
1

ECE 274 Digital Logic

Sequential Logic Design – Sequential Logic
Design Process

Digital Design 3.4 – 3.5

Digital Design

Chapter 3:
Sequential Logic Design -- Controllers

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Sequential Logic Design
Controller Design

  Five step controller design process

4

Sequential Logic Design
Controller Design: Laser Timer Example

  Step 1: Capture the FSM
  Already done

  Step 2: Create architecture
  2-bit state register (for 4 states)
  Input b, output x
  Next state signals n1, n0

  Step 3: Encode the states
  Any encoding with each state

unique will work

x=1 x=1 x=1

x=0

b
b ’

01

00

10 11 On2 On1

O ff

On3

a

a

Inputs: b; Outputs: x

Combinational
logic

State register
s1 s0

n1
n0

x b

clk

FSM outputs

FS
M

in

pu
ts

FS
M

ou

tp
ut

s

2

5

Sequential Logic Design
Controller Design: Laser Timer Example (cont)

  Step 4: Create state table

x=1 x=1 x=1

x=0

b
b ’

01

00

10 11 On2 On1

O ff

On3

Inputs: b; Outputs: x

a

6

Sequential Logic Design
Controller Design: Laser Timer Example (cont)

  Step 5: Implement
combinational logic

a

x = s1 + s0 (note from the table that x=1 if s1 = 1 or s0 =
1)

n1 = s1’s0b’ + s1’s0b + s1s0’b’ + s1s0’b
n1 = s1’s0 + s1s0’

n0 = s1’s0’b + s1s0’b’ + s1s0’b
n0 = s1’s0’b + s1s0’

7

Sequential Logic Design
Controller Design: Laser Timer Example (cont)

  Step 5: Implement
combinational logic (cont)

a

x = s1 + s0
n1 = s1’s0 + s1s0’
n0 = s1’s0’b + s1s0’

n1

n0

s0 s1
clk

Combinational Logic

State register

b FSM outputs

FSM inputs

x

8

Sequential Logic Design
Understanding the Controller’s Behavior

s0 s1

b x
n1

n0

x=1 x=1 x=1 b
01 10 11 On2 On1

O ff
On3

00

0 0
0
0 0
0

b ’

0

0

0

0 0

x=0

0 0 0

clk

clk
I nputs:

1

0

1 0

b

1

0
1 0
0

s0 s1

b x
n1

n0

x=1 x=1 x=1
b ’

01 10 11 On2 On1
O ff

On3

clk

00

0 0

x=0

0 0 0

st a t e=00 st a t e=00

s0 s1

b x
n1

n0

x=1 x=1 x=1

x=0
b

b ’

01

00

10 11 On2 On1
O ff

On3

1

0

1
1

0
0 0
1 1 0

clk
0 1

0 1
st a t e=01

a

3

9

Sequential Logic Design
Simplifying Notations

  FSMs
  Assume unassigned output

implicitly assigned 0

a

  Sequential circuits
  Assume unconnected clock

inputs connected to same
external clock

10

Sequential Logic Design
Controller Example: Secure Car Key

  (from earlier example)

K1 K2 K3 K4
r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a ’ a

S
te

p
1

FSM Combinational
logic

s2 s1 s0

n2
r a

n1
n0

clk State register

FSM inputs
outputs

S
te

p
2

a ’
a r=0

r=1 r=1 r=0 r=1

000

001 010 011 100

I nputs: a ; O utputs: r

S
te

p
3

Step 4

a

We’ll omit Step 5

11

Sequential Logic Design
FSM Example: Code Detector

  If we changed the state encoding for the
secure car key design to the following, would
this affect the final output?

a ’
a r=0

r=1 r=1 r=0 r=1

111

101 000 010 101

I nputs: a ; O utputs: r

S
te

p
3

1.  Yes
2.  No

12

Sequential Logic Design
In Class Exercise: Button Press Synchronizer

  Want simple sequential circuit that converts button press to
single cycle duration, regardless of length of time that
button actually pressed
  We assumed such an ideal button press signal in earlier example, like

the button in the laser timer controller

Button press
synchronizer

controller

bi bo

4

13

Sequential Logic Design
FSM Transitions

  Is the following FSM valid?

a’b

a

1.  Yes
2.  No

14

Sequential Logic Design
Common Pitfalls Regarding Transition Properties

  Only one condition should be true
  For all transitions leaving a state
  Else, which one?

