ECE 274 Digital Logic — Fall 2008

Datapath Component Design using Verilog
Verilog for Digital Design Ch. 3

A, ARIZONA.

8 TCSON ARIZONA

Multifunction Register Behavior

3 2 in
o Previously-considered register loaded 5 5 A
on every clock cycle — Q Q
Clk} R R R
o Now consider register with control e e E—— —
inputs, such as load or shift @ <
o Could describe structurally L1 11
o Four flip-flops, four muxes, and some Shr i,.:3 21110
combinational logic (to convert control d _
inputs to mux select inputs) —Shr Shi_in—
o We'll describe behaviorally i
Ld Shr Shl | Operation Q|3 le Qll QIO
0 0 0 Ma_intain present value
g g é 2“:2 :'ie;ht Ld Shr Shi | Opeation
0 1 1 Shift right — Shr has priority over Shi 0o 0 0 Maintain value
1 0 0 Parallel load . 0o 0 1 Shit left
1 0 1 Parallel load — Id has priority 0o 1 % Shift right
i i 0 Parallel load — Id has priority 9
1 1 1 | Parallelload - Id has priority 1 x X Parallel load

Compact register operation table,
clearly showing priorities

Multifunction Register
Behavior

“timescale 1 ns/1 ns

o Use if-else-if construct module MfReg4(l, Q, Ld, Shr, Shl, Shr_in, Shl_in, Clk, Rst)j]

Multifunction Register
Behavior

o Testbench should test

// Clock Procedure

o else-if parts ensure correct
priority of control inputs
o Rst has first priority, then Ld,
then Shr, and finally Shi
o Shift by assigning each bit
o Recall that statement order
doesn't matter
o Use reg variable R for storage
o Best not to try to use port Q —
good practice dictates not
reading a module's output
ports from within a module
o Use continuous assignment to
update Q when R changes
o ldentifier on left of "=" must
be a net, not a variable

input [3:0] I;
output [3:0] Q;
input Ld, shr, shl, sShr_in, Shi_in;
input Clk, Rst;

reg [3:0] R;

always @(posedge CIk) begin
if (Rst == 1)
R <= 4"b0000;
else if (Ld == 1)
he

R <= 1;
else if (Shr == 1) begin
R[3] <= shr_in; R[2] <= R[3];
R[1] <= R[2]; R[0] <= R[1];
end
else if (Shl == 1) begin
R[0] <= Shl_in; R[1] <= R[0];
R[2] <= R[1]; R[3] <= R[2];
end
end Ld Shr shi | Opeation
assign Q = R; 0 0 O Maintain value
endmodule 0 0 1 Shit left
0 1 X Shift right
1 X X Parallel load

vidd_ch4_MfRega.v

numerous possible loads
and shifts

o Testbench shown is brief
Resets register to 0000
Loads 1111
Shifts right, shifting in 0
Continues shifting right

o Eventually register is 0000

O o oo

// Vector Procedure
initial begin
Rst_s <= 1;
I_s <= 4°b0000;
Ld_s <= 0; Shr_s <= 0; Shl_s <= 0;
Shr_in_s <= 0; Shl_in_s <= 0;
@(posedge CIk_s);
#5 Rst_s <= 0;
I_s <= 4"b1111; Ld_s <= 1;
@(posedge CIk_s);
#5 Ld_s <= 0; Shr_s <= 1;
// Good testbench needs more vectors

end vidd_ch4_MfReg4TB.v
endmodule
1 rgoma), Tt
Q_S(X.) Oooo y 1131 ¥ 01)y 0oil) 0001 ¥ 0000
Lds” T
Shr_s
Shi_s
Shr_in_s
Shi_in_s

Clk_s

Rst_s

0 10 20 30 40 50 60 70 80 90 100 110 120 time (ns)

Multifunction Register
Behavior

“timescale 1 ns/1 ns

o Question: Does the

shown description, With module MfReg4(l, Q, Ld, Shr, Shl, Shr_in, Shl_in, CIk, Rst);

Q declared as a reg, and input [3:07 1;
" — - output [3:0] Q;
Q <= R;" as the last veg [3:01 0F
statement, correctly

input Ld, Shr, Shl, Shr_in, Shl_in;
. . i t Clk, Rst;
describe the register? e °

reg [3:0] R;
always @(posedge Clk) begin
o . if (Rst == 1)
Answer: No. Q gets the R o 2-bOD00:
present value of R, not else if (Ld = 1)
<= 13
the scheduled value. else if (Shr == 1) begin
R[3] <= Shr R[2] <= R[3];
R[1] <= R[2]; R[O] <= R[1];
end
else if (Shl == 1) begin
R[0] <= Shl R[1] <= R[O];
R[2] <= R[1 [31 <= R[21:
end
Q <=R
end
endmodule

vidd_ch4_MfReg4rong.v

Multifunction Register
Behavior

e Question: Does the
shown description, with
Q declared as a reg, and
"Q <= R;" as the last
statement, correctly
describe the register?

* Answer: No. Q gets the
present value of R, not
the scheduled value.

¢ Qthus lags behind R
by 1 cycle

if (Rst
R <=
else if
R <=
else if
R[3]
R[1]
end
else if
R[O]
R[2]
end
Q <= R;

---always @(posedge Clk) begin

== 1)
4°b0000;
(Ld == 1)
1
(Shr == 1) begin

<= shr_in; R[2] <= R[3];
<= R[2]; R[O] <= R[1];

(Shl == 1) begin
<= shl_in; R[1] <= R[0];
<= R[1]; RI3] <= R[2];

vidd_ch4_MfRegirong.v

Should have become 0000 on the first clock cycle

Common Pitfall
Not Using Begin-End Block in If Statement

o For more compact code, designers always @(posedge CIk) begin
sometimes don't use begin-end e haao0:
block for if statement having just
one sub-statement @ Later
O As in our register description
o Problem occurs if one adds
another sub-statement later
without remembering to add
begin-end block
o Solution — Always use begin-end B S b
block in if statement end
ﬂ Later

always @(posedge Clk) begin
if (Rst == 1)
R <= 4"b0000;
/’/,,/v$display(“Reset done.");

