
1

ECE 474a/575a

ECE 474A/57A
Computer-Aided Logic Design

Behavioral Synthesis
Resource Sharing & Binding

1 of 25 ECE 474a/575a

Sharing vs. Binding

  Resource Sharing
  Assignment of a resource to more than one operation
  Goal – reduce area by allowing multiple non-concurrent operations to share the same hardware

operator

  Resource Binding
  Explicit mapping between operations and resources

+
op1

+
op2

+
op3

+

adder1

+

adder2

+
op1

+
op2

+
op3

+

adder1

+

adder2

Resource Binding
  Add op1 and op2 executes on adder unit 1
  Add op3 executes on adder unit2

Resource Sharing
  We have 3 add operations and 2 adder units

2 of 25

ECE 474a/575a

Resource Binding

  Resource binding can be applied to scheduled or non-scheduled sequencing graphs
  Scheduled sequencing graphs provides limitation on possible sharing

Requires 2 adders to meet the time constraint
(upper bound = 2)

NOP

NOP

+
1

+
2

+
3

+
4 TIME 1

V0

Vn

NOP

NOP

+
1

+
2

+
3

+
4

TIME 1

V0

Vn

TIME 2

Requires 4 adders to meet the time constraint
(upper bound = 1)

3 of 25 ECE 474a/575a

Resource Binding

  Resource binding can be applied to scheduled or non-scheduled sequencing graphs
  Scheduled sequencing graphs provides limitation on possible sharing
  Non-scheduled sequencing graphs, the limitation of resource sharing effects the latency by

limiting the concurrency of operations (LIST_L scheduling)

At most 2 add operations can be executed in a
time slice, latency = 2

NOP

NOP

+
1

+
2

+
3

+
4

TIME 1

V0

Vn

NOP

NOP

+
1

+
2

+
3

+
4

TIME 1

V0

Vn

TIME 2

At most 1 add operation can be executed in a
time slice, latency = 4

Adders available = 2 Adders available = 1

TIME 2

TIME 3

TIME 4

4 of 25

2

ECE 474a/575a

Sharing and Binding for Resource Dominated Circuits

  We are interested in the set of vertices of the sequencing graph (omit source/sink nodes)
  How much sharing is possible?
  Two or more operations can be bound to the same resource if the are compatible

  Not concurrent
  Can be implemented with the same resource type

+

+

1

3

<

+ +
7

5

10

a = b + c
e = a + 5

if (a < b)
 c = 5 + f
else
 c = 5 + g

v7 and v10 are not
concurrent

Two operations are NOT concurrent if
  Either one starts after the other has

finished
  Alternative choices (mutually

exclusive) of a branching decision

v1 and v3 are not
concurrent

5 of 25 ECE 474a/575a

Resource Compatibility Graph

  Graph whose set of vertices is a one-to-one correspondence with operations in the
sequencing graph and whose edges denotes the compatible operations pairs

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

3 1

7 6 2

8 4 10

5 11

9

3, 1 – Same op, 3 starts after 1

3, 2 – Same op, 3 starts after 2

3, 4 – Different ops

3, 5 – Different ops

3, 6 – Same op, BUT neither starts after the other and not alternative choices of branch1

3, 7 – Same op, 3 starts in Time 2 and 7 starts in Time 3

3, 8 – Same op, 3 starts in Time 2 and 8 starts in Time 3

3, 9 – Different ops

3, 10 – Different ops

3, 11 – Different ops
Repeat for each node

6 of 25

ECE 474a/575a

Compatibility Graph Shows Resource Sharing

  As many disjoint (no common elements)
components as resource types
  A multiply operations is not compatible with an add

operation

  Clique - group of mutually compatible operations
correspond to subset of vertices that are mutually
connected
  Each vertices connected to every other vertices

  Maximal set of mutually compatible operations are
represented by maximal clique

  The optimum resource sharing is on that minimizes
the number of required resource instances
  Resource instance relates to cliques
  Partitioning graph into minimum number of cliques

yields optimal sharing

3 1

7 6 2

8 4 10

5 11

9

Maximize size of cliques, must ensure
all vertices included

{1, 3, 7}
{2, 6, 8}
{1, 8}
{4, 5, 10, 11}
{9}

Resources = # cliques

We need 2 adders, 2 multipliers

7 of 25 ECE 474a/575a

Clique Partitioning

CLIQUE_PARTITION(G(v, e)){
 Π = Φ // initial set of partitions to empty
 while(G(v,e) not empty) do{ // while the graph is not empty, keep iterating
 C = MAX_CLIQUE(G(v,e)) // compute a maximal clique in graph
 Π = Π U C // add max clique to set of partitions
 delete C from G(v,e) // remove max clique from graph
 }

}

MAX_CLIQUE(G(v, e)){
 C = vertex with largest degree
 repeat {
 repeat {
 U = { v Є V : v Є C and adjacent to all vertices of C}
 if (U ≠ Φ){ // no such vertices exist
 return C
 }
 else{
 select v Є U // pick one
 C = C U v // add to clique
 }
 }
 }

}
8 of 25

3

ECE 474a/575a

Clique Partitioning
Example 1

3 1

7 6 2

8 4 10

5 11

9 Π = Φ // set of partitions is initially empty

Is G empty? No.

