
1

ECE 274 Digital Logic

Datapath Components – Shifters,
Comparators, Counters, Multipliers

Digital Design 4.4 – 4.7

Digital Design

Chapter 4:
Datapath Components

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Datapath Components
Shifters

  Shifting (e.g., left shifting 0011 yields 0110) useful for:
  Manipulating bits
  Converting serial data to parallel (remember earlier above-mirror display

example with shift registers)
  Shift left once is same as multiplying by 2 (0011 (3) becomes 0110 (6))

  Why? Essentially appending a 0 -- Note that multiplying decimal number by 10
accomplished just be appending 0, i.e., by shifting left (55 becomes 550)

  Shift right once same as dividing by 2
i2

q3 q2 q1 q0

in

i3 i1 i0

Left shifter

0 1 0 1 0 1 0 1
in

sh

i3

q3 q2 q1 q0

i2 i1 i0

Shifter with left
shift or no shift

inL

i3

q3 q2 q1 q0

i2 i1 i0
inR

2 0
s0
s1

shL
shR

1 2 0 1 2 0 1 2 0 1

Shifter with left
shift, right shift,
and no shift

<<1
Symbol

4.4

a

4

Datapath Components
Shifter Example: Temperature Averager

  Four registers storing a
history of temperatures

  Want to output the average
of those temperatures

  Add, then divide by four
  Same as shift right by 2
  Use three adders, and right

shift by two

Tavg
Ravg ld

ld

T
clk
ld

Ra Rb Rc Rd

+ +
+

>>2 0
divide by 4 shift in 0

a

001000 (8) 001100 (12) 001111 (15) 0000111 (7)

0101010 (42)

0001010 (10)

2

5

Datapath Components
Barrel Shifter

  A shifter that can shift by any amount
  4-bit barrel left shift can shift left by 0,

1, 2, or 3 positions
  8-bit barrel left shifter can shift left by

0, 1, 2, 3, 4, 5, 6, or 7 positions
  (Shifting an 8-bit number by 8 positions

is pointless -- you just lose all the bits)

  Could design using 8x1 muxes and lots
of wires
  Too many wires

  More elegant design
  Chain three shifters: 4, 2, and 1
  Can achieve any shift of 0..7 by

enabling the correct combination of
those three shifters, i.e., shifts should
sum to desired amount

0 1 0 1 0 1 0 1 in
sh

i3

q3 q2 q1 q0

i2 i1 i0

Shift by 1 shifter uses 2x1 muxes. 8x1
mux solution for 8-bit barrel shifter: too
many wires.

<<1 in sh

0

0

0

x

y

z
8

Q

<<2 in sh
8

<<4 in sh
8

8 I Q: xyz=??? to
shift by 5?

a

1

0

1

00000110

01100000 (by 4)

01100000

11000000 (by 1) Net result: shift by 5:

6

Datapath Components
Comparators

  N-bit equality comparator: Outputs 1 if two N-bit numbers are equal
  4-bit equality comparator with inputs A and B

  a3 must equal b3, a2 = b2, a1 = b1, a0 = b0
  Two bits are equal if both 1, or both 0
  eq = (a3b3 + a3’b3’) * (a2b2 + a2’b2’) * (a1b1 + a1’b1’) * (a0b0 + a0’b0’)

  Recall that XNOR outputs 1 if its two input bits are the same
  eq = (a3 xnor b3) * (a2 xnor b2) * (a1 xnor b1) * (a0 xnor b0)

4.5

a3 b3 a2 b2 a1 b1 a0 b0

eq
(a)

(b)

a3 a2 a1 a0 b3

eq

b2 b1 b0
4-bit equality comparator

0110 = 0111 ? 0 1 1 0 0 1 1 1

0 1 1 1

0

7

Datapath Components
Magnitude Comparator

  N-bit magnitude comparator
  Indicates whether A>B, A=B, or A<B,

for its two N-bit inputs A and B
  How to design?

  Consider how compare by hand.
  First compare a3 and b3. If equal,

compare a2 and b2. And so on. Stop if
comparison not equal -- whichever’s bit
is 1 is greater. If never see unequal bit
pair, A=B.

A=1011 B=1001

1011 1001

a

Equal
1011 1001 Equal
1011 1001 Unequal

So A > B

8

Datapath Components
Magnitude Comparator

  By-hand example leads to idea for design
  Start at left, compare each bit pair, pass results to the right
  Each bit pair called a stage
  Each stage has 3 inputs indicating results of higher stage, passes results to

lower stage

Igt
Ieq
Ilt

a3 a2 a1 a0 b3 b2 b1 b0 AgtB
AeqB
AltB

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Igt
Ieq
Ilt

Stage 3

a3 b3
a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage 2

a2 b2
a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage 1

a1 b1
a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

AgtB
AeqB
AltB

Stage 0

a0 b0
a b

(a)

(b)

0
0 1 4-bit magnitude comparator

3

9

Datapath Components
Magnitude Comparator

  Each stage:
  out_gt = in_gt + (in_eq * a * b’)

  A>B (so far) if already determined in higher stage, or if higher stages equal but
in this stage a=1 and b=0

  out_lt = in_lt + (in_eq * a’ * b)
  A<B (so far) if already determined in higher stage, or if higher stages equal but

in this stage a=0 and b=1
  out_eq = in_eq * (a XNOR b)

