ECE 474A/57A
 Computer-Aided Logic Design

Branch-and-Bound and Simulated Annealing

Decision Trees

- Decision tree
- Enumeration approach in which we have n decision variables, and list the 2^{n} possible values

Given a prime implicant chart and the corresponding essential prime implicants, how do we derive a minimum cover with the remaining prime implicants?

Logic Optimization Techniques

- Logic Optimization Techniques
- K-maps (Graphical)
- Quine-McCluskey (Exact Algorithm)
- Tabular Minimization

Espresso (Heuristic) - we'll see this one soon

- Other Generalized Algorithms

Branch-and-bound $>$
Simulated Annealing

- many more exists...
- Integer Linear Programming (ILP)

Dynamic Programming

- Genetic Algorithms

Decision Trees

Branch-and-bound Idea

- Branch-and-bound
- Several optimal solutions may exist, we only need to find one
- Idea is that maybe we only have to visit part of the decision tree

If we can estimate the low bound to a subtree, and that low bound is higher than the current minimum, we don't need to look at that subtree

ECE 474a555a

Branch-and-bound Pseudocode

- Initial call to BCP
- currentSoln set to empty
- Upper bound (U) set to the number of decisions (prime implicants) +1
- Guarantees that the first valid solution found will be accepted
- F is the current constraint equation
- Call to REDUCE(F)
- Try to simplify the matrix by recursively

Removing essential columns and adding it to currentSoln

- Remove dominating rows
- Remove dominated columns
- Continue until matrix is empty, or problem is cyclic
- Splitting Variable x_{i}
- Variable selection has no impact on correctness, impacts run time
- Find a good solution fast so upper bound is close to optimal solution and more pruning can occur
- Potential candidates?
- Column that covers many rows is more likely to be part of optimal solution
- Column that covers many short rows since short rows have a lower chance of being covered

ECE 474a:575a

Branch-and-bound - Lower Bound Calculation

- How do I calculate the lower bound of a subtree?
- Varies depending on your problem
- Minimum cover problem
- lower bound $=$ number of prime implicants (columns
committed so far) + MIS

Maximally Independent Set (MIS)

- Equal to the number of independent rows in the table Rows are independent if no overlapping X 's
- Indicates the lowest possible number of prime implicants
required to cover the remaining minterms
- We want worst case, so we pick the largest set
- If no independent rows
- If matrix cyclic no column covers all rows (which would have
enabled reduction of matrix)

- Thus, a minimum of two columns are required to cover all
$\{1,2\}$

MIS $=$

Finding MIS
MIS_QUICK Heuristic

- Simple algorithm can be used to find MIS
- || M || denotes rows left in M after deleting rows intersecting with row i
- CHOOSE_SHORTEST_ROW subprocedure can be ne in several ways
- Option 1 - Row ii row with the fewest nonzero

Option 2 - Row i is selected by column counts of its

$3 \times$

$w_{1}=7$
$w_{2}=5$
$w_{2}=5$
$w_{3}=6$
P1 has X's in column 1, 2, and 3 w_{1} calculated by adding all x 's in
column $1,2,3$

Mis_QuICK(M)
Mis $=\Phi$
MIS $=\Phi$
do $\{$
$i=$ CHOOSE_SHORTEST_ROW(M)
MIS $=$ MIS v \{i\} MIS $=$ MIS v \{i\}
$M=$ DELETE_INTERSECTING_ROWS (M, i) \} while ($\|\mathrm{M}\|>0$)
return MIS

MIS_QUICK Example

- Use MIS_QUICK (option 1) to find MIS

MIS $=\{1,3\}$
Low bound $=0+2$ (no essentials previously added)

MIS_QUICK Example

- Use MIS_QUICK (option 2) to find MIS

Branch-and-bound
 \section*{Example 2}

Branch-and-Bound Summary

Branch-and-bound

Example 2

- Branch-and-Bound algorithm used to help
determine a minimal cover
We have a set of possible prime implicants to choose from (i.e. P1, P2, P3, P4)

- Which one should we choose first?