Displays even if Rst not 1

=7

always @(posedge ClIk) begin

always @(posedge CIk) begin
if (Rst == 1) begin
R <= 4"b0000;
$display(''Reset done.™);
end

4-Bit Adder

o 4-bit adder adds two 4-bit binary
inputs A and B, sets 4-bit output
S
o Could describe structurally
o Carry-ripple: 4 full-adders
o Behaviorally
o Simply: S<=A+B
o0 "always" procedure sensitive to A
and B
o Adder is combinational — must
include all inputs in sensitivity list
o Note: procedure resumes if any
bit in either vector changes

“timescale 1 ns/1 ns
module Add4(A, B, S);

input [3:0] A, B;
output [3:0] S;
reg [3:0] S;

always @(A, B) begin
S <= A + B;
end
endmodule

vidd_ch4_Add4.v

4-Bit Adder

o "+" is built-in arithmetic operator
for addition
o Built-in arithmetic operators
include:
o + : addition
o - : subtraction
* : multiplication
/ : division
% : modulus
** : power (“a** b” is a raised
to the power of b)
o The operators are intentionally
defined to be similar to those in
the C programming language

O O O O

“timescale 1 ns/1 ns
module Add4(A, B, S);

input [3:0] A, B;
output [3:0] S;

reg [3:0] S;
always @(A, B) begin
S <= A + B;
end
endmodule
vidd_ch4_Add4.v

4-Bit Adder Testbench

o Standard testbench format

o Needs more vectors than
shown

o Should also be self-checking
o Simulation yields

o 0011 + 0001 - S_s is 0100
03+1=14

“timescale 1 ns/1 ns
module TestbenchQ);

reg [3:0] A_s, B_s;
wire [3:0] S_s;

Add4 CompToTest(A_s, B_s, S_s);

initial begin
A_s <= 4"b0011; B_s <= 4"b0001;

#10;
o 1100 + 0011 > S_sis 1111 As <= 47b1100; B_s <= 4°b0011;
- #10;
012+3=15 A_s <= 47d5; // Equivalent to 47b0101
. B_s <= 4%d2; // Equivalent to 4°b0010
o5+2-> S_S is 0111 // Good testbench needs more vectors
o Last vector shows use of end
" endmodule
decimal constant rather than
binary

vidd_ch4_Add4TB.v

4-Bit Adder with Carry-In and Carry-Out

o Adders have carry-in and carry-out
bits
o Extend Add4 with Ci, Co
o S<=A+B+UCi
O Yields correct sum

o "+" operator handles different bit-
widths — extends Ci to 4 bits,
padded on left with Os

o But carry-out?
o Sis only 4 bits; Co is a fifth bit
o Solution — Do 5-bit add, separate
fifth bit (carry-out) from lower four
o Uses concatenate operator "{ }"
o Uses blocking assignment "="
o0 Both to be described now

“timescale 1 ns/1 ns
module Add4wCarry(A, B, Ci, S, Co);

input [3:0] A, B;
input Ci;

output [3:0] S;
reg [3:0] S;
output Co;

reg Co;

reg [4:0] A5, B5, S5;
always @(A, B, Ci) begin

A5 = {1°b0, A}; BS = {1°b0, B};
S5 = A5 + B5 + Ci;

S <= S5[3:0];
Co <= S5[4];
end
endmodule

vidd_ch4_Add4wCarry.v

11

4-Bit Adder with Carry-In and Carry-Out
Concatenation Operator

“timescale 1 ns/1 ns

o Concatenation operator "{ }"
o Joins bits from two or more

module Add4wCarry(A, B, Ci, S, Co);

input [3:0] A, B;

expressions input Ci;
o Expressions separated by commas ~ output [3:0] S;
. reg [3:0] S;
within { } output Co;
o {1b'0, A} > 5-bit value: reg Co;

o "0 A[3] A[2] A[1] A[0] reg [4:0] A5, B5, S5;
o {1b'0, 4b'0011} - “00011" always @(A, B, Ci) begin
A5 = {1°b0, A}; BS = {1°b0, B};

o {2b'11, 2b'00, 2b'01} > "110001" Al P

S <= S5[3:0];
Co <= S5[4];
end
endmodule

vldd_ch4_AdddwCarry.v

4-Bit Adder with Carry-In and Carry-Out
Blocking and Non Blocking Assignment Statements

“timescale 1 ns/1 ns

0 Blocking assignment statement
O Uses "="
o Variable is updated before execution
proceeds
o Like variable update in C language
o Non-blocking assignment statement
O Uses "<="

o Update is scheduled but doesn't
occur until later in simulation cycle

o What we've been using until now
o Guideline

o Use blocking assignment when
computing intermediate values

module Add4wCarry(A, B, Ci, S, Co);

input [3:0] A, B;
input Ci;

output [3:0] S;
reg [3:0] S;
output Co;

reg Co;

reg [4:0] A5, B5, S5;

always @(A, B, Ci) begin

A5 = {1°b0, A}; B5 = {1°b0, B};
S5 = A5 + B5 + Ci;

S <= S5[3:0];

