
1

ECE 474a/575a

ECE 474A/57A
Computer-Aided Logic Design

Behavioral Synthesis
Resource Sharing & Binding

1 of 25 ECE 474a/575a

Sharing vs. Binding

  Resource Sharing
  Assignment of a resource to more than one operation
  Goal – reduce area by allowing multiple non-concurrent operations to share the same hardware

operator

  Resource Binding
  Explicit mapping between operations and resources

+
op1

+
op2

+
op3

+

adder1

+

adder2

+
op1

+
op2

+
op3

+

adder1

+

adder2

Resource Binding
  Add op1 and op2 executes on adder unit 1
  Add op3 executes on adder unit2

Resource Sharing
  We have 3 add operations and 2 adder units

2 of 25

ECE 474a/575a

Resource Binding

  Resource binding can be applied to scheduled or non-scheduled sequencing graphs
  Scheduled sequencing graphs provides limitation on possible sharing

Requires 2 adders to meet the time constraint
(upper bound = 2)

NOP

NOP

+
1

+
2

+
3

+
4 TIME 1

V0

Vn

NOP

NOP

+
1

+
2

+
3

+
4

TIME 1

V0

Vn

TIME 2

Requires 4 adders to meet the time constraint
(upper bound = 1)

3 of 25 ECE 474a/575a

Resource Binding

  Resource binding can be applied to scheduled or non-scheduled sequencing graphs
  Scheduled sequencing graphs provides limitation on possible sharing
  Non-scheduled sequencing graphs, the limitation of resource sharing effects the latency by

limiting the concurrency of operations (LIST_L scheduling)

At most 2 add operations can be executed in a
time slice, latency = 2

NOP

NOP

+
1

+
2

+
3

+
4

TIME 1

V0

Vn

NOP

NOP

+
1

+
2

+
3

+
4

TIME 1

V0

Vn

TIME 2

At most 1 add operation can be executed in a
time slice, latency = 4

Adders available = 2 Adders available = 1

TIME 2

TIME 3

TIME 4

4 of 25

2

ECE 474a/575a

Sharing and Binding for Resource Dominated Circuits

  We are interested in the set of vertices of the sequencing graph (omit source/sink nodes)
  How much sharing is possible?
  Two or more operations can be bound to the same resource if the are compatible

  Not concurrent
  Can be implemented with the same resource type

+

+

1

3

<

+ +
7

5

10

a = b + c
e = a + 5

if (a < b)
 c = 5 + f
else
 c = 5 + g

v7 and v10 are not
concurrent

Two operations are NOT concurrent if
  Either one starts after the other has

finished
  Alternative choices (mutually

exclusive) of a branching decision

v1 and v3 are not
concurrent

5 of 25 ECE 474a/575a

Resource Compatibility Graph

  Graph whose set of vertices is a one-to-one correspondence with operations in the
sequencing graph and whose edges denotes the compatible operations pairs

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

3 1

7 6 2

8 4 10

5 11

9

3, 1 – Same op, 3 starts after 1

3, 2 – Same op, 3 starts after 2

3, 4 – Different ops

3, 5 – Different ops

3, 6 – Same op, BUT neither starts after the other and not alternative choices of branch1

3, 7 – Same op, 3 starts in Time 2 and 7 starts in Time 3

3, 8 – Same op, 3 starts in Time 2 and 8 starts in Time 3

3, 9 – Different ops

3, 10 – Different ops

3, 11 – Different ops
Repeat for each node

6 of 25

ECE 474a/575a

Compatibility Graph Shows Resource Sharing

  As many disjoint (no common elements)
components as resource types
  A multiply operations is not compatible with an add

operation

  Clique - group of mutually compatible operations
correspond to subset of vertices that are mutually
connected
  Each vertices connected to every other vertices