  One condition must be true
  For all transitions leaving a state
  Else, where go?

  Can verify using Boolean algebra
  Only one condition true: AND of each condition

pair (for transitions leaving a state) should equal 0
 proves pair can never simultaneously be true

  One condition true: OR of all conditions of
transitions leaving a state) should equal 1
proves at least one condition must be true

a

15

Sequential Logic Design
Evidence that Pitfall is Common

  Recall code detector FSM
  We “fixed” a problem with the

transition conditions
  Do the transitions obey the two

required transition properties?
  Consider transitions of state

Start, and the “only one true”
property

Wait

Start

Red1 Red2 Green Blue

s ’

a ’

a ’
ab ag ar

a ’ a ’
u=0

u=0 ar

u=0 s

u=0 u=0 u=1

a

ar * a’ a’ * a(r’+b+g) ar * a(r’+b+g)
= (a*a’)r = 0*r = (a’*a)*(r’+b+g) = 0*(r’+b+g)

 = (a*a)*r*(r’+b+g) = a*r*(r’+b+g)
= 0 = 0 = arr’+arb+arg

 = 0 + arb+arg
 = arb + arg
 = ar(b+g)

Fails! Means that two of Start’s
transitions could be true

Intuitively: press red and blue
buttons at same time: conditions
ar, and a(r’+b+g) will both be
true. Which one should be
taken?

Q: How to solve? a

A: ar should be arb’g’
(likewise for ab, ag, ar)

Note: As evidence the pitfall is common,
we admit the mistake was not intentional.
A reviewer of the book caught it.

16

Sequential Logic Design
Flip-Flop Set and Reset Inputs

  Some flip-flops have additional inputs
  Synchronous reset: clears Q to 0 on next clock edge
  Asynchronous reset: clear Q to 0 immediately (not

dependent on clock edge)
  Example timing diagram shown

5

17

Sequential Logic Design
Initial State of a Controller

  All our FSMs had initial state
  But our sequential circuit designs

did not
  Can accomplish using flip-flops with

reset/set inputs
  Shown circuit initializes flip-flops to

01

  Circuits typically have power on
reset circuitry to automatically reset
circuit on power up

Inputs: x; Outputs: b

On2 On1 On3

Off

x=1 x=1 x=1

x=0
b ’

b

D Q ’ Q ’
Q

R S
D

Q

State register
clk

reset

s1 s0 n0
n1

b x
Combinational

logic

18

Sequential Logic Design
Non-Ideal Flip-Flop Behavior

  Can’t change flip-flop input too close to clock edge
  Setup time: time that D must be stable before edge

  Else, stable value not present at internal latch

  Hold time: time that D must be held stable after
edge

  Else, new value doesn’t have time to loop around and
stabilize in internal latch

Setup time violation

Leads to oscillation!

19

Sequential Logic Design
Metastability

  Violating setup/hold time can lead to bad
situation known as metastable state
  Metastable state: Any flip-flop state other

than stable 1 or 0
  Eventually settles to one or other, but we

don’t know which
  For internal circuits, we can make sure

observe setup time
  But what if input comes from external

(asynchronous) source, e.g., button press?
  Partial solution

  Insert synchronizer flip-flop for
asynchronous input

  Special flip-flop with very small setup/hold
time

  Doesn’t completely prevent metastability

a

20

Sequential Logic Design
Metastability

  One flip-flop doesn’t completely solve problem
  How about adding more synchronizer flip-flops?

  Helps, but just decreases probability of metastability

  So how solve completely?
  Can’t! May be unsettling to new designers. But we just can’t guarantee a

design that won’t ever be metastable. We can just minimize the mean time
between failure (MTBF) -- a number often given along with a circuit

ai

synchronizers

l o w very
low

very
very
low incredibly

l o w

Probability of flip-flop being metastable is…