Co <= S5[4];

end

endmodule

vldd_chd_AdddwcCarry.v

13

4-Bit Adder with Carry-In and Carry-Out

“timescale 1 ns/1 ns

O A5 ={1'b0, A} > 5-bit version of A module AdddwCarry(A, B, Ci, S, Co);
o B5 = {1'b0, B} > 5-bit version of B . _]
O S5=A5+B5 + Ci > 5-bit sum oy A B
o Note: output [3:0] S;
o Blocking assignment "=" means that reg [3:01 s
above values are updated immediately, rengO: ’

rather than being scheduled for update
later. Thus, subsequent statements use
updated values

o S <= S5[3:0] - 4-bit S gets 4 low bits
of S5

reg [4:0] A5, B5, S5;

always @(A, B, Ci) begin

A5 = {1°b0, A}; BS = {1°b0, B};
) . _’SSZA5+BS+Ci:

o Part selection used to access multiple S <= S5[3:0];

bits within vector Co <= S5[4];
o Desired high and low bit positions end
specified within [] separated by : endmodule

o Co <= S5[4] - Co gets 5th bit of S5,
which corresponds to the carry-out of
A+B+Ci

vidd_chd_AdddwCarry.v

4-Bit Adder with Carry-In and Carry-Out

Alternative Description

o A more compact description is possible
o Use concatenation on the left side of
assignment
o {Co,S}<=A+B+Ci
o Left side thus 5 bits wide
o Rule
o For the + operator, all operands extended
t(_)dwidth of widest operand, including left
side
o Left side is 5 bits > A, B, and Ci all
extended to 5 bits, left padded with 0s
o E.g., A: 0011, B: 0001, Ci: 1 >
00011+00001+00000 yields 00100
o Co gets first 0, S gets 0100
o Though longer, previous description
synthesizes to same circuit
o reg [4:0] A5, B5, S5; — Synthesize into
wires

“timescale 1 ns/1 ns
module Add4wCarry(A, B, Ci, S, Co);
input [3:0] A, B;
input Ci;
output reg [3:0] S;:
output reg Co;

always @(A, B, Ci) begin

{Co, S} <= A + B + Ci;
end

endmodule

vldd_ch4_AddduCarry2.v

15

4-Bit Adder with Carry-In and Carry-Out Testbench

“timescale 1 ns/1 ns

o Similar to earlier adder
testbench, with Co_s

o Needs more vectors, should
also be made self-checking

module Testbench();

reg [3:0] A_s, B_s;
reg Ci_s;

wire [3:0] S_s;
wire Co_s;

Add4wCarry CompToTest(A_s, B_s, Ci_s, S_s, Co_s);

initial begin
A_s <= 47b0011; B_s <= 4"b0001;
Ci_s <= 0;
#10;
A_s <= 47b1100; B_s <= 4"b0011;
Ci_s <= 1;
#10;
A_s <= 4°d5; // Equivalent to 4"b0101
B_s <= 4"d2; // Equivalent to 4"b0010
// Good testbench needs more vectors
end
endmodule

vidd_ch4_Add4uCarryTB.v

4-Bit Shift Register

) ghlft Register

o Consider a 4-bit shift register with

only a right shift control input
o Either retains its current value or
shift the register contents right
o Can again describe register
behaviorally
o Perform shifting bit by bit, as in
previous multifunction register
example

o Could also use concatenation

o Replace bit-by-bit assignment with

single statement using
concatenation

o R <= {Shr_in, R[3], R[2], R[1]}
o What if the register has 32-bits?

o Both bit-by-bit assignment and
concatenation become tedious for
large items

o Could lead to errors

Shr | Operation

0 Retain Value
1 Shift right

“timescale 1 ns/1 ns

module ShiftReg4(Q, Shr, Shr_in, Clk, Rst);

output [3:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [3:0] R;

always @(posedge Clk) begin
if (Rst == 1)
R <= 4"b0000;
else if (Shr == 1) begin
R[3] <= Shr_in; R[2] <= R[3];
R[1] <= R[2]; R[0] <= R[1]:

assign Q = R;
endmodule
vidd_ch4_ShiftRegd.v 17

32-Bit Shift Register

o Now consider a 32-bit shift
register with right shift
control input

o Both bit by bit assignment
and concatenation become
cumbersome, tedious, and
error prone

o Solution:

o Use loop to perform shifting

o Loop
o Defines a set of statements

that will be repeatedly
executed some number of
times

o Loop parameters control
execution of loop

timescale 1 ns/1 ns
module ShiftReg32(Q, Shr, Shr_in, Clk, Rst);

output [31:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [31:0] R;
integer Index;

always @(posedge CIk) begin
if (Rst == 1)
R <= 32"h00000000;
else if (Shr == 1) begin
R[31] <= Shr.
for (Index=0; Index<=30; Index=Index+1) begin
R[Index] <= R[Index+1];

en
end
end
assign Q = R;
endmodule

“for" loop explained on next slide

vidd_ch4_shiftReg32.v

32-Bit Shift Register
for loop statement

o for loop statement

o Typically defines loop that
executes specified number of

“timescale 1 ns/1 ns

" modulle ShiftReg32(Q, Shr, Shr_in, Clk, Rst);
times 9320 -)

o Typically involves:
o index variable declaration
o Index variable initialization
o executed only once
o Loop condition checked
o Usually involves index
o Loop exits if not true
o Loop body statement executed
o Usually a begin-end block
o Followed by execution of
index variable update
o Loop thus assigns every R bit
to next higher bit
o Last bit handled by statement
R[31] <= Shr_in; > Assign

output [31:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [31:0] R;
integer Index;

always @(posedge Clk) begin
if (Rst == 1)
R <= 32"h00000000;
else if (Shr == 1) begin

R[31] <= Shr_in;

for (Index= ndex<=30; Index=Index+1) begin
R[Index] R[Index+1];

end

end
end
assign Q = R;

highest bit to shift input endmodule

vldd_ch4_shiftReg32.v

19

32-Bit Shift Register
Integer Data Type

o Index declared as integer
o integer
o Another variable data type
o Previous was “reg”
o Bit or vector of bits
o Integer can be negative or
positive (signed), 32-bits
o Use when it makes code
clearer

o Especially if item not
destined to become a
physical register

endmodule

“timescale 1 ns/1 ns
module ShiftReg32(Q, Shr, Shr_in, Clk, Rst);

output [31:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [31:0] R;
integer Index;

always @(posedge ClIk) begin
if (Rst == 1)
R <= 327h00000000;
else if (Shr == 1) begin
R[31] <= Shr_in;
for (Index=0; Index<=30; Index=Index+1) begin
R[Index] <= R[Index+1];
end
end
end
assign Q = R;

