ECE 474A/57A
Computer-Aided Logic Design

Behavioral Synthesis
Resource Sharing & Binding

ECE 474a/575a 10f25

Sharing vs. Binding

= Resource Sharing
= Assignment of a resource to more than one operation

= Goal - reduce area by allowing multiple non-concurrent operations to share the same hardware
operator

= Resource Binding
= Explicit mapping between operations and resources

opl op2 op3 opl op2 op3

®

adder1 adder2 adder1 adder2
Resource Sharing Resource Binding
= We have 3 add operations and 2 adder units = Add opl and op2 executes on adder unit 1

= Add op3 executes on adder unit2

ECE 474a/575a 20f25

Resource Binding

= Resource binding can be applied to scheduled or non-scheduled sequencing graphs
= Scheduled sequencing graphs provides limitation on possible sharing

TIME 1 1({)’:\2@ 3@/“‘:@ TIME 1

TIME 2

X
NV,
(NoR! "

Requires 4 adders to meet the time constraint Requires 2 adders to meet the time constraint
(upper bound = 1) (upper bound = 2)

ECE 474a/575a 30f25

Resource Binding

= Resource binding can be applied to scheduled or non-scheduled sequencing graphs
= Scheduled sequencing graphs provides limitation on possible sharing
= Non-scheduled sequencing graphs, the limitation of resource sharing effects the latency by
limiting the concurrency of operations (LIST_L scheduling)

Adders available = 1 Adders available = 2

TIME 1 1@’

TIME 1

TIME 2 TIME 2

TIME 3

TIME 4 B

At most 1 add operation can be executed in a At most 2 add operations can be executed in a
time slice, latency = 4 time slice, latency = 2

ECE 474a/575a 40f25

Sharing and Binding for Resource Dominated Circuits

= We are interested in the set of vertices of the sequencing graph (omit source/sink nodes)
= How much sharing is possible?
= Two or more operations can be bound to the same resource if the are compatible

= Not concurrent

= Can be implemented with the same resource type

a=b+c 1 if(a<b) 5 Two operations are NOT concurrent if
e=a+5 e‘ze' 5+f = Either one starts after the other has
3 c=5+g ; 10 flnlshed.)
@ @ = Alternative choices (mutually
exclusive) of a branching decision
v1 and v3 are not v7 and v10 are not
concurrent concurrent
ECE 474a/575a 50f25

Resource Compatibility Graph

= Graph whose set of vertices is a one-to-one correspondence with operations in the
sequencing graph and whose edges denotes the compatible operations pairs

or'? °
®

TIME 1 1Q"2©

O,
®
®)
®

TIME 2 36 GQ : 11(;

hta' < o

5

a,
TIME 3
5

kel
TIME 4 \d 9@ 5

3,1 - Same op, 3 starts after 1
3,2 - Same op, 3 starts after 2
3,4 - Different ops
3,5 - Different ops
3,6 —Same op, BUT neither starts after the other and not alternative choices of branch1
3,7 —Same op, 3 starts in Time 2 and 7 starts in Time 3
3,8 - Same op, 3 starts in Time 2 and 8 starts in Time 3
3,9 - Different ops
3, 10 - Different ops Repeat for each node
3, 11 - Different ops
ECE 474a/575a 60125

Compatibility Graph Shows Resource Sharing

= As many disjoint (no common elements) 0)
components as resource types
= A multiply operations is not compatible with an add O—® oﬂ
operation 4
&

= Clique - group of mutually compatible operations
correspond to subset of vertices that are mutually
connected

= Each vertices connected to every other vertices Maximize size of cliques, must ensure
= Maximal set of mutually compatible operations are all vertices included
represented by maximal clique 1,37
{2,6,8)
{1, 8
{4, 5, 10, 11}
= The optimum resource sharing is on that minimizes {9}
the number of required resource instances
= Resource instance relates to cliques # Resources = # cliques

= Partitioning graph into minimum number of cliques

: ; - We need 2 adders, 2 multipliers
yields optimal sharing P

ECE 474a/575a 70f25

Clique Partitioning

CLIQUE_PARTITION(G(v, e)){

n=o /1 initial set of partitions to empty

while(G(v,e) not empty) dof /' while the graph is not empty, keep iterating
C = MAX_CLIQUE(G(v.e)) /I compute a maximal clique in graph
n=nuc /I add max clique to set of partitions
delete C from G(v,e) /I remove max clique from graph

}

MAX_CLIQUE(G(v, &) X
C = vertex with largest degree

repeat {
repeat {
U={vEV:v ¢ Cand adjacent to all vertices of C}
if(UZ®) /I no such vertices exist
return C
}
else{
selectvE€ U /1 pick one
C=CUv /I add to clique
}
}
}
}
ECE 474a/575a 8of 25

