices in off-set
*Adjacent vertices differ by 1 term

Compact Cubical Form

- We want to provide this information in a more compact form

Let p be a product term associated with a S.O.P expression with n inputs and m outputs

Then a cube p is specified by a row vector $\mathrm{c}=\left[\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}, \mathrm{c}_{\mathrm{n}+1}, \mathrm{c}_{\mathrm{n}+\mathrm{m}}\right]$ where
$c_{i}=0$ if x_{i} appears complemented in p for $i=1, \ldots, n$
1 if x_{i} appear NOT complemented in p for $i=1, \ldots, n$
2 if x_{i} does not appear in p for $i=1, \ldots, n$
3 if p is NOT present in the algebraic representation of f_{i-n} for $i=n+1, \ldots, n+m$
4 if p is present in the algebraic representation of f_{i-n} for $i=n+1, \ldots, n+m$

$$
\begin{aligned}
& \mathrm{c}=\left[\begin{array}{lllll}
2 & 0 & 2 & 4 & 3
\end{array}\right] \\
& \left.\begin{array}{l}
\text { Is B'a product term in } \mathrm{F} \text { ? } \text { ? } \mathrm{No}, \mathrm{C}_{5}=3 \\
B^{\prime} \text { a product term in } \mathrm{F} \text { ? Yes, } \mathrm{C}_{4}=4
\end{array}\right\} \text { These are the } \mathrm{m} \text { outputs } \\
& \text {, } \\
& \text { How does } \mathrm{C} \text { appear in } \mathrm{F} \text { ? } \mathrm{C} \text { does not appear, } \mathrm{C}_{3}=2 \\
& \text { How does A appear in F? A does not appear, } \mathrm{c}_{1}=2
\end{aligned}
$$

Compact Cubical Form

Example 6: $\quad \mathrm{F} 1=\mathrm{B}^{\prime}+\mathrm{AC}^{\prime}$

$$
F 2=B+A C
$$

$c_{i}=0$ if x appears complemented in p
1 if x appear NOT complemented in
2if x does not apoear
$2 i f x$ does not appear in p
3 if i s NOT present in the algebraic representation of f fin
if p is p resent in the algebraic representationo of f.

Compact cubical form represents vertices of a cube corresponding to a product term, to represent the remainder of F1 and F2

Boolean n-space vs. Compact Cubical Form

Operations on Cubes

Intersect (or product) of two cubes, written as $\mathrm{c} \cap \mathrm{d}$ or cd , is the cube e given by the following table

Basic idea: want an input cube whose input part corresponds to vertices d_{i} are both present
$\{[0,0,0],[0,0,1],[1,0,0],[1,0,1]\}$

00000

c_{1}	1	0	1	1

2	0	1	2

$O(c)=\begin{array}{lll}\cap & 3 & d_{i} \\ d_{i}\end{array}$

4	3	3
4_{1}	3	4

$c_{i}=\left[\begin{array}{lllll}2 & 0 & 2 & 3 & 4\end{array}\right]$
$d_{i}=\left[\begin{array}{lllll}2 & 1 & 2 & 3 & 4\end{array}\right]$
$c_{i} \cap d_{i}=e_{i}=\left[\begin{array}{lllll}2 & \Phi & 2 & 3 & 4\end{array}\right]$
When there is an index $=\Phi$, or if the output part is all $3^{\prime} s$, the
cube is empty and we can get rid of it
ECE 474af55a

Operations on Cubes

Intersection of two sets of cubes is the set obtained by performing pair wise intersection of all cubes in the two sets

Example 6: $\begin{array}{lllllllllll}2 & 0 & 2 & 4 & 3 \\ 1 & 1 & 0 & 4 & 3 \\ 0 & 2 & 2 & 3 & 4\end{array}$ $\quad \begin{array}{llllllll}1 & 1 & 1 & 4 & 4 \\ 0 & 0 & 0 & 4 & 3 \\ 2 & 0 & 2 & 3 & 4\end{array}$

 $\left[\begin{array}{llll}2 & 0 & 2 & 4\end{array}\right]$] $0\left[\begin{array}{lllll}0 & 0 & 0 & 4 & 3\end{array}\right]=\left[\begin{array}{lllll}0 & 0 & 0 & 4 & 3\end{array}\right]$ [2002431$]\left[\begin{array}{llll}2 & 0 & 2 & 3\end{array}\right]$] $=\left[\begin{array}{lllll}2 & 0 & 2 & 3 & 3\end{array}\right]$ $\left[\begin{array}{lllll}1 & 1 & 0 & 4 & 3\end{array}\right] \cap\left[\begin{array}{lllll}1 & 1 & 1 & 4 & 4\end{array}\right]=\left[\begin{array}{llll}1 & 1 & \Phi & 4\end{array}\right]$
 $\left[\begin{array}{lllll}1 & 1 & 0 & 4 & 3\end{array}\right] \cap\left[\begin{array}{lllll}2 & 0 & 2 & 3 & 4\end{array}\right]=\left[\begin{array}{lllll}1 & \Phi & 0 & 3 & 3\end{array}\right]$ $\left[\begin{array}{lllll}0 & 2 & 2 & 3 & 4\end{array}\right] \cap\left[\begin{array}{llll}1 & 1 & 1 & 4\end{array}\right]\left[\begin{array}{lll}1\end{array}\right]\left[\begin{array}{lllll}\Phi & 1 & 1 & 3 & 4\end{array}\right]$ $\left[\begin{array}{llll}0 & 2 & 2 & 3\end{array}\right]$] $\cap\left[\begin{array}{lllll}0 & 0 & 0 & 4 & 3\end{array}\right]=\left[\begin{array}{lllll}0 & 0 & 0 & 3 & 3\end{array}\right]$ $\left[\begin{array}{llll}0 & 2 & 2 & 3\end{array}\right]$ [$\left[\begin{array}{llll}2 & 0 & 2 & 3\end{array}\right]$] $=\left[\begin{array}{llll}0 & 0 & 2 & 3\end{array}\right]$