vidd_cha_ShiftReg32.v

20

32-Bit Shift Register
Relational and Logic Operators

© <=~ bUlIt-ln relatlon “timescale 1 ns/1 ns
operator
p Look module ShiftReg32(Q, Shr, Shr_in, Clk, Rst);
O Looks same as non
q 3 utput [31:0] Q;
blocking assignment — P Shr. Shrin:
distinguished by how Clk, Rst;
operator is used reg [31}
o Built-in relational operators integer In

always @(posed

o > : greater than o (Ree o5

o < :lessthan
else if (Shr egin
o >=: greater than or equal R[31] <= Shr
for (Index=0; Index<=30; Index=Index+1) begin
o <= less than or equal R[Index] <= R[Index+1];
end
end
end
assign Q = R;
endmodule

vidd_ch4_shiftReg32.v
21

32-Bit Shift Register
Relational and Logic Operators

o Built-in logical operators

“timescale 1 ns/1 ns

- .
0o IOgIca_I negation module ShiftReg32(Q, Shr, Shr_in, Clk, Rst);
O && : logical AND
) output [31:0] Q;
o || : logical OR input Shr, Shr_in;
P . input Clk, Rst;
o Built-in equality operators
i . . reg [31:0] R;
o == logical equality integer Index;
o !=: logical inequality always @(posedge CIK) begin
—== - |ogi i if (Rst == 1)
u] : logical equality R ok 32°h00000000:

else if (Shr == 1) begin

o including x and z bits
R[31] <= Shr_in;

(more on this later)
= : logical inequality

o ! R[Index] <= R[Index+1];

. N) end
o including x and z bits end
(more on this later) end
assign Q = R;
endmodule
vldd_ch4_ShiftReg32.v

for (Index=0; Index<=30; Index=Index+1) begin

22

32-Bit Shift Register Testbench

[e]

Testbench " /7 Vector Procedure
o Shifting bits individually into the initial begin
shift register would also be Rst_s <= 1; .
tedious ghris ;: 0(;;|§hr7m75 <= 0;
A @ ;
o Use for loops to simplify the #é"‘;:i_zec D?s)
testbench @(posedge CIk_s);
Shift 16 1s into register #5 shr_s <= 1; Shr_in_s <= 1;
g /for (Index=0; Index<=15; Index=Index+1) begin

o Set register to shift right with <
shift input of 1 /' End@(posedge Clk_s);

o for loop waits 16 clock cycles #5;
o Loop executes 16 time, each it (Q_s 1= 32"hFFFFO000) .
time waiting for rising clock edge/’ $display(“Failed Q=FFFF0000™);

o Self-check verifies correctly Shr.s <= 1; Shr_in_s <= 0; .
shifted register output for (Index=0; Index<=15; Index=Index+1) begin

. N N @(posedge Clk_s);
Shift 16 Os into register /end
#5;

E gc:;!iol"zx?t:g;ﬁ](:b(:k cycles if (Q_s '= 32"hOOOOFFFF)
R R —. ay("Failed Q=0000FFFF");
Good testbench would have more _s <= 0;
vectors end

endmodule

vidd_ch4_shiftReg32TB.v
23

Testbench with File Input
— 32-Bit Shift Register

integer Fileld;
reg[8:0] BitChar;

// Vector Procedure
initial begin
eld = $fopen(“vectors.txt”™, "r');

o Testbench can read test vectors from an

input file if (Fileld == .)
o Compact elszdtl)iglz;y(Could not open input file.™);

o Allows for easy integration of new test vectors Rst s
without modifying testbench or recompiling iy
o Can define several separate vector files to test
different aspects
o File: document located on host computer
system, can be read from or written to
o Verilog has built-in system procedures for files
o Four types of procedures in Verilog
o Initial and always — already seen
o Function — Has at least one input argument,
returns a value, no time-controlling statements end
(executes in one simulation time unit) else if (BitChar == "0") begin
o Task — Any number of arguments, no return Shr_in_s <= 0;
value, may have time-controlling statements @(posedge CIk_s);

o Testbench for the 32-Bit shift register reads end

= 1;
Shr_s <= 0; Shr_in_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 Shr_s <= 1;
while ($feof(Fileld) == 0) begin
BitChar = $fgetc(Fileld);
if (BitChar == "1") begin
Shr_in_s <= 1;
@(posedge Clk_s);

test vectors from input file end .)
o Input file specifies bits to be shifted into $fclose(Fileld);
register gzd o
o Set register to shift right and read input bits end rs <=0
from file
endmodule

file procedures to be described on next slide
vidd_ch4_ShiftReg32TBFilelO.v

24

Testbench with File Input
— System Procedures for Files

integer Fileld;
reg[8:0] BitChar;

// Vector Procedure
initial begin
Fileld = $fopen(“vectors.txt”, "r');

o $fopen — Opens file for access
Arguments:
i .o " if (Fileld == 0)
O File name: "vectors.txt $display('Could not open input file.™);
o Access type: "r* means read, "w" write, e'sgszegizi .
"a" append Shr_s <= 0. Shr_in_s <= 0;
o0 Returns integer, used to identify @Cposedge Clk_s);
opened file (may be more than one file 8(posedge CIk s):
open at one time); 0 means error #5 shr_s <= 1;
. . hil $feof(Fileld) == 0) begi
o $feof — Returns O if end of file has not e orreterrterny "
been reached yet if (BitChar == "1") begin
) . Shr_in_s <= 1;
o $fgetc — Returns next character in file O(posedge Clk_s);
o Valid character is 8 bits
o If error, returns 9-bit value 111111111
o Thus, variable BitChar is 9 bits, not 8 end

end
else if (BitChar == "0") begin
. . d
o $fclose — Closes previously-opened file STclosa(Eiloldy:

Shr_in_s <= 0;
@(posedge Clk_s);
end
Shr_s <= 0;

end
endmodule

while loop to be described on next slide
vldd_ch4_ShiftReg32TBFilelO.v 25

Testbench with File Input
— While Loops

integer Fileld;
reg[8:0] BitChar;

// Vector Procedure
initial begin
Fileld = $fopen(“vectors.txt", "r");

o Uses another form of loop: while if CFilold -2 0)

o If condition is true, executes loop body
statement (usually begin-end block)

O Repeat
o Both while and for loops are common
o for loop typically used when number of
iterations is known (e.g., loop 16 times)
o while loop typically used when number
of iterations not known

else begin
Rst_s <= 1;
Shr_s <= 0; Shr_in_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 Shr_s <= 1;
while ($feof(Fileld) == 0) begin
BitChar = $fgetc(Fileld);
if (BitChar == "1") begin
Shr_in_s <= 1;
@(posedge Clk_s);
end
else if (BitChar == "0) begin
Shr_in_s <= 0;
@(posedge Clk_s);
end
end
$fclose(Fileld);

endmodule
Entire vector procedure to be described on next slide

vidd_ch4_shiftReg32TBFilel0.v

$display(“"Could not open input file."

