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Sharing vs. Binding 

  Resource Sharing 
  Assignment of a resource to more than one operation 
  Goal – reduce area by allowing multiple non-concurrent operations to share the same hardware 

operator 

  Resource Binding 
  Explicit mapping between operations and resources 

+ 
op1 

+ 
op2 

+ 
op3 

+ 

adder1 

+ 

adder2 
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op1 
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op2 
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op3 

+ 

adder1 

+ 

adder2 

Resource Binding 
  Add op1 and op2 executes on adder unit 1 
  Add op3 executes on adder unit2 

Resource Sharing 
  We have 3 add operations and 2 adder units 
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Resource Binding 

  Resource binding can be applied to scheduled or non-scheduled sequencing graphs 
  Scheduled sequencing graphs provides limitation on possible sharing 

Requires 2 adders to meet the time constraint 
(upper bound = 2) 
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Requires 4 adders to meet the time constraint 
(upper bound = 1) 
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Resource Binding 

  Resource binding can be applied to scheduled or non-scheduled sequencing graphs 
  Scheduled sequencing graphs provides limitation on possible sharing 
  Non-scheduled sequencing graphs, the limitation of resource sharing effects the latency by 

limiting the concurrency of operations (LIST_L scheduling) 

At most 2 add operations can be executed in a 
time slice, latency = 2 
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At most 1 add operation can be executed in a 
time slice, latency = 4 

Adders available = 2 Adders available = 1 

TIME 2 

TIME 3 

TIME 4 
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Sharing and Binding for Resource Dominated Circuits 

  We are interested in the set of vertices of the sequencing graph (omit source/sink nodes) 
  How much sharing is possible? 
  Two or more operations can be bound to the same resource if the are compatible 

  Not concurrent 
  Can be implemented with the same resource type 

+ 

+ 

1 

3 

< 

+ + 
7 

5 

10 

a = b + c 
e = a + 5 

if ( a < b ) 
   c = 5 + f 
else 
   c = 5 + g 

v7 and v10 are not 
concurrent 

Two operations are NOT concurrent if 
  Either one starts after the other has 

finished 
  Alternative choices (mutually 

exclusive) of a branching decision 

v1 and v3 are not 
concurrent 
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Resource Compatibility Graph 

  Graph whose set of vertices is a one-to-one correspondence with operations in the 
sequencing graph and whose edges denotes the compatible operations pairs 
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3 1 

7 6 2 

8 4 10 

5 11 

9 

3, 1   – Same op, 3 starts after 1 

3, 2   – Same op, 3 starts after 2 

3, 4   – Different ops 

3, 5   – Different ops 

3, 6   – Same op, BUT neither starts after the other and not alternative choices of branch1 

3, 7   – Same op, 3 starts in Time 2 and 7 starts in Time 3 

3, 8   – Same op, 3 starts in Time 2 and 8 starts in Time 3 

3, 9   – Different ops 

3, 10 – Different ops 

3, 11 – Different ops 
Repeat for each node 
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Compatibility Graph Shows Resource Sharing 

  As many disjoint (no common elements) 
components as resource types 
  A multiply operations is not compatible with an add 

operation 

  Clique - group of mutually compatible operations 
correspond to subset of vertices that are mutually 
connected 
  Each vertices connected to every other vertices 

  Maximal set of mutually compatible operations are 
represented by maximal clique 

  The optimum resource sharing is on that minimizes 
the number of required resource instances 
  Resource instance relates to cliques 
  Partitioning graph into minimum number of cliques 

yields optimal sharing 

3 1 

7 6 2 

8 4 10 

5 11 

9 

Maximize size of cliques, must ensure 
all vertices included 

{1, 3, 7} 
{2, 6, 8} 
{1, 8} 
{4, 5, 10, 11} 
{9} 

# Resources = # cliques 

We need 2 adders, 2 multipliers 
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Clique Partitioning 