Operations on Cubes

Union (or sum) of two cubes, written as $\mathrm{c} \cup \mathrm{d}$ or $\mathrm{c}+\mathrm{d}$, is the set of verticies covered by the input part of either c or d

Basic idea: combine all cubes

$$
\begin{aligned}
& c_{i}=\left[\begin{array}{lllll}
2 & 0 & 2 & 4 & 3
\end{array}\right] \\
& d_{i}=\left[\begin{array}{lllllll}
1 & 1 & 2 & 0 & 4 & 3
\end{array}\right]
\end{aligned}
$$

$$
c_{i} \cup d_{i}=\left[\begin{array}{lllll}
2 & 0 & 2 & 4 & 3
\end{array}\right]
$$

$\left[\begin{array}{llllll}1 & 2 & 0 & 4 & 3\end{array}\right]$

Operations on Cubes

Intersection of two sets of cubes is the set obtained by performing pair wise intersection of all cubes in the two sets

ple 6:		0	2	4	3					1	1	4
	1	1	0	4	3		\cap	0		0	0	4
		2	2	3	4			2		0	2	3

$\left[\begin{array}{llllll}1 & \Phi & 1 & 4 & 3\end{array}\right]$ has a Φ entry
[$\left.\begin{array}{llllll}0 & 0 & 0 & 4 & 3\end{array}\right]$
$\left[\begin{array}{llllll}2 & 0 & 2 & 3 & 3\end{array}\right]$ all 3 's in output

$\left[\begin{array}{llllll}\Phi & 0 & 4 & 3\end{array}\right]$ has a Φ entry
$\left[\begin{array}{lllll}1 & \Phi & 0 & 3 & 3\end{array}\right]$ has a Φ entry
$\left[\begin{array}{lllllll}{\left[\begin{array}{llllll}1 & 1 & 1 & 3 & 4\end{array}\right] \text { has a } \Phi \text { entry }}\end{array}\right.$
$\left[\begin{array}{llllll}0 & 0 & 0 & 3 & 3\end{array}\right]$ all 3^{\prime} s in output
[$\left.\begin{array}{lllll}0 & 0 & 2 & 3 & 4\end{array}\right]$
When there is an index $=0$, or if the output parar is al
3 s', the cube is empty and we can get rid of it

Operations on Cubes

What about Complement?
Use DeMorgan's Law to determine what happens
(ab) ${ }^{\prime}=\mathbf{a}^{\prime}+\mathbf{b}^{\prime}$ to a product term when complemented

Operations on Cubes

What about Complement?

Use DeMorgan's Law to determine what happens
$(a b)^{\prime}=a^{\prime}+b^{\prime}$ to a product term when complemented
$F(a, b, c)=a \prime b c \quad\left[\begin{array}{llll}0 & 1 & 1\end{array}\right]$
$\mathbf{F}^{\prime}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\left(\mathbf{a}^{\prime} \mathbf{b c}\right)^{\prime} \quad$ Again switch every $1 \& 0$ entry, and
Again switch every $1 \& 0$ entry, an
make sure each row has only one 1/0 entry
$\left[\begin{array}{lll}2 & 0 & 2\end{array}\right]$
$\left[\begin{array}{lll}2 & 2 & 0\end{array}\right]$

Many other transformations exist (distance, consensus, etc..) we'll stick with the basic ones for now

Espresso Subroutine

- Many smaller subroutines used in Espresso
- We will only cover a few
- Unwrap
- Unate Complement
- Complement
- Expand

Espresso Optimization Goal

- Espresso algorithm returns a "minimized cover"
- What is the algorithm trying to minimize?
$\Phi=(\mathrm{NPT}, \mathrm{NLL}, \mathrm{NLO})$

NLO = \# of literals in output part
NLI - \# of literals (non-2's) in input part of cover
NPT - \# of product terms in a cover

Unwrap(F)

- Incoming data may have output sharing
- Apply Unwrap(F) to the input so we start with a less biased starting point
- When complete algorithm can decide what sharing is desirable

[1 $2{ }^{4}$
$\left[\begin{array}{lll}1 & 0 & 0\end{array} \mathrm{l}_{3}\right.$]
$\left[\begin{array}{llllll}2 & 0 & 1 & 3 & 4\end{array}\right]$

$F 1=A B+B^{\prime} C^{\prime}$
$F 2$ $F 2=A B+B^{\prime} C$
[$\left.1 \begin{array}{llllll}1 & 2 & 2 & 4 & 3\end{array}\right]$
$\left[\begin{array}{lll}1 & 2 & 23 \\ 1 & 3\end{array}\right]$
$\left[\begin{array}{lllll}1 & 0 & 0 & 4 & 3\end{array}\right]$
[20011344$]$

ECE 474a/575a

Coming Soon ...	
- Unate Complement - Complement - Expand	

