

Flowcharts and Algorithmic State Machines (ASM)

- Flowchart
 - Convenient way to graphically specify sequence of procedural steps and decision paths for algorithm
 - · Enumerates sequence of operations and conditions necessary for execution
- Algorithmic State Machine (ASM)
 - · Flowchart defined specifically for digital hardware algorithms
- Flowchart vs. ASM
 - Conventional flowchart
 - Sequential way of representing procedural steps and decision paths for algorithm
 No time relations incorporated
 - ASM chart
 - Representation of sequence of events together with timing relations between states of sequential controller and events occurring while moving between steps

ECE 474a/575a

ASM Example		
Convert pseudo code to ASM chart	S0: busy = 0; ones = 0;	
 Example Want to detect the number of 1's in a 2- bit register called <i>Input</i> <i>start</i> input indicates when to begin comparison <i>busy</i> output indicates when comparison in progress <i>ones</i> hold count value <i>F</i> outputs result 	<pre>if(start == 1) goto S1 else goto S0 S1: busy = 1; if(Input[1] == 1) ones ++; goto S2 S2: S2: sy = 1; if(Input[0] == 1) ones ++; goto S3 S3: busy = 0; F = ones; goto S0</pre>	
ECE 474a/575a		11 of 21