CLIQUE_PARTITION( G(v, e) ){ 
 Π = Φ  // initial set of partitions to empty 
 while( G(v,e) not empty ) do{                     // while the graph is not empty, keep iterating 
  C = MAX_CLIQUE( G(v,e) )  // compute a maximal clique in graph 
  Π = Π U C  // add max clique to set of partitions 
  delete C from G(v,e)                          // remove max clique from graph 
 } 

} 

MAX_CLIQUE( G(v, e) ){ 
 C = vertex with largest degree 
 repeat { 
  repeat { 
   U = { v Є V : v Є C and adjacent to all vertices of C} 
   if ( U ≠ Φ ){  // no such vertices exist 
    return C 
   } 
   else{ 
    select v Є U  // pick one 
    C = C U v  // add to clique 
   } 
  } 
 } 

}     
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Clique Partitioning 
Example 1 

3 1 

7 6 2 

8 4 10 

5 11 

9 Π = Φ                                // set of partitions is initially empty 

Is G empty? No. 

Find max clique 

C = 1                     // vertex with largest degree, anything with 4 will do 

U = {3, 7, 6, 8}       // these vertices are connected to 1 

V = 3 

C = {1} U {3} = {1, 3} 

U = {7, 8}               // these vertices are connected to 1and 3 

C = {1, 3} U {7} = {1, 3, 7} 

U = { Φ }               // no others vertices connect to 1, 3, and 7 

Return {1, 3, 7} 

Π = {1, 3, 7} 

Vertices Degree 
1 4 
2 4 
3 4 
4 4 
5 3 
6 4 
7 4 
8 4 
9 3 

10 4 
11 4 

Remove {1, 3, 7} from G 
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Clique Partitioning 
Example 1 

6 2 

8 4 10 

5 11 

9 Π = {1, 3, 7} 

Is G empty? No. 

Find max clique 

C = 4      // vertex with largest degree, anything with 4 will do 

U = {5, 9, 10, 11}    // these vertices are connected to 4 

V = 5 

C = {4} U {5} = {4, 5} 

U = {10, 11}      // these vertices are connected to 4 and 5 

C = {4, 5} U {10} = {4, 5, 10} 

U = { Φ }     // no others vertices connect to 4, 5, 10, and 11 

Return {4, 5, 10, 11} 

Π = {1, 3, 7}, {4, 5, 10, 11} 

Vertices Degree 
2 2 
4 4 
5 3 
6 2 
8 2 
9 3 

10 4 
11 4 

Remove {4, 5, 10, 11} from G 

U = {11}      // these vertices are connected to 4, 5, and 10 

C = {4, 5, 10} U {11} = {4, 5, 10, 11} 
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Clique Partitioning 
Example 1 

6 2 

8 

9 Π = {1, 3, 7}, {4, 5, 10, 11} 

Is G empty? No. 

Find max clique 

C = 2      // vertex with largest degree, anything with 2 will do 

U = {6, 8}    // these vertices are connected to 2 

V = 6 

C = {2} U {6} = {2, 6} 

U = {8}      // these vertices are connected to 2 and 6 

C = {2, 6} U {8} = {2, 6, 8} 

U = { Φ }     // no others vertices connect to 2, 6, and 8 

Return {2, 6, 8} 

Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8} 

Vertices Degree 
2 2 
6 2 
8 2 
9 0 

Remove {2, 6, 8} from G 
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Clique Partitioning 
Example 1 

9 Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8} 

Is G empty? No. 

Find max clique 

C = 9 

U = {9} 

U = { Φ }     // no others vertices connect to 9 

Return {9} 

Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}, {9} 

Vertices Degree 
9 0 

Remove {9} from G 
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Clique Partitioning 
Example 1 

Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}, {9} 

Is G empty? Yes! 

