

Clique Partitioning Example 1				
$\Pi = \Phi$	// set of partitions is initially empty		9	
Is G empty? No.		3-1-3	4-10	
Find max clique		7-6-2	(5-(11)	
C = 1	// vertex with largest degree, anything with 4 will do	Ü	0 0	
U = {3, 7, 6, 8}	// these vertices are connected to 1			
V = 3			Vertices Degree	
C = {1} U {3} = {	[1, 3]		2 4	
U = {7, 8}	// these vertices are connected to 1 and 3		4 4	
C = {1, 3} U {7}	= {1, 3, 7}		<u>5 3</u> 6 4	
U = { Φ }	// no others vertices connect to 1, 3, and 7		7 4	
Return {1, 3, 7}			9 3	
□ = {1, 3, 7}				
Remove {1, 3, 7}	from G			
	ECE 474a/575a		9 of 25	

1 = {1, 3, 7}, {4, 5, 10, 11}		9
s G empty? No.	8	
Find max clique		
C = 2 // vertex with largest degree, anything with 2 will do	0 0	
U = {6, 8} // these vertices are connected to 2		
V = 6		Vertices Degree
$C = \{2\} \cup \{6\} = \{2, 6\}$		6 2
U = {8} // these vertices are connected to 2 and 6		8 2 9 0
C = {2, 6} U {8} = {2, 6, 8}		
U = { Φ } // no others vertices connect to 2, 6, and 8		
Return {2, 6, 8}		
$\Pi = \{1, 3, 7\}, \{4, 5, 10, 11\}, \{2, 6, 8\}$		
Remove {2, 6, 8} from G		

Clique Partitioning	g	
□ = {1, 4, 5, 6}		3
Is G empty? No.		
Find max clique		2
C = 2		
$U = {\Phi}$		Vertices Degree
Return {2}	2 0	
$\Pi = \{1, 4, 5, 6\}, \{2\}$		
Remove {2} from G		
Π = {1, 4, 5, 6}, {2}		(3)
Is G empty? No.		9
Find max clique		
C = 3		Vertices Degree
$U = {\Phi}$		3 0
Return {3}		
$\Pi = \{1, 4, 5, 6\}, \{2\}, \{3\}$		
Remove {3} from G		
	ECE 474a/575a	15 of 25

Conclusion

-

- Considered several types ways to find resource sharing and binding
 Compatibility Graph / Max Clique
 Conflict Graph / Vertex color
- Again, many other methods available
 - Golumbic's algorithm
 - Left-edge algorithm
 - ILP formulation
- Idea of sharing and binding not limited to adders and multipliers

 - Registers
 Determining minimal number of memory ports
 - Bus sharing

ECE 474a/575a

25 of 25