  Maximal set of mutually compatible operations are
represented by maximal clique

  The optimum resource sharing is on that minimizes
the number of required resource instances
  Resource instance relates to cliques
  Partitioning graph into minimum number of cliques

yields optimal sharing

3 1

7 6 2

8 4 10

5 11

9

Maximize size of cliques, must ensure
all vertices included

{1, 3, 7}
{2, 6, 8}
{1, 8}
{4, 5, 10, 11}
{9}

Resources = # cliques

We need 2 adders, 2 multipliers

7 of 25 ECE 474a/575a

Clique Partitioning

CLIQUE_PARTITION(G(v, e)){
 Π = Φ // initial set of partitions to empty
 while(G(v,e) not empty) do{ // while the graph is not empty, keep iterating
 C = MAX_CLIQUE(G(v,e)) // compute a maximal clique in graph
 Π = Π U C // add max clique to set of partitions
 delete C from G(v,e) // remove max clique from graph
 }

}

MAX_CLIQUE(G(v, e)){
 C = vertex with largest degree
 repeat {
 repeat {
 U = { v Є V : v Є C and adjacent to all vertices of C}
 if (U ≠ Φ){ // no such vertices exist
 return C
 }
 else{
 select v Є U // pick one
 C = C U v // add to clique
 }
 }
 }

}
8 of 25

3

ECE 474a/575a

Clique Partitioning
Example 1

3 1

7 6 2

8 4 10

5 11

9 Π = Φ // set of partitions is initially empty

Is G empty? No.

Find max clique

C = 1 // vertex with largest degree, anything with 4 will do

U = {3, 7, 6, 8} // these vertices are connected to 1

V = 3

C = {1} U {3} = {1, 3}

U = {7, 8} // these vertices are connected to 1and 3

C = {1, 3} U {7} = {1, 3, 7}

U = { Φ } // no others vertices connect to 1, 3, and 7

Return {1, 3, 7}

Π = {1, 3, 7}

Vertices Degree
1 4
2 4
3 4
4 4
5 3
6 4
7 4
8 4
9 3

10 4
11 4

Remove {1, 3, 7} from G

9 of 25 ECE 474a/575a

Clique Partitioning
Example 1

6 2

8 4 10

5 11

9 Π = {1, 3, 7}

Is G empty? No.

Find max clique

C = 4 // vertex with largest degree, anything with 4 will do

U = {5, 9, 10, 11} // these vertices are connected to 4

V = 5

C = {4} U {5} = {4, 5}

U = {10, 11} // these vertices are connected to 4 and 5

C = {4, 5} U {10} = {4, 5, 10}

U = { Φ } // no others vertices connect to 4, 5, 10, and 11

Return {4, 5, 10, 11}

Π = {1, 3, 7}, {4, 5, 10, 11}

Vertices Degree
2 2
4 4
5 3
6 2
8 2
9 3

10 4
11 4

Remove {4, 5, 10, 11} from G

U = {11} // these vertices are connected to 4, 5, and 10

C = {4, 5, 10} U {11} = {4, 5, 10, 11}

10 of 25

ECE 474a/575a

Clique Partitioning
Example 1

6 2

8

9 Π = {1, 3, 7}, {4, 5, 10, 11}

Is G empty? No.

Find max clique

C = 2 // vertex with largest degree, anything with 2 will do

U = {6, 8} // these vertices are connected to 2

V = 6

C = {2} U {6} = {2, 6}

U = {8} // these vertices are connected to 2 and 6

C = {2, 6} U {8} = {2, 6, 8}

U = { Φ } // no others vertices connect to 2, 6, and 8

Return {2, 6, 8}

Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}

Vertices Degree
2 2
6 2
8 2
9 0

Remove {2, 6, 8} from G

11 of 25 ECE 474a/575a

Clique Partitioning
Example 1

9 Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}

Is G empty? No.