  What does clique partition tell us? 
  {1, 3, 7} – multiplier  
  {4, 5, 10, 11} – alu 
  {2, 6, 8} – multiplier 
  {9} – alu 

  We know how much sharing AND binding 

3 1 

7 6 2 

8 4 10 

5 11 

9 
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Clique Partitioning 
Example 2 

+ + + 

+ 

 - 

 - 

NOP 

NOP 

1 2 

5 

6 

4 

3 
TIME 1 

TIME 2 

TIME 3 

TIME 4 

V0 

Vn 

Π = Φ 

Is G empty? No. 

Find max clique 

C = 4 

U = {1, 2, 3, 5, 6} 

V = 1 

C = {4} U {1} = {1, 4} 

U = {5, 6} 

C = {1, 4} U {5} = {1, 4, 5} 

U = { Φ } 

Return {1, 4, 5, 6} 

Π = {1, 4, 5, 6} 

Remove {1, 4, 5, 6} from G 

1 3 

2 4 6 

5 

Vertices Degree 
1 3 
2 3 
3 3 
4 5 
5 5 
6 5 

U = {6} 

C = {1, 4, 5} U {6} = {1, 4, 5, 6} 
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Clique Partitioning 
Example 2 

Π = {1, 4, 5, 6} 

Is G empty? No. 

Find max clique 

C = 2 

U = {Φ} 

Return {2} 

Π = {1, 4, 5, 6}, {2} 

Remove {2} from G 

3 

2 

Vertices Degree 
2 0 
3 0 

Π = {1, 4, 5, 6}, {2} 

Is G empty? No. 

Find max clique 

C = 3 

U = {Φ} 

Return {3} 

Π = {1, 4, 5, 6}, {2}, {3} 

Remove {3} from G 

3 

Vertices Degree 
3 0 
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Clique Partitioning 
Example 2 

+ + + 
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 - 

 - 

NOP 

NOP 

1 2 

5 

6 

4 

3 
TIME 1 

TIME 2 

TIME 3 

TIME 4 

V0 

Vn 

Π = {1, 4, 5, 6}, {2}, {3} 

Is G empty? Yes 

  Need 3 ALUs 
  ALU 1 executes ops 1, 4, 5, 6 
  ALU 2 executes op 2 
  ALU 3 executes op 3 

1 3 

2 4 6 

5 
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Resource Conflict Graph 

  Instead of compatibility we can instead look at 
conflicts 
  May simplify the graph 

  Resource conflict graph 
  Graph whose set of vertices is a one-to-one 

correspondence with operations in the sequencing 
graph and whose edges denotes the conflicting 
operations pairs 

  To simplify graph, we consider conflicts between 
each resource type independently 

3 1 

7 6 2 

8 4 10 

5 11 

9 

resource compatibility graph 

3 1 

7 6 2 

8 4 10 

5 11 

9 

resource conflict graph 
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Building Resource Conflict Graph 

  To simplify graph, we consider conflicts 
between each resource type independently 

3 1 

7 6 2 

8 4 10 

5 11 
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TIME 1 

TIME 2 

TIME 3 

TIME 4 
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1, 2  –  concurrent 

3, 6  –  concurrent 

7, 8   – concurrent 

5, 9   – concurrent 

Multipliers ALUs 

Consider Multipliers (1, 2, 3, 6, 7, 8) 

Consider ALUs (4, 5, 9, 10, 11) 
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Building Resource Conflict Graph 

  Conflict graph is the complement of the compatibility graph 
  In conflict graph, looking for set of mutually compatible operations 

  Subset of vertices that are NOT connected by edges 
  Also called independent set of G 

3 1 

7 6 2 

8 4 10 

5 11 

9 

3 1 

7 6 2 

8 4 10 

5 11 

9 

resource compatibility graph resource conflict graph 
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Graph Coloring 

VERTEX_COLOR ( G(v, e) ){ 
 for( i=1 to | V | ){ 
  C = 1  // use number to represent color 
  while( there exists a vertex adjacent to vi with color c) do{ 
   C = C + 1 
  } 
  label vi with C 
 } 

