ECE 474A/57A
 Computer-Aided Logic Design

Logic Optimization: ESPRESSO

Local Search

- Don't generating all prime implicants and minterms
- Instead, ESPRESSO successively modify a given initial cover
- This technique is called a local search algorithm
- Idea behind local search
- Search space or solution space - set of all possible values and cost associated with solution
- Start with an initial value
- Search all points in neighborhood for a feasible point whose cost is less than current

Some Problems are Hard

Using Exact Algorithms vs. Heuristics

- Quine-McCluskey
- Calculated all prime implicants to derive the optimal solution(s)
- Petrick's Method derives all covers to determine minimum cover set(s)
- Number of prime implicants grow quickly -- solution space is huge!
- Finding the minimum cover set in a class of NP complete problems - Determining optimal solution is difficult
- Move to heuristics
- Look at generating a quality solution quickly (not necessarily optimal)

Local Search

- Drawback of local searches is local optimality
- Solution is locally optimal if its neighborhood does not contain any solutions with a lower cost
- Locally optimal solution may not be the optimal solution
- Modify local search so we don't get stuck at the local minimum

Espresso

- Espresso utilizes local search (keeping in mind local minimum problem)
- Probably most popular minimization algorithm
- Extremely efficient Boolean manipulation
- Composed of three main operations
- EXPAND, REDUCE, IRREDUNDANT
- Other operations include
- COMPLEMENT, ESSENTIAL PRIMES, LASTGASP, MAKESPARSE
- Espresso Heuristic (in a nutshell)
- Apply Expand and Irredundant operators to optimize the current function specification
- Uses the reduce operator to get out of local minimum
- Iterated until the solution converges

Espresso - Expand Operator Overview

- Goal is to expand a non-prime implicants to prime with the least number of literals

Expand a'bec' by removing a'
Expand a ${ }^{\prime} c^{\prime}$ by
Is it valid? Yes.

Expand b'c' by removing b
sit valid? Yes.

c^{\prime} is an prime implicant
ECE 474al575a

Espresso - Expand Operator Overview

- EXPAND
- Deleting one (or more) of its literals
- Check for validity

Expand abc by removing c (results in ab) Is it valid? Yes.

Expand abc by removing a (results in bc)
Is it valid? No

Espresso - Reduce Operator Overview

- REDUCE

- Adding one or more literals
- Check for validity

Reduce a' by adding b' (results in a'b')
Is it valid? Yes.

Reduce a' by adding c (results in ac)
Is it valid? Yes

Espresso - Irredundant Operator Overview

- IRREDUNDANT
- Implicant in a cover is redundant if all the minterms other implicants in

$y z$ ' is redundant
$x^{\prime} y$ and $x z^{\prime}$ cover all minterms contained in $y z^{\prime}$

Espresso - Irredundant Operator Overview

- Irredundant cover is not the
same as minimal cover

irredundant cove
minimal cover

Espresso - Additional Concerns

- Additional concerns
- Validity check operations
- Which direction should the move make?

which implicant should we reduce?
which literal should we add? which literal should we add?

ECE 474a/575a

ESPRESSO, to be continued...

- We've seen the high-level idea behind ESPRESSO
- ESPRESSO performs extremely efficient Boolean manipulation
- How are these operations actually performed?
- How is data represented?