Find max clique

C = 9

U = {9}

U = { Φ } // no others vertices connect to 9

Return {9}

Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}, {9}

Vertices Degree
9 0

Remove {9} from G

12 of 25

4

ECE 474a/575a

Clique Partitioning
Example 1

Π = {1, 3, 7}, {4, 5, 10, 11}, {2, 6, 8}, {9}

Is G empty? Yes!

  What does clique partition tell us?
  {1, 3, 7} – multiplier
  {4, 5, 10, 11} – alu
  {2, 6, 8} – multiplier
  {9} – alu

  We know how much sharing AND binding

3 1

7 6 2

8 4 10

5 11

9

13 of 25 ECE 474a/575a

Clique Partitioning
Example 2

+ + +

+

 -

 -

NOP

NOP

1 2

5

6

4

3
TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

Π = Φ

Is G empty? No.

Find max clique

C = 4

U = {1, 2, 3, 5, 6}

V = 1

C = {4} U {1} = {1, 4}

U = {5, 6}

C = {1, 4} U {5} = {1, 4, 5}

U = { Φ }

Return {1, 4, 5, 6}

Π = {1, 4, 5, 6}

Remove {1, 4, 5, 6} from G

1 3

2 4 6

5

Vertices Degree
1 3
2 3
3 3
4 5
5 5
6 5

U = {6}

C = {1, 4, 5} U {6} = {1, 4, 5, 6}

14 of 25

ECE 474a/575a

Clique Partitioning
Example 2

Π = {1, 4, 5, 6}

Is G empty? No.

Find max clique

C = 2

U = {Φ}

Return {2}

Π = {1, 4, 5, 6}, {2}

Remove {2} from G

3

2

Vertices Degree
2 0
3 0

Π = {1, 4, 5, 6}, {2}

Is G empty? No.

Find max clique

C = 3

U = {Φ}

Return {3}

Π = {1, 4, 5, 6}, {2}, {3}

Remove {3} from G

3

Vertices Degree
3 0

15 of 25 ECE 474a/575a

Clique Partitioning
Example 2

+ + +

+

 -

 -

NOP

NOP

1 2

5

6

4

3
TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

Π = {1, 4, 5, 6}, {2}, {3}

Is G empty? Yes

  Need 3 ALUs
  ALU 1 executes ops 1, 4, 5, 6
  ALU 2 executes op 2
  ALU 3 executes op 3

1 3

2 4 6

5

16 of 25

5

ECE 474a/575a

Resource Conflict Graph

  Instead of compatibility we can instead look at
conflicts
  May simplify the graph

  Resource conflict graph
  Graph whose set of vertices is a one-to-one

correspondence with operations in the sequencing
graph and whose edges denotes the conflicting
operations pairs

  To simplify graph, we consider conflicts between
each resource type independently

3 1

7 6 2

8 4 10

5 11

9

resource compatibility graph

3 1

7 6 2

8 4 10

5 11

9

resource conflict graph

17 of 25 ECE 474a/575a

Building Resource Conflict Graph

  To simplify graph, we consider conflicts
between each resource type independently

3 1

7 6 2

8 4 10

5 11

9

+

<

*

+

* *

* *

* -

 -

NOP

NOP

1 2

3

4

5

6

7 8

9

10

11

TIME 1

TIME 2

TIME 3

TIME 4

V0

Vn

1, 2 – concurrent

3, 6 – concurrent

7, 8 – concurrent

5, 9 – concurrent

Multipliers ALUs

Consider Multipliers (1, 2, 3, 6, 7, 8)

Consider ALUs (4, 5, 9, 10, 11)

18 of 25

ECE 474a/575a

Building Resource Conflict Graph

  Conflict graph is the complement of the compatibility graph
  In conflict graph, looking for set of mutually compatible operations

  Subset of vertices that are NOT connected by edges
  Also called independent set of G