PH

26

Testbench with File Input —
32-Bit Register

integer Fileld;
reg[8:0] BitChar;

// Vector Procedure
initial begin
Fileld = $fopen(“vectors.txt"”, "r");
/ if (Fileld == 0)
o Open file containing test vectors Sdisplay("Could not open input File.");
. A else begin
o If file failed to open (maybe RSt s <= 1;

N N H Shr_s <= 0; Shr_in_s <= 0;
doesn't exist), display error @(posedge Clk s):
message #5 Rst_s <= 0;

. @(posedge Clk_s);

o Reset register #5 Shr_s <= 1;

o Enable shifting

. while ($feof(Fileld) == 0) begin

A . BitChar = $fgetc(Fileld);
o While we haven't read the entV' ¥f @itthar == *1%) begin
. 1 = 13
vector file M @(posedge Clk_s);
o Read next char le end

o else if (BitChar == "0") begin
o If 1, shiftinal shr_in_s <= 0;

o Set shift input to 1,M end@(posedge Clis):

O Else if 0, shiftina 0 end .
$fclose(Fileld);

o Can't just assign Shr_in_s <= end
BitChar; one’s a bit, one’s a 9-bit dShLS <=0;
ASCII encoding of a character endhodule

o When read entire file, close file

vidd_ch4_shiftReg32TBFilel0.v 27

Testbench with File Input — 32-Bit Shift Register

o Test vector file can contain as
few or as many test vectors as
desired

o Can add new test vectors and
simulate without changing

testbench

o Vectors of “1111111111111111” 11
and “0000000000000000” would 00
match previous testbench for 32- vectors.txt

bit shift register
o Consider simulation only for
o Testbench Simulation

S o S B
-

o Waveform shows simulation for
test vectors “11” and “00” \\,

Shr_in_s
o Value for Q_s displayed in

hexadecimal Q—SX X 00000000 80000000) C00G0000 § 60000000)i 30000000

10 20 30 40 50 60 70 80 90 100 110 120

time (ns)

28

Common Pitfall ; ; ; ;
Unsynthesizable Loop 4-bit Unsigned/Signed Magnitude Comparator
o Creating an unsynthesizable [00p iN @ for/(index=0; Index<=30:\Index<=Index+1) begin o Previously
description to be synthesized R(Index) <= R[Index+1] o Dealt only with unsigned numbers
o Synthesis must be able to wnrol/ the en . .
loop into an equivalent straight-line . © input, output, reg declarat|ons are
(no loop) sequence of statements ﬂ Unrolling unsigned unless otherwise
o To know first statement and last specified
statement of sequence i i i
o Lr?op is thus just a shorthand for o Now consider a simple magnitude
those statements R[O] <= R[11: _hi
o Index<=30 R1] <= RI2]. comparator that comp_ares a 4.blt * * * * * * * *
o Anything othﬁr than constant may .- un5|gned number A with a 4-bit A3A2AIA0 B3B2B1BO Gt P
prevent unrolling R[30] <= R[31]; i i
o Index<=Index+1 [301 <= REsi signed mljl]mbelr B, VIY]|th OUtzUIS folr 4-bit magnitude comparator Eq
o Anything other than simple index greatert an, less than, an equal Lt >
e ment/decrement may prevent e O A can be 0 to 15 (0000 to 1111)
o Likewise, while loops (even simple ndex =0 . O B can be -8 to 7 (1000 to 0111
ones) may not be unrolled while (};dfzos’sigler::gg (-)
o For synthesis, best to use only simple Index = Index + 13 o Ne;_-d_to rzpresegt both unsigned
forloop with constant bounds, and end and signed numbers
simple index increment/decrement
Some tools can unroll this while
loop, better to use a for loop
29 30
4-bit Unsigned/Signed Magnitude Comparator 4-bit Unsigned/Signed Magnitude Comparator
o Declare A input as before, but declare B * * * * * * * * * * * * * * * *
{?/Em with signed :eW\éOéd e et A3A2AIA0 B3B2BIBO |, o Performs comparison using if-else-if A3A2A1A0 B3B2BIBO |
o en comparing A and B using "<", firs "] Lo 4-bit itud tor Eq ™
convert unsigned A to signed value using 4-bit magnitude comparator E[q o con.struct it magnitude comparator Ltq [
$signed system function o ifA<B:
o "$signed(A)" would not work — changes “timescale 1 ns/1 ns o SetlLttol, GttoO, and Eqto 0 “timescale 1 ns/1 ns
positive number to negative) module Compd(A, B, Gt, Eq, LO); o If B negative, A will always be module Comp4(A, B, Gt, Eq, Lt);
© e.g., 1000 would change from meaning 8 greater than B (A is always positive))
to meaning -8 input [3:0] A; . input [3:0] A;
o Instead, first extend A to five bits input signed [3:01 8: o if (A>B) input signed [3:0] B;
o {1'b0,A} - e.g., 1000 becomes 01000 veg ot. Ea. tas o Gt=1,Lt=0,and Eq=0 reg ot. Eq. UE;
o Then convert to signed o If Ais neither greater or less than
o $signed({1'b0,A}) - e.g., 01000 as 5-bit always 0CA, B) begin 9 always 0(A, B) begin -
signed number is still 8 (Hue 0 in if ($signed({1°b0,A}) < B) begin o Eq=1,Lt=0,andEq=0 it ($signed({1°b0,A}) < B) begin
h - Gt <= 0; Eq <= 0; Lt <= 1; Gt <= 0; Eq <= 0; Lt <= 1;
highest-order bit) end end
o Operands of "<" automatically sign- else if ($signed({1°h0,A}) > B) begin elsg if (fsigned({é'bﬁ.A}) ; B) begin
extended to widest operand's width Gt <= 1; Eq <= 0; Lt <= 0; t <= 1; Eq <= 0; Lt <= 0;
- : ; : : end end
o S:)ege%;%nded to 5-bits with sign bit else begin else begin
p ! X Gt <= 0; Eq <= 1; Lt <= 0; Gt <= 0; Eq <= 1; Lt <= 0;
o Comparlson is thus correct end end
end end
endmodule endmodule
vldd_ch4_Comp4.v 31 vldd_ch4_Comp4.v 32