Determining the lower bound is very important
We want to be accurate so we don't waste our time
However, this step should still be fast

- Additionally, as prime implicants are added, we can use row/column dominance to try and simplify remaining matrix
- Helps to speed up algorithm
- Solution is exact (optimal), running time varies on selection process and bounding calculation

Logic Optimization Techniques

Simulated Annealing - Background

- Simulated Annealing
- Name and inspiration come from annealing in metallurgy
- Heating and controlled cooling of a material to reduce defects/increase strength
- K-maps (Graphical)
- Espresso (Heuristic)
- Other Generalized Algorithms
- Branch-and-bound
- Simulated Annealing
- many more exists ...
- Integer Linear Programming (ILP)
- Dynamic Programmin
- Applied to local search methodology to avoid getting stuck at the local minimum

F(X)

Simulated Annealing - Cooling Schedules

- Choosing initial temperature and cooling schedule has great impact on the algorithm
- Make sure we run long enough to find a good solution
- Make sure we get out of local optimum (take chances on worse solutions)
- Many options available, no definitive way to choose these

Simulate Annealing - Example

How do we apply to the minimum cover problem?
Choose an initial solution, set an initial temperature
Is temperature $T>0$? Yes

What can we change?
Adding anothe rrime implicant to our cover
Removing a prime implicant trom the current cover
\checkmark Remove P2
Determine cost difference
$\mathrm{C}=$ cost of $\mathrm{S}-$ cost of ${ }^{\text {S }} \mathrm{C}=4-3=1$
(

a) Is the solution better? Yes.
Keep new solution
Decrease Temperature

Simulate Annealing - Example

```
Is temperature \(\mathrm{T}>0\) ? Y
2. Make a random change to \(S\)
    What cad we change? Ading noter prime implicant to our cove
    Removina a prime implicant trom the current cover \(\sqrt{ }\) Remove \(\mathbf{P} 1\)
    3. Determine cost difference
    \(C=\operatorname{costof} S\) - \(\cos\) of \(S^{\prime}\)
\(C=4-3=1\)
    We should also consider if this solution is correct. (Yes)
    Is the solution better? Yes.
        Keep new solution
    5. Decrease Temperature
    \(T=T-25=25\)

\section*{Simulate Annealing - Example}
2. Is temperature \(\mathrm{T}>0\) ? Yes \(\quad \begin{array}{lllll}\mathrm{m} 1 & \mathrm{~m} 2 & \mathrm{~m} 3 & \mathrm{~m} 4\end{array}\)
3. Make a random change to S

What can we change?
A dading anotere rime implicant to our cover
Removing a a prime implicicant trom the current cover
4. Determine cost difference
\(\mathrm{C}=\) cost of \(\mathrm{S}-\operatorname{cost}\) of \(\mathrm{S}^{\prime}\)
\(\mathrm{C}=3-4=-1\)
We should also consider if this solution is correct. (Yes)
a) Is the solution better? No.
b) Should we randomly accept it anyways? \(=0.215\) (random number), \(m=1 / 1 / 1 / 1 / 75=0.98\)

\(T=50\)
\(S^{\circ} \neq 1, \mathrm{P} 4, \mathrm{P} 5, \mathrm{P} 6\)
7. Decrease Temperature
\[
T=T-25=50
\]

\section*{Simulate Annealing - Example}


\section*{Simulate Annealing - Example}
1. Is temperature \(\mathrm{T}>0\) ? No

\section*{Done!}

Solution : P4, P5, P6

- Is this solution optimal?
- No
- Ideally, this algorithm would run longer so we can explore more of the solution space and possible find a better solution

\section*{Conclusion}
- Considered several logic optimization techniques
. K-maps
. K-maps
- Espresso
- Considered several other generalized algorithms useful for logic optimization as well as other applications
- Branch-and-bound
- Simulated Annealing
- Many more exists
- Integer Linear Programming (ILP)
-. Integer Linear Program
- Genetic Algorithms```

