ECE 274 Digital Logic

Optimization and Tradeoffs
State Encodings, Moore vs. Mealy FSMs
Digital Design 6.3
the Unverstrit of ARIZONA. tucson Arzona

Sequential Optimizations and Tradeoffs

 State Encoding- Encoding: Assigning a unique bit representation to each state
o Different encodings may optimize
size, or tradeoff size and performance
- Consider 3-Cycle Laser Timer..
- Example 3.7's encoding: 15 gate inputs
- Try alternative encoding
$\circ \mathrm{x}=\mathrm{s} 1+\mathrm{s} 0$
- $\mathrm{n} 1=\mathrm{s} 0$
- $\mathrm{n} 0=\mathrm{s} 1^{\prime} \mathrm{b}+\mathrm{s} 1^{\prime} \mathrm{s} 0$
- Only 8 gate inputs

Sequential Optimizations and Tradeoffs State Encoding: One-Hot Encoding

- One-hot encoding
- One bit per state - a bit being ' 1 ' corresponds to a particular state
- Alternative to minimum bit-width encoding in previous example
- For A, B, C, D: A: 0001, B: 0010, C 0100, D: 1000
Example: FSM that outputs $0,1,1,1$
- Equations if one-hot encoding:
$\mathrm{n} 3=\mathrm{s} 2 ; \mathrm{n} 2=\mathrm{s} 1 ; \mathrm{n} 1=\mathrm{s} 0 ; \mathrm{x}=\mathrm{s} 3$
$+\mathrm{s} 2+\mathrm{s} 1 \quad$ oply logic - less delay than two levels, so faster clock frequency

Sequential Optimizations and Tradeoffs
 One-Hot Encoding Example: Three-Cycles-High Laser Timer

- Four states - Use four-bit one-hot encoding
- State table leads to equations.
- $\mathrm{x}=\mathrm{s} 3+\mathrm{s} 2+\mathrm{s} 1$
- $\mathrm{n} 3=\mathrm{s} 2$
$\begin{aligned} \circ \mathrm{n} 2 & =\mathrm{s} 1 \\ \circ \mathrm{n} 1 & =\mathrm{s} 0 * b\end{aligned}$
- $\mathrm{n} 0=\mathrm{s} 0 * \mathrm{~b}^{\prime}+\mathrm{s} 3$
- Smaller
- $3+0+0+2+(2+2)=9$ gate inputs
- Earlier binary encoding (Ch 3): 15 gate inputs
- Faster
- Critical path: $\mathrm{n} 0=\mathrm{s} 0 * \mathrm{~b}^{\prime}+\mathrm{s} 3$
- Previously: $\mathrm{n} 0=\mathrm{s} 1^{\prime} \mathrm{s} \mathrm{O}^{\prime} \mathrm{b}+\mathrm{s} 1 \mathrm{~s} 0^{\prime}$
- 2-input AND slightly faster than 3input AND

Sequential Optimizations and Tradeoffs
State Encoding: Output Encoding

Sequential Optimizations and Tradeoffs

Output Encoding Example: Sequence Generator

- Generate sequence $0001,0011,1110,1000$ repeat
- FSM shown
- Use output values as state encoding

- Create state table
- Derive equations for next state

口 $\mathrm{n} 3=\mathrm{s} 1+\mathrm{s} 2 ; \mathrm{n} 2=\mathrm{s} 1 ; \mathrm{n} 1=\mathrm{s} 1$ 's0; n0 = s1's0 + s3s2'

Sequential Optimizations and Tradeoffs
Moore vs. Mealy FSMs

- FSM implementation architecture
\square State register and logic
Next state logic - function of present state and FSM inputs
- Output logic
\bigcirc If function of present state only - Moore FSM
σ If function of present state and FSM inputs - Mealy FSM

Mealy FSM a dds thi s

Sequential Optimizations and Tradeoffs

Moore vs. Mealy FSMs: Mealy FSMs May Have Fewer States

- Soda dispenser example: Initialize, wait until enough, dispense
- Moore: 3 states; Mealy: 2 states

Sequential Optimizations and Tradeoffs

Moore vs. Mealy FSMs

o Q: Which is Moore,

 and which is Mealy?- A: Mealy on left,

Moore on right

- Mealy outputs on arcs, meaning outputs are function of state AND INPUTS
- Moore outputs in states, meaning outputs are function of state only
 $\mathrm{b} / \mathrm{s} 1 \mathrm{~s} 0=11, \mathrm{p}=1$

Mealy
\square

Sequential Optimizations and Tradeoffs
Mealy vs. Moore Example: Beeping Wristwatch

- Button b

- Sequences mux select lines s1sO through 00, 01, 10, and 11

Each value displays different internal register

- Each unique button press should cause 1-cycle beep. with $p=1$ being beep
- Must wait for button to be released (b) and pushed again (b) before sequencing

6 Note that Moore requires unique state to pulse p,
while Mealy pulses p on arc
may not last one full cycle

Sequential Optimizations and Tradeoffs

Moore vs. Mealy Tradeoff

- Mealy outputs change mid-cycle if input changes
\square Note earlier soda dispenser example
- Mealy had fewer states, but output d not 1 for full cycle
- Represents a type of tradeoff
$\begin{array}{ll}\text { Inputs: enough (bit) } \\ \text { Outputs: } \mathrm{d} \text {, clear (bit) } & \text { Inputs: enough (bit) } \\ \text { Outputs: } \mathrm{d} \text {, clear (bit) }\end{array}$

Sequential Optimizations and Tradeoffs Implementing a Mealy FSM

Sequential Optimizations and Tradeoffs
Mealy and Moore can be combined

- Straightforward

- Convert to state table
- Derive equations for each output
- Key difference from Moore: External outputs (d, clear) may have different value in same state, depending on input values

Final note on Mealy/Moore

- May be combined in same FSM