4-bit Unsigned/Signed Magnitude Comparator

o Testbench should test multiple
values for inputs A and B

o Should perform comparisons for
both positive and negative values of
B

o Should have at least one test case in
which A is greater than, less than,
and equal to B
o Note that reg variable B_s, used to
connect with B, defined as signed
o Vectors illustrate use of binary
constants as well as decimal
constants
o Negative binary constant achieved
using 1 in high-order bit (two-'s
complement form)
o Negative decimal constant requires
negative sign "-" in front of constant

“timescale 1 ns/1 ns
module Testbench();

reg [3:0] A_s;
reg signed [3:0] B_s;
wire Gt_s, Eq_s, Lt_s;

Comp4 CompToTest(A_s, B_s, Gt_s, Eq_s, Lt_s);

initial begin
A_s <= 4"b0011; B_s <= 4"b0001;
#10 A_s <= 47b1111; B_s <= 47b0111;
#10 A_s <= 47b0111; B_s <= 4°b1011;
#10 A_s <= 4°b0001; B_s <= 4°b0010;
#10 A_s <= 47b0001; B_s <= 47b0001;
#10 A_s <= 47b0000; B_s <= 4°b1111;
#10 A_s <= 4°d1; B_s <= -4°d1;
#10 A_s <= 4°d1; B_s <= -4"d8;
// Good testbench needs more vectors

end

endmodule

vldd_ch4_Comp4TB.v 33

4-bit Unsigned/Signed Magnitude Comparator

o Simulation
o First two vectors compare positive
values for both inputs
0 0011 > 0001 > Gt_s =1
0 1111>0111 > Gt.s =1
o Third test compares A with negative BW
0 0111>1011 > Gt s =1

timescale 1 ns/1 ns

module Testbench();

reg [3:0] A_s;
reg signed [3:0] B_s;
wire Gt_s, Eq_s, Lt_s;

Comp4 CompToTest(A_s, B_s, Gt_s, Eq_s, Lt_s);

al begin
= 4°b0011; B_s <= 4"b0001;

o 7>-5 A_s <= 47bl1111; B_s <= 4"b0111;
o Fourth and fifth test should result in the F0As = alboill B e
Lt_s and Eq_s output asserted, = ——> %10 A_s <= 4°b0001: B_S <= 4"h0001-
respectively #10 A_s <= 4°b0000; B_s <= 4°b1111;
_ #10 A_s <= 47dl; B_s <= -4°dl;
© 0001 <0010 > Lt s = #10 Als <= 4°d1: B.s <= -4*d8.
o 0001 =0001->Eq.s=1 // Good testbench needs more vectors
end
o Next test compares 0 to -1 Cndmodule
o 0000 > 1111 3> Gt s =1
o Next test compare 1 to -1
o Last test compares 1 to -8
vidd_ch4_Comp4TB.v 34

Common Pitfall

o Unintentional use of one of
many of Verilog's automatic
conversions

o B_s <=-4'd15
o -4d'15
o 4-bit decimal 15 would be 1111
o Negative of 1111 (15) is 10001
(-15) — Automatically converted
to 5 bits
o Assignment to B_s drops the
high-order bit, making
B_s=0001
o Many similar types of automatic
conversions in Verilog

o Use great caution

“timescale 1 ns/1 ns
module Testbench(Q);
reg [3:0] A_s;
reg signed [3:0] B_s;
wire Gt_s, Eq_s, Lt_s;
Comp4 CompToTest(A_s, B_s, Gt_s, Eq_s, Lt_s);
initial begin
#10 A_s <= 4°d1; B_s <= -4°d1;
#10 A_s <= 4°d1l; B_s <= -4°d15;
// Good testbench needs more vectors

end
endmodule

35

4x32 Register File

o Register Files
o A register file is more efficient than
individual registers if we only need
access one or two registers at a time
o Consider 4x32 register file (4
registers, each 32-bits wide)
o Need decoder with enable
o Simple extension of Ch 2 decoder
o Need 32-bit register with parallel load
input and a tri-state buffered outputs

Implement as 32-bit register with
output enable

o Ouy)ut of all registers connected to
R_data
o Only one register should output value)
to bus

o All other register should output high-

impedance

o Can omit si_gnal-stren?thening driver

- Synthesis tool would determine
when/where to insert driver

3 3 A
—/Z> W_data R_data 72> qud
W addr R_addr [+~ _

—™ W_en R_en|[*—

T ™Rst

X

register file

Fi_nckh

36

32-Bit Register With Output Enable

o High-impedance

32 32 S0 L
o Represents an output that is neither W_data R_data Ll
driven high nor driven low 2 2wt
o high-impedance > written as zor Z W_addr R_addr=>
o " <=z —{W_en R_en[*+— = ¥
—=Rst

o Allows for the outputs of several 4x32
components to be wired together __registerfile | .
o Only one component should output a 0 or 1
o All other components should output z
o Typically achieved using three-state
buffers W_dater

o Register with Output Enable
o Three-state buffers are part of register

32-Bit Register With Output
Enable

o Describing a register with output enable
O reg variable R used for storage

o Register procedure
O Resets register to Os when Rst = 1
o Stores register value in R when Ld = 1

taz

“timescale 1 ns/1 ns
module Reg32wOE(l, Q, Oe, Ld, Clk, Rst);

input [31:0] I;
output [31:0] Q;
reg [31:0] Q;
input Oe, Ld;
input Clk, Rst;

reg [31:0] R;