Clique Partitioning

Example 1

N=o /] set of partitions is initially empty
Is G empty? No.
Find max clique
c=1 1/ vertex with largest degree, anything with 4 will do
U={3,7,6,8 // these vertices are connected to 1
v=3
C={1}U{3}=1{3}
u={78 // these vertices are connected to 1and 3
C={1,3)U{={1,3,7)
u={o} 1/ no others vertices connect to 1, 3, and 7
Return {1, 3, 7}
n={1,3,7}

Remove {1, 3, 7} from G

ECE 474a/575a

@)

ﬁe

@

Vertices| Degree
1 4
2 4
3 4
4 4
5 3
6 4
7 4
8 4
9 3
10 4
1 4

9of 25

Clique Partitioning

Example 1
n=41,3,7; ©
Is G empty? No. ® o{
Find max clique ®&—0Q 9’1.
C=4 // vertex with largest degree, anything with 4 will do
U={5,9,10, 11} // these vertices are connected to 4
ves Vertices | Degree
2 2
C={4U {5y ={4,5) 4 4
U={10, 11} // these vertices are connected to 4 and 5 : 3
C={4,5 U {10} = {4, 5,10} z; g
U={11} // these vertices are connected to 4, 5, and 10 10 4
11 4

C={4,5, 10} U {11} = {4, 5, 10, 11}

U={®} //no others vertices connect to 4, 5, 10, and 11
Return {4, 5, 10, 11}
n=41,3,7} {45, 10, 11}
Remove {4, 5, 10, 11} from G

ECE 474a/575a

100f 25

Clique Partitioning

Example 1

n={1,3,7}{4,5,6 10, 11}
Is G empty? No. ®
Find max clique O—Q@
C=2 // vertex with largest degree, anything with 2 will do
U={6,8} //these vertices are connected to 2
V=6
C={2yu{6} ={2 6}
U={8) //these vertices are connected to 2 and 6
C={2,6)U{8} ={26,8)
U={®} //no others vertices connect to 2, 6, and 8
Return {2, 6, 8}
n=A1,3,7} {45 10,11}, {2, 6, 8}
Remove {2, 6, 8} from G

ECE 474a/575a

Vertices | Degree

2 2

6 2

8 2

9 0
10f25

Clique Partitioning

Example 1

n=A1,3,7} {45 10, 11}, {2, 6, 8}
Is G empty? No.

Find max clique

c=9

U={9)

U={®} //no others vertices connect to 9
Return {9}
n={1,3,7}{4,5, 10, 11}, {2, 6, 8}, {9}

Remove {9} from G

ECE 474a/575a

Vertices | Degree
9 0

120f 25

Clique Partitioning

Example 1

n={1,3,7} 44,5 10, 11}, {2, 6, 8}, {9}
Is G empty? Yes!

= What does clique partition tell us?
= {1, 3, 7} — multiplier
= {4,5,10,11} - alu

Clique Partitioning

Example 2

n=ao
Is G empty? No.
Find max clique
C=4
U={1,2,3,5 6}
v=1
C={4yU{1y =41, 4}
U={56}
C={1,4U{5}=1{1,4,5}
U={6}
C={1,4,5U{6}=1{1,4,56}
U={o}
Return {1, 4, 5, 6}
n={1,4,5,6}

Remove {1, 4, 5, 6} from G

Vertices

NI

w

IS

@

o

ECE 474a/575a

Degree

w|w

w

@

@

@

140125

= {2, 6, 8} — multiplier ®
* 9y-au O ® @@
= We know how much sharing AND binding Om©O) G—@
ECE 474a/575a 13 0f 25
Clique Partitioning
Example 2
n={1,45 6} €
Is G empty? No.
Find max clique @
c=2
U= {o} Vertices | Degree
Return {2} ; g
n={1,4,5,6} {2}
Remove {2} from G
n={1,4,5 6} {2} ©)

Is G empty? No.
Find max clique
c=3
U={o}
Return {3}
n={1,4,5,6} {2}, {3}
Remove {3} from G
ECE 474a/575a

Vertices | Degree
3 [

150f 25

Clique Partitioning

Example 2

n={1,45,6} {2} {3}
Is G empty? Yes

= Need 3 ALUs

= ALU 1 executesops 1, 4, 5,

= ALU 2 executes op 2
= ALU 3 executes op 3

ECE 474a/575a

6

16 0f 25

Resource Conflict Graph

= Instead of compatibility we can instead look at

i (®
conflicts
= May simplify the graph o}#
>
= Resource conflict graph 0‘0 @ G&—@