3 1

7 6 2

8 4 10

5 11

9

3 1

7 6 2

8 4 10

5 11

9

resource compatibility graph resource conflict graph

19 of 25 ECE 474a/575a

Graph Coloring

VERTEX_COLOR (G(v, e)){
 for(i=1 to | V |){
 C = 1 // use number to represent color
 while(there exists a vertex adjacent to vi with color c) do{
 C = C + 1
 }
 label vi with C
 }

}

  Use graph coloring to find independent sets
  Each color represents a resource instance (two adders will be represented by two different

colors)

  Optimal resource sharing corresponds to vertex coloring with minimal amount of
colors

20 of 25

6

ECE 474a/575a

Graph Coloring
Example 1

3 1

7 6 2

8 4 10

5 11

9
i = 1 // look at vertex 1

C = c1 // represents first color

Is there any adjacent vertices with color = 1? No.

v1 = c1

c1

i = 2 // look at vertex 2
C = c1

Is there any adjacent vertices with color = 1? Yes.

C = c2

Is there any adjacent vertices with color = 2? No.

v2 = c2

c2

i = 3 // look at vertex 3
C = c1 // represents first color

Is there any adjacent vertices with color = 1? No.

v3 = c1

c1

21 of 25 ECE 474a/575a

Graph Coloring
Example 1

3 1

7 6 2

8 4 10

5 11

9
i = 4 // look at vertex 4

c1

c2

c2 c1

c2 c1

c3

c3

c3

c3

Similarly repeat for remaining

C = c1 // represents first color

Is there any adjacent vertices with color = 1? Yes – remember
conflict is implied across different resource types.

v4 = c3

C = c2

Is there any adjacent vertices with color = 2? Yes.

C = c3

Is there any adjacent vertices with color = 3? No.

c4

  Four colors required – need four resources
  c1 is used for multiply
  c2 is used for multiply
  c3 is used for alu
  c4 is used for alu

22 of 25

ECE 474a/575a

Graph Coloring
Example 2

3

1

6

2

4

5

c1 c2

i = 1
C = c1
Adjacent vertices with color = 1? No.
v1 = c1

  Four colors required – need
four resources
  c1 for node 1, 3 op
  c2 for node 2, 4 op
  c3 for node 5 op
  c4 for node 6 op

c3 c1

c4

c2

i = 2

C = c2
Adjacent vertices with color = 2? No.

C = c1
Adjacent vertices with color = 1? Yes.

v2 = c2

i = 3
C = c1
Adjacent vertices with color = 1? No.
v3 = c1

i = 4

C = c2
Adjacent vertices with color = 2? No.

C = c1
Adjacent vertices with color = 1? Yes.

v4 = c2

i = 5

Adjacent vertices with color = 2? Yes.

C = c1
Adjacent vertices with color = 1? Yes.

v5 = c3

C = c2

Adjacent vertices with color = 3? No.
C = c3

i = 6

Adjacent vertices with color = 2? Yes.

C = c1
Adjacent vertices with color = 1? Yes.

v6 = c4

C = c2

Adjacent vertices with color = 3? Yes.
C = c3

Adjacent vertices with color = 4? No.
C = c4

23 of 25 ECE 474a/575a

Graph Coloring

  VERTEX_COLOR algorithm sensitive to ordering of vertices explored - variety of
modifications available
  Switching pair assignment of colors
  Backtracking to switching larger number of vertices

3

1 2

4

5

c1

c2 c1 c2

c1

  Node ordering 1, 2, 3, 4, 5
  Requires 2 colors

3

1 2

4

5

c3

c2 c1 c1

c3

  Node ordering 1, 5, 2, 3, 4
  Requires 3 colors

24 of 25

7

ECE 474a/575a

Conclusion

  Considered several types ways to find resource sharing and binding
  Compatibility Graph / Max Clique
  Conflict Graph / Vertex color

  Again, many other methods available
  Golumbic's algorithm
  Left-edge algorithm
  ILP formulation

  Idea of sharing and binding not limited to adders and multipliers
  Registers
  Determining minimal number of memory ports
  Bus sharing

25 of 25