// Register Procedure
always @(posedge ClIk) begin
if (Rst == 1)
R <= 327d0;
else if (Ld == 1)
R <= 1;
end

// Output Procedure

“«32 W_addi]| I~ R_addr
—OE |
—Ld 32-bit Register with N
—IRst Output Enable 0 [High-Impedance — Z
1 |Stored Value (0 or 1)
32 - L
t Output Enable Operation ~ W-®" a2 register file R_en
37
32-Bit Register With
Output Enable
“timescale 1 ns/1 ns
o Output procedure
. . module Reg32wOE(l, Q, Oe, Ld, Clk, Rst);
o Combinational procedure that . 932u0E(t. Q)
controls register output input [31:0] I;
i output [31:0] Q;
o Oe =1 - Output is enabled reg [31:0] Q;
—Dp- input Oe, Ld;
o Q<=R; input CIk, Rst;
u} Qe = 0 - Output of register is reg [31:0] R:
disabled
. . // Register Procedure
o Output high-impedance always @(posedge CIk) begin
o Q <=32'hzz777777; =1
‘t3z
—OE | // Output Procedure
—1Ld 32-bit Register with - always @(R, Oe) begin
—IRst Output Enable 0 | High-Impedance —Z if (e == 1)
0 1 | Stored Value Q <= R;
Output Enable Operation else
‘taz p p Q <= 32°hz7777277;
end
endmodule
vidd_ch4_Reg32wOE.v
39

_loe | .
—{Ld 32-bit Register with - alwe_\ys @(R, 0Oe) begin
—|Rst Output Enable 0 | High-Impedance — Z if (Oe ==_1)
0 1 | Stored Value Q<= R;
N else
1\32 Output Enable Operation Q <= 32°hzzz77777;
end
endmodule
vidd_ch4_Reg32w0E.v
38
32-Bit Register With
Output Enable
o Alternative description “timescale 1 ns/1 ns
O Replace Output procedure by a module Reg32wOE(I, Q, Oe, Ld, Clk, Rst);
single continuous assignment input [31:0] 1
statement (assign) s output [31:0] Q;
. input Oe, Ld;
o Q must be net, not variable input CIk, Rst;
. 5.
o Uses conditional operator ? : reg [31:0] R:
oA?B:C p 4
. . Register Procedure
o If Ais true (non-zero), result is B always @(posedge CIk) begin
o If Ais false (zero), result is C if (Rst == 1)
_ o i R <= 32°d0;
o Q=0e?R:32'h22777777; else if (Ld == 1)
o IfOeis1, QgetsR R <= 1;
‘t32 o If Oeis 0, Q gets 32'hzzz77777 end
o | assign Q = Oe ? R : 32%hzZz777777;
—1.d 32-bit Register with - endnodule
—1Rst Output Enable 0 High-Impedance — Z
Q 1 | Stored Value Same behavior as previous
t32 Output Enable Operation description, just more compact
vidd_ch4_Reg32wOECond.v
40

10

32-Bit Register With Output Enable

o Testbench

O Reset register and enable output >
Oe_s<=1;

o Load register with value
32'h0000000FF
o Use self-check to verify correctness
o New operator use

o l==
o Does bit-by-bit comparison
o Handles z and x values

0 ===
o For bit-by-bit equality check
o Handles z and x values

o == and !=don't handle z or x
o Returns x (unknown) if z or x

present in either operand

o !==and === never return x

o Oe_s <= 0; > Disable output
o Use self-check to verify that output
is high-impedance

// Vector Procedure

initial begin

Rst_s <= 1;

Oe_s <= 1; Ld_s <= 0;

1_s <= 32"h00000000;

@(posedge Clk_s);

#5 Rst_s <= 0;

@(posedge Clk_s);

#5 Ld_s <= 1; 1_s <= 32"h00000OFF;

@(posedge Clk_s);

#5;

if (Q_s !'== 32"h000000FF)
$display(“Failed output enabled™);

Ld_s <= 0; Oe_s <= 0;

#5;

if Qs 32°hzz7272777)
$display(“Failed output disabled™);

end

vidd_ch4_Reg32wOETB.v

41

Structural 4x32
Register File

o Register File
o Structurally

“timescale 1 ns/1 ns

module RegFile4x32(R_Addr,W_Addr,R_en,W_en,R_Data,W_Data,Clk,Rst);

connect input [1:0] R_Addr, W_Addr;

decoders and

input R_en, W_en;

R output [31:0] R_Data;
registers to input [31:0] W_Data;

create register

input Clk, Rst;

file wire W_d3, W_d2, W_d1, W_do;

Decd2x4wen R_Dcd (R_Addr[1],R_Addr[0],R_en,

R_d3,R_d2,R_d1,R_d0);

Dcd2x4wEn W_Dcd (W_Addr[1],W_Addr[0],W_en,

Reg32wOE Reg0 (W_Data,R_Data,R
Reg32wOE Regl (W_Data,R_Data,R_
Reg32wOE Reg2 (W_Data,R_Data,R
Reg32wOE Reg3 (W_Data,R_Data,R

endmodule

W_d3,W_d2,W_d1,W_do);

_d0,W_do,Clk,Rst);
d1,W_d1,CIk,Rst);
_d2,W_d2,CIk,Rst);
_d3,W_d3,Clk,Rst);
vldd_ch4_RegFile4x32Struct.v

42

Multiple Drivers for One Net

o Earlier examples all had exactly one driver per net
o But structural register file has four drivers for net R_data
o One from each Reg32wOE instantiation
o Resolving multiple driven values into one value done as follows

oO0andz—>0
landz>1
zandz >z
Oand 1> x

OO0 o000

Note: Other resolutions also defined, suchas 0and 1> x, 0and0 - 0,

1and 1 - 1, but we should not allow those situations to happen

43

Structural 4x32
Register File Testbench

“timescale 1 ns/1 ns
module Testbench();

reg [1:0] R_Addr_s, W_Addr_s;
reg R_en_s, W_en_s;
wire [31:0] R_Data_s;
reg [31:0] W_Data_s;
reg Clk_s, Rst_s;

integer Index;