  A=B (so far) if already determined in higher stage and in this stage a=b too
  Simple circuit inside each stage, just a few gates (not shown)

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Igt
Ieq
Ilt

Stage 3

a3 b3
a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage 2

a2 b2
a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

Stage 1

a1 b1
a b

in_gt
in_eq
in_lt

out_gt
out_eq
out_lt

AgtB
AeqB
AltB

Stage 0

a0 b0
a b

10

Datapath Components
Magnitude Comparator Example: Minimum of Two Numbers

  Design a combinational component that computes the
minimum of two 8-bit numbers

11

Datapath Components
Counters

  N-bit up-counter: N-bit register
that can increment (add 1) to its
own value on each clock cycle
  0000, 0001, 0010, 0011,, 1110,

1111, 0000
  Note how count “rolls over” from 1111

to 0000
  Terminal (last) count, tc, equals1

during value just before rollover

  Internal design
  Register, incrementer, and N-input

AND gate to detect terminal count

4.6

c n t
t c C

4-bit up-counter
4

0000

0 1

0001 0010 0011 0100 0101 ... 1110 0 1111 1 0 0000 0001

ld
4-bit register

C t c
4

4 4
4

c n t
4-bit up-counter

+1

a

a

12

Datapath Components
Counter Example: Above Mirror Display

  Recall above-mirror display example from Chapter 2
  Assumed component that incremented xy input each time button

pressed: 00, 01, 10, 11, 00, 01, 10, 11, 00, ...
  Can use 2-bit up-counter

  Assumes mode=1 for just one clock cycle during each button press
  Recall “Button press synchronizer” circuit

c n t
t c c1 c0

x y

2-bit up c ou n t er mode
clk

4

13

Datapath Components
Counter Example: 1 Hz Pulse Generator Using 256 Hz Oscillator

  Suppose have 256 Hz
oscillator, but want 1 Hz
pulse
  1 Hz is 1 pulse per second

-- useful for keeping time
  Design using 8-bit up-

counter, use tc output as
pulse

  Counts from 0 to 255 (256
counts), so pulses tc every
256 cycles

c n t
t c C

(unused)

8-bit up-counter 1
osc
(256 Hz) 8

p
(1 Hz)

14

Datapath Components
Down-Counter

  4-bit down-counter
  1111, 1110, 1101, 1100, …,

0011, 0010, 0001, 0000,
1111, …

  Terminal count is 0000
  Use NOR gate to detect

  Need decrementer (-1) –
design like designed
incrementer

ld
4-bit register

C t c

4

4 4

4

c n t

4-bit down-counter

–1

15

Datapath Components
Up/Down-Counter

  Can count either up
or down
  Includes both

incrementer and
decrementer

  Use dir input to
select, using 2x1:
dir=0 means up

  Likewise, dir selects
appropriate terminal
count value

ld 4-bit register

C t c

4

4 4 4 4

4

c n t
clr clr

dir

4-bit up/down counter

4 4

–1 +1

1 0 2 x 1

1 0 4-bit 2 x 1

16

Datapath Components
Counter with Parallel Load

  Up-counter that can be
loaded with external
value
  Designed using 2x1 mux –

ld input selects
incremented value or
external value

  Load the internal register
when loading external
value or when counting

ld
4-bit register

C t c

4

4 4

c n t

ld

+1

1 0 4-bit 2 x 1

L 4

4

5

17

Datapath Components
Counter with Parallel Load

  Useful to create pulses at
specific multiples of clock
  Not just at N-bit counter’s natural

wrap-around of 2N

  Example: Pulse every 9 clock
cycles
  Use 4-bit down-counter with

parallel load
  Set parallel load input to 8 (1000)
  Use terminal count to reload

  When count reaches 0, next cycle
loads 8.

  Why load 8 and not 9? Because 0 is
included in count sequence:

  8, 7, 6, 5, 4, 3, 2, 1, 0 9 counts

c n t

ld

t c C

L
1

clk
4

4

1000

4-bit down-counter

18

Datapath Components
Counter Example: Timer

  A type of counter used to measure time
  If we know the counter’s clock frequency and the count, we know the time

that’s been counted
  Example: Compute car’s speed using two sensors

  First sensor (a) clears and starts timer
  Second sensor (b) stops timer
  Assuming clock of 1kHz, timer output represents time to travel between

sensors. Knowing the distance, we can compute speed

19

Datapath Components
Multipliers – Array Style

  Can build multiplier that mimics multiplication by hand
  Notice that multiplying multiplicand by 1 is same as ANDing with 1

4.7

20

Datapath Components
Multipliers – Array Style

  Generalized representation of multiplication by hand

6

21

Datapath Components
Multipliers – Array Style

  Multiplier design – array of AND
gates

A B
P *

Block symbol

+ (5-bit)

+ (6-bit)

+ (7-bit)

0 0

0 0 0

0

a0 a1 a2 a3
b0

b1

b2

b3

0

p7..p0
pp

1
pp

2
pp

3
pp

4

22

In-class Exercise

  Design a somewhat accurate Celsius to Fahrenheit
converter.
  The conversion circuit receives a digitized temperature in Celsius as a

16-bit binary number C and outputs the temperature in Fahrenheit as
a 16-bit output F using the following approximation:

  F = C*30/16 + 32.

