## ECE 474a/574a - Computer-Aided Logic Design Exam 2 Notes

## Boolean Algebra

| Commutative | Distributive | Associative | Identity |
| :--- | :--- | :--- | :--- |
| $a+b=b+a$ | $(a+b)+c=a+(b+c)$ | $0+a=a+0=a$ |  |
| $a^{*} b=b^{*} a$ | $a+(b+c)=a^{*} b+a^{*} c$ | $\left(a^{*} b\right)^{*} c=a^{*}\left(b{ }^{*} c\right)$ | $1 * a=a^{*} 1=a$ |
| Complement | Null Elements | Idempotent Law | Involution |
| $a+a^{\prime}=1$ | $a+1=1$ | $a+a=a$ | $\left(a^{\prime}\right)^{\prime}=a$ |
| $a^{*} a^{\prime}=0$ | $a^{*} 0=0$ | $a^{*} a=a$ |  |

** you should know DeMorgan's Law

| Convert SOP function to Complete Sum Methodology |
| :--- |
| 1. Start with arbitrary SOP form |
| 2. Add consensus pair of all terms not contained in any other term |
| 3. Compare new terms with existing and among other new terms to see if any new consensus terms can be generated |
| 4. Remove all terms contained in some other term |
| Repeat until no change occurs |
| $\operatorname{CS}(f)=\operatorname{ABS}\left(\left[\mathrm{x}_{1}+\operatorname{CS}\left(\mathrm{f}\left(0, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)\right] \cdot\left[\mathrm{x}_{1}+\mathrm{CS}\left(\mathrm{f}\left(1, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)\right]\right)$ |


| ```CLIQUE_PARTITION(G(v, e) ){ \Pi=\varnothing while( G(v,e) not empty ) do { C = MAX_CLIQUE( G(v,e) ) \Pi=\Pi\cupC delete C from G(v,e) } }``` | ```MAX_CLIQUE(G(v, e) {{ C = vertex with largest degree repeat { repeat { U={v\inV:v\not\inC}\mathrm{ and adjacent to all vertices of C} if(U\not=\varnothing){ return C } else{ select v\inU C=CUv } } }``` | ```VERTEX_COLOR (G(v, e) { for(i=1 to \|V|){ C=1 while( there exists a vertex adjacent to vi with color c) do { C=C + 1 } label vi with C } }``` |
| :---: | :---: | :---: |

```
LEFT_EDGE( I ){
    L}=\operatorname{sort(I) in ascending order to l
    c = 0
    while( L not empty ) {
        S = \varnothing
        r=0
        while ( }\exists\mathrm{ an s:s < L and s is first element in L with ls
            S=S\cup{s}
            r=r
            remove s from L
        }
        c}=\textrm{c}+
        label elements of S with color c
    }
}
```