Find max clique

C = 1 // vertex with largest degree, anything with 4 will do

U = {3, 7, 6, 8} // these vertices are connected to 1

V = 3

C = {1} U {3} = {1, 3}

U = {7, 8} // these vertices are connected to 1and 3

C = {1, 3} U {7} = {1, 3, 7}

U = { Φ } // no others vertices connect to 1, 3, and 7

Return {1, 3, 7}

Π = {1, 3, 7}

Vertices Degree
1 4
2 4
3 4
4 4
5 3
6 4
7 4
8 4
9 3

10 4
11 4

Remove {1, 3, 7} from G

9 of 25 ECE 474a/575a

Clique Partitioning
Example 1

6 2

8 4 10

5 11

9 Π = {1, 3, 7}

Is G empty? No.

Find max clique

C = 4 // vertex with largest degree, anything with 4 will do

U = {5, 9, 10, 11} // these vertices are connected to 4

V = 5

C = {4} U {5} = {4, 5}

U = {10, 11} // these vertices are connected to 4 and 5

C = {4, 5} U {10} = {4, 5, 10}

U = { Φ } // no others vertices connect to 4, 5, 10, and 11

Return {4, 5, 10, 11}

Π = {1, 3, 7}, {4, 5, 10, 11}

Vertices Degree
2 2
4 4
5 3
6 2
8 2
9 3

10 4
11 4

Remove {4, 5, 10, 11} from G

U = {11} // these vertices are connected to 4, 5, and 10

C = {4, 5, 10} U {11} = {4, 5, 10, 11}

10 of 25

ECE 474a/575a

Clique Partitioning
Example 1

6 2

8

9 Π = {1, 3, 7}, {4, 5, 10, 11}

Is G empty? No.

Find max clique

C = 2 // vertex with largest degree, anything with 2 will do

U = {6, 8} // these vertices are connected to 2

V = 6

C = {2} U {6} = {2, 6}

U = {8} // these vertices are connected to 2 and 6

C = {2, 6} U {8} = {2, 6, 8}

U = { Φ } // no others vertices connect to 2, 6, and 8

Return {2, 6, 8}

Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}

Vertices Degree
2 2
6 2
8 2
9 0

Remove {2, 6, 8} from G

11 of 25 ECE 474a/575a

Clique Partitioning
Example 1

9 Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}

Is G empty? No.

Find max clique

C = 9

U = {9}

U = { Φ } // no others vertices connect to 9

Return {9}

Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}, {9}

Vertices Degree
9 0

Remove {9} from G

12 of 25

4

ECE 474a/575a

Clique Partitioning
Example 1

Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}, {9}

Is G empty? Yes!

  What does clique partition tell us?
  {1, 3, 7} – multiplier
  {4, 5, 10, 11} – alu
  {2, 6, 8} – multiplier
  {9} – alu

  We know how much sharing AND binding

3 1

7 6 2

8 4 10

5 11

9

13 of 25 ECE 474a/575a

Clique Partitioning
Example 2

+ + +

+

 -

 -

NOP

NOP

1 2

5

6

4

3
TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

Π = Φ

Is G empty? No.

Find max clique

C = 4

U = {1, 2, 3, 5, 6}

V = 1

C = {4} U {1} = {1, 4}

U = {5, 6}

C = {1, 4} U {5} = {1, 4, 5}

U = { Φ }

Return {1, 4, 5, 6}

Π = {1, 4, 5, 6}

Remove {1, 4, 5, 6} from G

1 3

2 4 6

5

Vertices Degree
1 3
2 3
3 3
4 5
5 5
6 5

U = {6}

C = {1, 4, 5} U {6} = {1, 4, 5, 6}

14 of 25

ECE 474a/575a

Clique Partitioning
Example 2

Π = {1, 4, 5, 6}

Is G empty? No.

Find max clique

C = 2

U = {Φ}

Return {2}

Π = {1, 4, 5, 6}, {2}

Remove {2} from G

3

2

Vertices Degree
2 0
3 0

Π = {1, 4, 5, 6}, {2}

Is G empty? No.

Find max clique

C = 3

U = {Φ}

Return {3}

Π = {1, 4, 5, 6}, {2}, {3}

Remove {3} from G

3

Vertices Degree
3 0

15 of 25 ECE 474a/575a

Clique Partitioning
Example 2

+ + +

+

 -

 -

NOP

NOP

1 2

5

6

4

3
TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

Π = {1, 4, 5, 6}, {2}, {3}

Is G empty? Yes

  Need 3 ALUs
  ALU 1 executes ops 1, 4, 5, 6
  ALU 2 executes op 2
  ALU 3 executes op 3

1 3

2 4 6

5

16 of 25

5

ECE 474a/575a

Resource Conflict Graph

  Instead of compatibility we can instead look at
conflicts
  May simplify the graph

  Resource conflict graph
  Graph whose set of vertices is a one-to-one

correspondence with operations in the sequencing
graph and whose edges denotes the conflicting
operations pairs

