
1 

ECE 274 Digital Logic 

Sequential Logic Design – Sequential Logic 
Design Process 

Digital Design 3.4 – 3.5 

Digital Design 

Chapter 3:  
Sequential Logic Design -- Controllers 

Slides to accompany the textbook Digital Design, First Edition,  
by Frank Vahid, John Wiley and Sons Publishers, 2007.  

http://www.ddvahid.com  

Copyright © 2007 Frank Vahid 
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities, 
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf 
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means. 
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors 
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.  

3 

Sequential Logic Design  
Controller Design 

  Five step controller design process 
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Sequential Logic Design  
Controller Design: Laser Timer Example 

  Step 1: Capture the FSM 
  Already done 

  Step 2: Create architecture 
  2-bit state register (for 4 states) 
  Input b, output x 
  Next state signals n1, n0 

  Step 3: Encode the states 
  Any encoding with each state  

unique will work 
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Sequential Logic Design  
Controller Design: Laser Timer Example (cont) 

  Step 4: Create state table 
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Sequential Logic Design  
Controller Design: Laser Timer Example (cont) 

  Step 5: Implement 
combinational logic 

a 

x = s1 + s0 (note from the table that x=1 if s1 = 1 or s0 = 
1)

n1 = s1’s0b’ + s1’s0b + s1s0’b’ + s1s0’b 
n1 = s1’s0 + s1s0’ 

n0 = s1’s0’b + s1s0’b’ + s1s0’b 
n0 = s1’s0’b + s1s0’ 
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Sequential Logic Design  
Controller Design: Laser Timer Example (cont) 

  Step 5: Implement 
combinational logic (cont) 

a 

x = s1 + s0
n1 = s1’s0 + s1s0’ 
n0 = s1’s0’b + s1s0’ 
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Sequential Logic Design  
Understanding the Controller’s Behavior 

s0 s1 

b x 
n1 

n0 

x=1 x=1 x=1 b 
01 10 11 On2 On1 

O ff 
On3 

00 

0 0 
0 
0 0 
0 

b ’ 

0 

0 

0 

0 0 

x=0 

0 0 0 

clk 

clk 
I nputs: 

1 

0 

1 0 

b 

1 

0 
1 0 
0 

s0 s1 

b x 
n1 

n0 

x=1 x=1 x=1 
b ’ 

01 10 11 On2 On1 
O ff 

On3 

clk 

00 

0 0 

x=0 

0 0 0 

st a t e=00 st a t e=00 

s0 s1 

b x 
n1 

n0 

x=1 x=1 x=1 

x=0 
b 

b ’ 

01 

00 

10 11 On2 On1 
O ff 

On3 

1 

0 

1 
1 

0 
0 0 
1 1 0 

clk 
0 1 

0 1 
st a t e=01 

a 



3 

9 

Sequential Logic Design  
Simplifying Notations 

  FSMs 
  Assume unassigned output 

implicitly assigned 0 

a 

  Sequential circuits 
  Assume unconnected clock 

inputs connected to same 
external clock 
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Sequential Logic Design  
Controller Example: Secure Car Key 

  (from earlier example) 
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Sequential Logic Design  
FSM Example: Code Detector 

  If we changed the state encoding for the 
secure car key design to the following, would 
this affect the final output? 
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Sequential Logic Design  
In Class Exercise: Button Press Synchronizer 

  Want simple sequential circuit that converts button press to 
single cycle duration, regardless of length of time that 
button actually pressed 
  We assumed such an ideal button press signal in earlier example, like 

the button in the laser timer controller 

Button press  
synchronizer 

controller 
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Sequential Logic Design  
FSM Transitions 

  Is the following FSM valid? 

a’b 

a 

1.  Yes 
2.  No 
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Sequential Logic Design  
Common Pitfalls Regarding Transition Properties 

  Only one condition should be true 
  For all transitions leaving a state 
  Else, which one? 

  One condition must be true 
  For all transitions leaving a state 
  Else, where go? 

  Can verify using Boolean algebra 
  Only one condition true: AND of each condition 

pair (for transitions leaving a state) should equal 0 
 proves pair can never simultaneously be true 

  One condition true: OR of all conditions of 
transitions leaving a state) should equal 1  
proves at least one condition must be true 

a 
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Sequential Logic Design  
Evidence that Pitfall is Common 

  Recall code detector FSM 
  We “fixed” a problem with the 

transition conditions 
  Do the transitions obey the two 

required transition properties? 
  Consider transitions of state 

Start, and the “only one true” 
property 

Wait 

Start 

Red1 Red2 Green Blue 
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ar * a’  a’ * a(r’+b+g)  ar * a(r’+b+g)   
= (a*a’)r  = 0*r   = (a’*a)*(r’+b+g) = 0*(r’+b+g)   

  = (a*a)*r*(r’+b+g) = a*r*(r’+b+g)  
= 0  = 0   = arr’+arb+arg   

   = 0 + arb+arg   
   = arb + arg   
   = ar(b+g)   

Fails! Means that two of Start’s 
transitions could be true 

Intuitively: press red and blue 
buttons at same time: conditions 
ar, and a(r’+b+g) will both be 
true. Which one should be 
taken? 

Q: How to solve? a 

A: ar should be arb’g’ 
(likewise for ab, ag, ar) 

Note: As evidence the pitfall is common, 
we admit the mistake was not intentional.  
A reviewer of the book caught it. 
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Sequential Logic Design  
Flip-Flop Set and Reset Inputs 

  Some flip-flops have additional inputs 
  Synchronous reset: clears Q to 0 on next clock edge 
  Asynchronous reset: clear Q to 0 immediately (not 

dependent on clock edge) 
  Example timing diagram shown 
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Sequential Logic Design  
Initial State of a Controller 

  All our FSMs had initial state 
  But our sequential circuit designs 

did not 
  Can accomplish using flip-flops with 

reset/set inputs 
  Shown circuit initializes flip-flops to 

01 

  Circuits typically have power on 
reset circuitry to automatically reset 
circuit on power up 
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Sequential Logic Design  
Non-Ideal Flip-Flop Behavior 

  Can’t change flip-flop input too close to clock edge 
  Setup time: time that D must be stable before edge 

  Else, stable value not present at internal latch 

  Hold time: time that D must be held stable after 
edge 

  Else, new value doesn’t have time to loop around and 
stabilize in internal latch 

Setup time violation 

Leads to oscillation! 
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Sequential Logic Design  
Metastability 

  Violating setup/hold time can lead to bad 
situation known as metastable state 
  Metastable state: Any flip-flop state other 

than stable 1 or 0 
  Eventually settles to one or other, but we 

don’t know which 
  For internal circuits, we can make sure 

observe setup time 
  But what if input comes from external 

(asynchronous) source, e.g., button press? 
  Partial solution 

  Insert synchronizer flip-flop for 
asynchronous input 

  Special flip-flop with very small setup/hold 
time 

  Doesn’t completely prevent metastability 

a 

20 

Sequential Logic Design  
Metastability 

  One flip-flop doesn’t completely solve problem 
  How about adding more synchronizer flip-flops? 

  Helps, but just decreases probability of metastability 

  So how solve completely? 
  Can’t! May be unsettling to new designers. But we just can’t guarantee a 

design that won’t ever be metastable. We can just minimize the mean time 
between failure (MTBF) -- a number often given along with a circuit 
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