RegFile4x32 CompToTest

(R_Addr_s, W_Addr_s, R_en_s, W_en_s,

R_Data_s, W_Data_s, Clk_s, Rst_s);

// Clock Procedure
always begin
Clk_s <= 0;
#10;
Clk_s <= 1;
#10;
end vidd_ch4_RegFiledx32TB.v

o Writes some values,
then reads and
checks

// Vector Procedure

initial begin
Rst_s <= 1;
R_Addr_s <= 0°b00; W_Addr_s <= 0"b00;
R en_s <= 0; W_en_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5;

// Virite values to registers

for (Index=0; Index<=3; Index=Index+1) begin
W_Addr_s <= Index; W_Data_s <= Index;
W_en_s <= 1;
@(posedge Clk_s);
#5;

end
W_en_s <= 0;
// Check for correct read values from registers
for (Index=0; Index<=3; Index=Index+1) begin
R_Addr_s <= Index; R_en_s <= 1;
@(posedge CIk_s);

if& R_Data_s
$display("Fa

Index)
led case %d.", Index);

#5;
if(R_Data_s !== 32°hzzz7777Z)
$display(*'Failed no read case.");
end 44

11

“timescale 1 ns/1 ns

Behavioral 4x32
Register File

module RegFile4x32(R_Addr, W_Addr, R_en, W_en,
R_Data, W_Data, Clk, Rst);

input [1:0] R_Addr, W_Addr;
input R_en, W_en;

output reg [31:0] R_Data;
input [31:0] W_Data;

input Clk, Rst;

o Register File
o Can define behaviorally
o Declares a 4-element array

o Each element 32-bits \wmﬂ:

o Element address range defines 77 Write procedure
starting and ending addresses for

if (Rst==1) begin

“timescale 1 ns/1 ns

Behavioral 4x32
Register File

module RegFile4x32(R_Addr, W_Addr, R_en, W_en,
R_Data, W_Data, Clk, Rst);

always @(posedge CIk) begin
array elements RegFile[0]

i) <= 32°do;

o Specified at end of declaration to RegFile[1] <= 32°d0;

distinguish from vector range RegFile[2] <= 32°dO;

specification RegFile[3] <= 32°d0;
end

o Array elements accessed using index else if (W_en==1) begin

RegFile[W_Addr] <= W_Data;

TABUE T1:01 R_Addr, W_Addr;
input R_en, W_en;

output reg [31:0] R_Data;
input [31:0] W_Data;

input Clk, Rst;

o Note: Must use earlier-described
implicit sensitivity list "@*" for Read
procedure

O Because event control may not
include an array

o Could instead include each array
element in list (RegFile[0],
RegFile[1], ...), but cumbersome,
especially for large arrays

reg [31:0] RegFile [0:3];

// Vrite procedure

always @(posedge CIk) begin

if (Rst==1) begin
Reg! [0] <= 327dO;
RegFile[1] <= 32°d0;
RegFile[2] <= 32°d0;
RegFile[3] <= 32°d0;

end

else if (W_en==1) begin

RegFile[W_Addr] <= W_Data;

o RegFile[0] <= 32'd0; - sets first
array element to 32 Os

o Note that vector may be used as
array index: RegFile[W_Addr]

end
end

always @* begin

// Read procedure

// Read procedu
always @* begin

re

if (R_en==1)
R_Data <= RegFile[R_Addr];
else
R_Data <= 32°hzzzz7777;
end
endmodule
vidd_ch4_RegFile4x32Beh.v
45
Common Pitfall
Using logical operators instead of bitwise
o Both bitwise and logical AND, OR, and NOT
operators exist
o Easy to mistakenly use logical operator instead if(A & 47b0100) begin
bitwise operator, and vice versa BitSet <= 1;
o May work for single bit inputs, but will produce z’l‘ie begin
) -lncorrect results for multi-bit vectors BitSet <= 0:
o Bitwise Operators: end
© & bitwise AND Bitwise & operator results
o |: bitwise OR .
- bitwise NOT in correct output
o Performs operation bit-by-bit resulting in multi-bit
vector as wide as largest input operand _ _
. if(A && 47b0100) begin
o Logical Operators: BitSet <= 1;
o &&: logical AND end
. 0 else begin
o ||t Ioglcal OR) Bitset <= 0:
o I logical NOT (negation) end
o Performs operation by interpreting input operands as .
logical values of true or false, resulting in a single bit Logical && operator
output of 0 or 1 results in incorrect output
47

if (R_en==1)
R_Data <= RegFile[R_Addr];
else
R_Data <= 32°hzzzzzz77;
end
endmodule
vidd_ch4_RegFile4x32Beh.v
46
Common Pitfall
Using logical operators instead of bitwise
o Consider a simple if-else statement that will
determine if bit 2 of a 4-bit input A is 1, and
set an output BitSet accordingly / if(BAté Att'bolgo) begin
. L . . itSet <= 1;
o Using the bitwise & operator will result in end
correct output else begin
: . . BitSet <= 0;
o Assume A is 1000: 1000 & 0100 results in 0000 end
o 1&0=0, 0&1=0, 0&0=0, and 0&0=0 o
o Within an if expression, a value of zero is B“W'_Se & operator results
considered false and BitSet will be assigned the in correct output
correct value of 0 within else part
o Using the logical && operator will result in T if(A c2 47b0100) bogi
. i egin
incorrect output Bitset <= 1:
o Assume A is 1000: 1000 && 0100 results in 1 — end
both inputs are non-zero and will be interpreted else begin
as true (1), where 1&&1=1 endBItSet <= 0;
o Within if expression, 1 is considered true and .
BitSet will be assigned the incorrect value of 1 Logical && operator
within if part results in incorrect output
48

12