= Graph whose set of vertices is a one-to-one
correspondence with operations in the sequencing resource compatibility graph
graph and whose edges denotes the conflicting
operations pairs

= To simplify graph, we consider conflicts between
each resource type independently

resource conflict graph

ECE 474a/575a 170f25

Building Resource Conflict Graph

= To simplify graph, we consider conflicts @
between each resource type independently
@@ ©

Multipliers ALUs

Consider Multipliers (1, 2, 3, 6, 7, 8)
1, 2 - concurrent
3,6 — concurrent
7,8 - concurrent

Consider ALUs (4, 5, 9, 10, 11)

5,9 - concurrent

Building Resource Conflict Graph

= Conflict graph is the complement of the compatibility graph

= In conflict graph, looking for set of mutually compatible operations
= Subset of vertices that are NOT connected by edges
= Also called independent set of G

>
TEo 5

resource compatibility graph resource conflict graph

ECE 474a/575a 190f 25

ECE 474a/575a 18 of 25
Graph Coloring
VERTEX_COLOR (G(v, e) {
for(i=1to | V|)

c=1 /1 use number to represent color
while(there exists a vertex adjacent to v; with color ¢) do{

C=C+1
}
label v; with C

= Use graph coloring to find independent sets

= Each color represents a resource instance (two adders will be represented by two different
colors)

= Optimal resource sharing corresponds to vertex coloring with minimal amount of
colors

ECE 474a/575a 20 0f 25

Graph Coloring

Example 1

i=1 //look at vertex 1 @
C=c1 // represents first color ¢l et
Is there any adjacent vertices with color = 12 No.

vy=cl

i=2 //look at vertex 2
c=ct
Is there any adjacent vertices with color = 1? Yes.
Cc=c2

Is there any adjacent vertices with color = 22 No.

Graph Coloring

Example 1

i=4 /llook at vertex 4

C =c1 /l represents first color

Is there any adjacent vertices with color = 1? Yes — remember
conflict is implied across different resource types.

C=c2

Is there any adjacent vertices with color = 2? Yes.

C=c3

Is there any adjacent vertices with color = 3? No.

cl c1

@ @
@ ®

Similarly repeat for remaining

v,=c2

i=3 //look at vertex 3

C=c1 /l represents first color

Is there any adjacent vertices with color = 1? No.

vs=ci

ECE 474a/575a

210f25

v,=c3

= Four colors required — need four resources
= clis used for multiply
= 2 is used for multiply
= 3 is used for alu
= c4is used for alu

Graph Coloring

Example 2
i=1 i=5 2
C=c1 C=cl @
Adjacent vertices with color = 1? No. Adjacent vertices with color = 1? Yes.
vi=ct -2
Adjacent vertices with color = 2? Yes 7
i=2 c=c3 e
c=ct Adjacent vertices with color = 3? No
Adjacent vertices with color = 12 Yes. vs=c3
c=c2
Adjacent vertices with color = 22 No.
v,=c2 i
i=6
=3 c=ct
= Adjacent vertices with color = 1? Yes.)
- Four colors required — need
Cc=ct C=c2
)) 3 . four resources
Adjacent vertices with color = 12 No. Adjacent vertices with color = 2? Yes.
- = cifornode1,3op
v3=cl C=c3 - c2fornode 2,4 0p
Adjacent vertices with color = 3? Yes . c3fornode5 op
i=4 C=ot = c4for node 6 op
oot Adjacent vertices with color = 4? No.
=c

Adjacent vertices with color = 1? Yes.

c=c2
Adjacent vertices with color = 2 No.
ve=c2

Ve =cd

ECE 474a/575a

230f25

ECE 474a/575a 220f 25
Graph Coloring
= VERTEX_COLOR algorithm sensitive to ordering of vertices explored - variety of
modifications available
= Switching pair assignment of colors
= Backtracking to switching larger number of vertices
cl c2 cl
. Node ordering 1, 2, 3,4, 5 . Node ordering 1, 5, 2, 3, 4
= Requires 2 colors = Requires 3 colors
ECE 474a/575a 24 0of 25

Conclusion

= Considered several types ways to find resource sharing and binding
= Compatibility Graph / Max Clique
= Conflict Graph / Vertex color

= Again, many other methods available
= Golumbic's algorithm
= Left-edge algorithm
= ILP formulation

= Idea of sharing and binding not limited to adders and multipliers
= Registers
= Determining minimal number of memory ports
= Bus sharing

ECE 474a/575a 250125

