

Sharing vs. Binding

- Resource Sharing
- Assignment of a resource to more than one operation
- Goal - reduce area by allowing multiple non-concurrent operations to share the same hardware Goal - reduc
operator
- Resource Binding
- Explicit mapping between operations and resource

Resource Sharing

- We have 3 add operations and 2 adder units

Resource Binding

- Add op1 and op2 executes on adder unit 1 Add op3 executes on adder unit2

Resource Binding

Resource Binding

- Resource binding can be applied to scheduled or non-scheduled sequencing graphs
- Scheduled sequencing graphs provides limitation on possible sharing

Requires 4 adders to meet the time constrair (upper bound =1)

Requires 2 adders to meet the time constraint Requires 2 adders to
(upper bound $=2$)

Sharing and Binding for Resource Dominated Circuits

- We are interested in the set of vertices of the sequencing graph (omit source/sink nodes)
- How much sharing is possible?
- Two or more operations can be bound to the same resource if the are compatible
- Not concurren
- Can be implemented with the same resource type

$\begin{array}{ll} a=b+c \\ e=a+5 \end{array} \underbrace{1} \underbrace{+} \underbrace{+}_{+}$	$\begin{aligned} & \text { if }(a<b) \\ & c=5+f \\ & \text { else } \\ & c=5+g \end{aligned}$		Two operations are NOT concurrent if - Either one starts after the other has finished - Alternative choices (mutually exclusive) of a branching decision
v 1 and v 3 are not concurrent		$v 7$ and v 10 are not concurrent	

Resource Compatibility Graph

- Graph whose set of vertices is a one-to-one correspondence with operations in the sequencing graph and whose edges denotes the compatible operations pairs

Compatibility Graph Shows Resource Sharing

Clique Partitioning

- As many disjoint (no common elements)
components as resource types
- A multiply operations is not compatible with an add A meration
- Clique - group of mutually compatible operations correspond to subset of vertices that are mutually connected
- Each vertices connected to every other vertices
- Maximal set of mutually compatible operations are represented by maximal clique

The optimum resource sharing is on that minimizes the number of required resource instances

- Resource instance relates to cliques

Partitioning graph into minimum number of cliques \# Resources = \# cliques yields optimal sharing

70 25

```
CLIQUE_PARTITION(G(v,e) K
    M=\Phi
        while(G(v,e) not empty ) do{
        C=MAXZ
        delete C from G(v,e)
    }
MAX_CLIQUE(G(v,e) K
    C= vertex with largest degree
        M
        repeat {
            M={v\inV:v|C\mathrm{ and adjacent to all vertices of C}}
            return C
            }
            selectv\inU
            C=Cuv
            }
    }
}
```


Clique Partitioning

Example 1

$\Pi=\{1,3,7\}$
 Is G empty? No.

Find max clique
$C=4 \quad / /$ vertex with largest degree, anything with 4 will do
$U=\{5,9,10,11\} \quad / /$ these vertices are connected to 4
$\mathrm{V}=5$
$C=\{4\} \cup\{5\}=\{4,5\}$
$U=\{10,11\} \quad / /$ these vertices are connected to 4 and 5
$C=\{4,5\} \cup\{10\}=\{4,5,10\}$
$U=\{11\} \quad / /$ these verices are connected to 4,5 , and 10
$C=\{4,5,10\} \cup\{11\}=\{4,5,10,11\}$
$U=\{\Phi\} \quad / / \mathrm{no}$ others vericices connect to $4,5,10$, and 11
Return $\{4,5,10,11\}$
$\Pi=\{1,3,7\},\{4,5,10,11\}$
Remove $\{4,5,10,11\}$ from G

Clique Partitioning Example 1		
$\Pi=\{1,3,7\},\{4,5,10,11\}$		(9)
Is G empty? No. Find max clique		
$\mathrm{C}=2$ // vertex with largest degree, anything with 2 will do $U=\{6,8\} \quad / /$ these vertices are connected to 2		
$v=6$	Vertices	Degree
$\mathrm{C}=\{2\} \cup\{6\}=\{2,6\}$		${ }_{2}$
$\mathrm{U}=\{8\} \quad / /$ these vericices are connected to 2 and 6	8	$\frac{2}{0}$
$\mathrm{C}=\{2,6\} \cup\{8\}=\{2,6,8\}$		
$U=\{\Phi\} / /$ no others verices conneect to 2,6, and 8		
Return $\{2,6,8\}$		
$\Pi=\{1,3,7\},\{4,5,10,11\},\{2,6,8\}$		
Remove $\{2,6,8\}$ from G		
ECE 474as575a		${ }^{11}$ of 25

Resource Conflict Graph

- Instead of compatibility we can instead look at conflicts
- May simplify the graph
- Resource conflict graph
- Graph whose set of vertices is a one-to-one
correspondence with operations in the sequencing graph and whose edges denotes the conflicting operations pairs
- To simplify graph, we consider conflicts between each resource type independently

(3) (1) 8
(4) (10)
(7) (6) (2)
(5) (11) resource conflict graph

Building Resource Conflict Graph

Conflict graph is the complement of the compatibility graph

- In conflict graph, looking for set of mutually compatible operations
- Subset of vertices that are NOT connected by edges

Also called independent set of G
(3) (1) (8)
(4) (10)
(7) (6)
(5) (11)

Building Resource Conflict Graph

- To simplify graph, we consider conflicts between each resource type independently

Multipliers ALUs

Consider Multipliers ($\mathbf{1 , 2 , 3 , 6 , 7 , 8)}$
1,2-concurrent
3,6-concurrent
7,8
$\mathbf{3}, \mathbf{8}$-concurrent
Consider ALUs (4, 5, 9, 10, 11)
5,9 -concurrent

Graph Coloring

VERTEX_COLOR ($G(V, e)$ K
for $(i=1$ to $|V| k$
/ I use number to represent
$\mathrm{C}=\mathrm{C}+1$
$\}$ label $v_{\text {w }}$ with C
3

- Use graph coloring to find independent sets
- Each color represents a resource instance (two adders will be represented by two different Optimal
colors

Graph Coloring

Example 1

= 4 // look at vertex 4
$\mathrm{C}=\mathrm{c} 1 /$ represents first color
Is sthere any adiacent veritices with color $=1$? Yes - remem
conficitisis implied across diferent resource types.
$\mathrm{C}=\mathrm{c} 2$
sthere any adiacent vericies with color $=2$? Yes. $\mathrm{C}=\mathrm{c} 3$

Is there any adiacent vericies with color $=3$? No.
Similarly repeat for remaining
$\mathrm{v}_{\mathrm{t}}=03$

- Four colors required - need four resources
- C1 is used for mutitiply
- c2 is used for multiply
c3 is used for alu
- c4 is used for alu

Graph Coloring

VERTEX_COLOR algorithm sensitive to ordering of vertices explored - variety of modifications available

- Switching pair assignment of colors
- Backtracking to switching larger number of vertices

Node ordering 1, 2, 3, 4, 5

- Node ordering $1,5,2,3,4$

Requires 2 colors
Requires 3 colors

Conclusion

- Considered several types ways to find resource sharing and binding
- Compatibility Graph / Max Clique

Conflict Graph / Vertex color

- Again, many other methods available
- Golumbic's algorithm

Left-edge algorithm

- ILP formulation
- Idea of sharing and binding not limited to adders and multipliers
- Registers

Determining minimal number of memory ports

- Bus sharing

