
1

ECE 474a/575a 1 of 15

ECE 474A/57A
Computer-Aided Logic Design

Logic Optimization:
ESPRESSO

ECE 474a/575a 2 of 15

Some Problems are Hard
Using Exact Algorithms vs. Heuristics

  Quine-McCluskey
  Calculated all prime implicants to derive the optimal solution(s)
  Petrick’s Method derives all covers to determine minimum cover set(s)
  Number of prime implicants grow quickly -- solution space is huge!
  Finding the minimum cover set in a class of NP complete problems

  Determining optimal solution is difficult

  Move to heuristics
  Look at generating a quality solution quickly (not necessarily optimal)

ECE 474a/575a 3 of 15

Local Search

cost of a solution

possible solutions

x

F(x)

  Don’t generating all prime implicants and
minterms

  Instead, ESPRESSO successively modify a
given initial cover
  This technique is called a local search

algorithm

  Idea behind local search
  Search space or solution space - set of all

possible values and cost associated with
solution

  Start with an initial value
  Search all points in neighborhood for a

feasible point whose cost is less than current
  Different problems have different neighborhood

definitions

  If one is found, start process over

ECE 474a/575a 4 of 15

Local Search

F(x)

x

local minimum

global/absolute
minimum

  Drawback of local searches is local optimality
  Solution is locally optimal if its neighborhood does not contain any solutions with a

lower cost
  Locally optimal solution may not be the optimal solution

  Modify local search so we don’t get stuck at the local minimum

2

ECE 474a/575a 5 of 15

Espresso

  Espresso utilizes local search (keeping in mind local minimum problem)
  Probably most popular minimization algorithm
  Extremely efficient Boolean manipulation

  Composed of three main operations
  EXPAND, REDUCE, IRREDUNDANT

  Other operations include
  COMPLEMENT, ESSENTIAL PRIMES, LASTGASP, MAKESPARSE

  Espresso Heuristic (in a nutshell)
  Apply Expand and Irredundant operators to optimize the current function

specification
  Uses the reduce operator to get out of local minimum
  Iterated until the solution converges

ECE 474a/575a 6 of 15

Espresso – Expand Operator Overview

  EXPAND
  Deleting one (or more) of its

literals
  Check for validity

0 1 0 0
00 01 11 10

0 0

0

1 1 1

F bc
a

ab

0 1 0 0
00 01 11 10

0 0

0

1 1 1

F bc
a

abc

0 1 0 0
00 01 11 10

0 0

0

1 1 1

F bc
a

bc 0 1 0 0
00 01 11 10

0 0

0

1 1 1

F bc
a

abc

Expand abc by removing c (results in ab)

Is it valid? Yes.

Expand abc by removing a (results in bc)

Is it valid? No.

ECE 474a/575a 7 of 15

Espresso – Expand Operator Overview

  Goal is to expand a non-prime
implicants to prime with the
least number of literals

1 1 0 1

00 01 11 10

1 0

0

1 0 X

F bc
a

a’b’c’

Expand a’b’c’ by removing a’
Is it valid? Yes.

1 1 0 1

00 01 11 10

1 0

0

1 0 X

F bc
a

b’c’

Expand b’c’ by removing b’
Is it valid? Yes.

1 1 0 1

00 01 11 10

1 0

0

1 0 X

F bc
a

c’

c’ is an prime implicant

ECE 474a/575a 8 of 15

Espresso – Reduce Operator Overview

  REDUCE
  Adding one or more literals
  Check for validity 1 1 1 1

00 01 11 10

0 0

0

1 1 1

F bc
a

a’b’

1 1 1 1
00 01 11 10

0 0

0

1 1 1

F bc
a

a’

1 1 1 1
00 01 11 10

0 0

0

1 1 1

F bc
a

a’c

1 1 1 1
00 01 11 10

0 0

0

1 1 1

F bc
a

a’

Reduce a’ by adding b’ (results in a’b’)

Is it valid? Yes.

Reduce a’ by adding c (results in ac)

Is it valid? Yes.

3

ECE 474a/575a 9 of 15

Espresso – Reduce Operator Overview

  Goal is to decrease the size of
implicants such that expansion
may lead to a better solution
  Avoiding a local minimum

0 1 1 1

00 01 11 10

1 1

0

1 0 1

F yz
x

x’z x’y

xy’ xz’

Reduce x’y to x’yz’

No implicant can be expanded

Is it valid? Yes.

0 1 1 1

00 01 11 10

1 1

0

1 0 1

F yz
x

x’z x’yz’

xy’ xz’

Is it valid? Yes.
Reduce xz’ to xyz’

Is it valid? Yes.
Expand x’yz’ to yz’

0 1 1 1

00 01 11 10

1 1

0

1 0 1

F yz
x

x’z

xy’ yz’

F = x’z + yz’ + xy’

Reduction helped find a better
solution!

0 1 1 1

00 01 11 10

1 1

0

1 0 1

F yz
x

x’z x’yz’

xy’ xyz’

ECE 474a/575a 10 of 15

Espresso – Irredundant Operator Overview

yz’ is redundant

x’y and xz’ cover all minterms contained in yz’

0 1 1 1
00 01 11 10

1 1

0

1 0 1

F yz
x

x’z x’y

xy’

yz’

xz’

0 1 1 1
00 01 11 10

1 1

0

1 0 1

F yz
x

x’z x’y

xy’

xz’

  IRREDUNDANT
  Implicant in a cover is

redundant if all the minterms
covered by it are contained in
other implicants in the cover

ECE 474a/575a 11 of 15

Espresso – Irredundant Operator Overview

  Irredundant cover is not the
same as minimal cover

0 1 1 1
00 01 11 10

1 1

0

1 0 1

F yz
x

x’z x’y

xy’

xz’

0 1 1 1
00 01 11 10

1 1

0

1 0 1

F yz
x

x’z

xy’

yz’

irredundant cover

irredundant cover

minimal cover

ECE 474a/575a 12 of 15

Espresso – Additional Concerns

0 1 0 0
00 01 11 10

0 0

0

1 1 1

F bc
a

ab 0 1 0 0
00 01 11 10

0 0

0

1 1 1

F bc
a

abc

0 1 0 0
00 01 11 10

0 0

0

1 1 1

F bc
a

bc which way should we
expand?

0 1 1 1
00 01 11 10

1 1

0

1 0 1

F yz
x

x’z x’y

xy’

yz’

xz’

which implicant should we reduce?
which literal should we add?

  Additional concerns
  Validity check operations
  Which direction should the

move make?

4

ECE 474a/575a 13 of 15

Espresso

espresso(F,D) {
 R = complement(F U D);
 F = expand(F,R); // initial expansion

 F = irredundant(F,D); // initial irredundant cover

 E = essentials(F,D); // detect essential prime implicants

 F = F – E; // remove essential prime implicants from f

 D = D U E; // add essential prime implicants to D

 repeat {
 φ1 = |F |;
 F = reduce(F,D);
 F = expand(F,R);
 F = irredundant(F,D);
 } until (|F | ≥ φ1);
 F = F U E;
 D = D – E;
 RETURN F;
}

repeated application of REDUCE, EXPAND,
IRREDUNDANT operations while cost keeps decreasing

F is the on-set, D is the don’t care set

ECE 474a/575a 14 of 15

ESPRESSO, to be continued…

  We’ve seen the high-level idea behind ESPRESSO
  ESPRESSO performs extremely efficient Boolean manipulation

  How are these operations actually performed?
  How is data represented?