  To simplify graph, we consider conflicts between
each resource type independently

3 1

7 6 2

8 4 10

5 11

9

resource compatibility graph

3 1

7 6 2

8 4 10

5 11

9

resource conflict graph

17 of 25 ECE 474a/575a

Building Resource Conflict Graph

  To simplify graph, we consider conflicts
between each resource type independently

3 1

7 6 2

8 4 10

5 11

9

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

1, 2 – concurrent

3, 6 – concurrent

7, 8 – concurrent

5, 9 – concurrent

Multipliers ALUs

Consider Multipliers (1, 2, 3, 6, 7, 8)

Consider ALUs (4, 5, 9, 10, 11)

18 of 25

ECE 474a/575a

Building Resource Conflict Graph

  Conflict graph is the complement of the compatibility graph
  In conflict graph, looking for set of mutually compatible operations

  Subset of vertices that are NOT connected by edges
  Also called independent set of G

3 1

7 6 2

8 4 10

5 11

9

3 1

7 6 2

8 4 10

5 11

9

resource compatibility graph resource conflict graph

19 of 25 ECE 474a/575a

Graph Coloring

VERTEX_COLOR (G(v, e)){
 for(i=1 to | V |){
 C = 1 // use number to represent color
 while(there exists a vertex adjacent to vi with color c) do{
 C = C + 1
 }
 label vi with C
 }

}

  Use graph coloring to find independent sets
  Each color represents a resource instance (two adders will be represented by two different

colors)

  Optimal resource sharing corresponds to vertex coloring with minimal amount of
colors

20 of 25

6

ECE 474a/575a

Graph Coloring
Example 1

3 1

7 6 2

8 4 10

5 11

9
i = 1 // look at vertex 1

C = c1 // represents first color

Is there any adjacent vertices with color = 1? No.

v1 = c1

c1

i = 2 // look at vertex 2
C = c1

Is there any adjacent vertices with color = 1? Yes.

C = c2

Is there any adjacent vertices with color = 2? No.

v2 = c2

c2

i = 3 // look at vertex 3
C = c1 // represents first color

Is there any adjacent vertices with color = 1? No.

v3 = c1

c1

21 of 25 ECE 474a/575a

Graph Coloring
Example 1

3 1

7 6 2

8 4 10

5 11

9
i = 4 // look at vertex 4

c1

c2

c2 c1

c2 c1

c3

c3

c3

c3

Similarly repeat for remaining

C = c1 // represents first color

Is there any adjacent vertices with color = 1? Yes – remember
conflict is implied across different resource types.

v4 = c3

C = c2

Is there any adjacent vertices with color = 2? Yes.

C = c3

Is there any adjacent vertices with color = 3? No.

c4

  Four colors required – need four resources
  c1 is used for multiply
  c2 is used for multiply
  c3 is used for alu
  c4 is used for alu

22 of 25

ECE 474a/575a

Graph Coloring
Example 2

3

1

6

2

4

5

c1 c2

i = 1
C = c1
Adjacent vertices with color = 1? No.
v1 = c1

  Four colors required – need
four resources
  c1 for node 1, 3 op
  c2 for node 2, 4 op
  c3 for node 5 op
  c4 for node 6 op

c3 c1

c4

c2

i = 2

C = c2
Adjacent vertices with color = 2? No.

C = c1
Adjacent vertices with color = 1? Yes.

v2 = c2

i = 3
C = c1
Adjacent vertices with color = 1? No.
v3 = c1

i = 4

C = c2
Adjacent vertices with color = 2? No.

C = c1
Adjacent vertices with color = 1? Yes.

v4 = c2

i = 5

Adjacent vertices with color = 2? Yes.

C = c1
Adjacent vertices with color = 1? Yes.

v5 = c3

C = c2

Adjacent vertices with color = 3? No.
C = c3

i = 6

Adjacent vertices with color = 2? Yes.

C = c1
Adjacent vertices with color = 1? Yes.

v6 = c4

C = c2

Adjacent vertices with color = 3? Yes.
C = c3

Adjacent vertices with color = 4? No.
C = c4

23 of 25 ECE 474a/575a

Graph Coloring

  VERTEX_COLOR algorithm sensitive to ordering of vertices explored - variety of
modifications available
  Switching pair assignment of colors
  Backtracking to switching larger number of vertices

3

1 2

4

5

c1

c2 c1 c2

c1

  Node ordering 1, 2, 3, 4, 5
  Requires 2 colors

3

1 2

4

5

c3

c2 c1 c1

c3

  Node ordering 1, 5, 2, 3, 4
  Requires 3 colors

24 of 25

7

ECE 474a/575a

Conclusion

  Considered several types ways to find resource sharing and binding
  Compatibility Graph / Max Clique
  Conflict Graph / Vertex color

  Again, many other methods available
  Golumbic's algorithm
  Left-edge algorithm
  ILP formulation

  Idea of sharing and binding not limited to adders and multipliers
  Registers
  Determining minimal number of memory ports
  Bus sharing

25 of 25