} 

  Use graph coloring to find independent sets 
  Each color represents a resource instance (two adders will be represented by two different 

colors) 

  Optimal resource sharing corresponds to vertex coloring with minimal amount of 
colors 
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Graph Coloring 
Example 1 

3 1 

7 6 2 

8 4 10 

5 11 

9 
i = 1     // look at vertex 1 

C = c1  // represents first color 

Is there any adjacent vertices with color = 1? No. 

v1 = c1 

c1 

i = 2     // look at vertex 2 
C = c1 

Is there any adjacent vertices with color = 1? Yes. 

C = c2 

Is there any adjacent vertices with color = 2? No. 

v2 = c2 

c2 

i = 3     // look at vertex 3 
C = c1  // represents first color 

Is there any adjacent vertices with color = 1? No. 

v3 = c1 

c1 
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Graph Coloring 
Example 1 

3 1 

7 6 2 

8 4 10 

5 11 

9 
i = 4     // look at vertex 4 

c1 

c2 

c2 c1 

c2 c1 

c3 

c3 

c3 

c3 

Similarly repeat for remaining 

C = c1  // represents first color 

Is there any adjacent vertices with color = 1? Yes – remember 
conflict is implied across different resource types. 

v4 = c3 

C = c2 

Is there any adjacent vertices with color = 2? Yes. 

C = c3 

Is there any adjacent vertices with color = 3? No. 

c4 

  Four colors required – need four resources 
  c1 is used for multiply 
  c2 is used for multiply 
  c3 is used for alu 
  c4 is used for alu 
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Graph Coloring 
Example 2 

3 

1 

6 

2 

4 

5 

c1 c2 

i = 1 
C = c1 
Adjacent vertices with color = 1? No. 
v1 = c1 

  Four colors required – need 
four resources 
  c1 for node 1, 3 op 
  c2 for node 2, 4 op 
  c3 for node 5 op 
  c4 for node 6 op 

c3 c1 

c4 

c2 

i = 2 

C = c2 
Adjacent vertices with color = 2? No. 

C = c1 
Adjacent vertices with color = 1? Yes. 

v2 = c2 

i = 3 
C = c1 
Adjacent vertices with color = 1? No. 
v3 = c1 

i = 4 

C = c2 
Adjacent vertices with color = 2? No. 

C = c1 
Adjacent vertices with color = 1? Yes. 

v4 = c2 

i = 5 

Adjacent vertices with color = 2? Yes. 

C = c1 
Adjacent vertices with color = 1? Yes. 

v5 = c3 

C = c2 

Adjacent vertices with color = 3? No. 
C = c3 

i = 6 

Adjacent vertices with color = 2? Yes. 

C = c1 
Adjacent vertices with color = 1? Yes. 

v6 = c4 

C = c2 

Adjacent vertices with color = 3? Yes. 
C = c3 

Adjacent vertices with color = 4? No. 
C = c4 
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Graph Coloring 

  VERTEX_COLOR algorithm sensitive to ordering of vertices explored - variety of 
modifications available 
  Switching pair assignment of colors 
  Backtracking to switching larger number of vertices 

3 

1 2 

4 

5 

c1 

c2 c1 c2 

c1 

  Node ordering 1, 2, 3, 4, 5 
  Requires 2 colors 

3 

1 2 

4 

5 

c3 

c2 c1 c1 

c3 

  Node ordering 1, 5, 2, 3, 4 
  Requires 3 colors 
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Conclusion 

  Considered several types ways to find resource sharing and binding 
  Compatibility Graph / Max Clique 
  Conflict Graph / Vertex color 

  Again, many other methods available 
  Golumbic's algorithm 
  Left-edge algorithm 
  ILP formulation 

  Idea of sharing and binding not limited to adders and multipliers 
  Registers 
  Determining minimal number of memory ports 
  Bus sharing 
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