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RTL Design 
RTL Example: Video Compression – Sum of Absolute Differences 

  Video is a series of frames (e.g., 30 per second) 
  Most frames similar to previous frame 

  Compression idea: just send difference from previous frame 
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frame 2 

1 Mbyte 

Frame 2 
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frame 1 

Frame 1 

1 Mbyte 
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Digitized 
frame 1 

Frame 1 
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Only difference: UFO moving 

a Difference of 
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0.01 Mbyte 

Frame 2 

Just send 
difference 
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RTL Design 
RTL Example: Video Compression – Sum of Absolute Differences 

  Need to quickly determine whether two frames are similar 
enough to just send difference for second frame 
  Compare corresponding 16x16 “blocks” 

  Treat 16x16 block as 256-byte array 

  Compute the absolute value of the difference of each array item 
  Sum those differences – if above a threshold, send complete frame 

for second frame; if below, can use difference method (using 
another technique, not described) 

Frame 2 Frame 1 compare Each is a pixel, assume 
represented as 1 byte 
(actually, a color picture 
might have 3 bytes per 
pixel, for intensity of 
red, green, and blue 
components of pixel) 
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RTL Design 
RTL Example: Video Compression – Sum of Absolute Differences 

  Want fast sum-of-absolute-differences (SAD) component 
  When go=1, sums the differences of element pairs in arrays A and 

B, outputs that sum 

!(i<256) 

B 

A 

go 

SAD 

sad 

256-byte array 

256-byte array 
integer 
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RTL Design 
RTL Example: Video Compression – Sum of Absolute Differences 

  S0: wait for go 
  S1: initialize sum and index  
  S2: check if done (i>=256) 
  S3: add difference to sum, 

increment index 
  S4: done, write to output 

sad_reg 

!(i<256) 

B 

A 

go 

SAD 

sad 

Inputs: A, B (256 byte memory); go (bit) 
Outputs: sad (32 bits) 
Local registers: sum, sad_reg (32 bits); i (9 bits) 

!go S0 
go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ r eg = sum 

S2 
i<256 

(i<256)’ 

a 
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RTL Design 
RTL Example: Video Compression – Sum of Absolute Differences 

  Step 2: Create datapath 

!(i<256) 

!(i<256) (i_lt_256) 

i_lt_256 

i_inc 
i_clr 

sum_ld 

sum_clr 

sad_reg_ld 

Datapath 

sum 

sad_reg 

sad 

AB_addr A_data B_data 

<256 
9 
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8 
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8 8 

32 32 
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+ 

abs 

Inputs: A, B (256 byte memory); go (bit) 
Outputs: sad (32 bits) 
Local registers: sum, sad_reg (32 bits); i (9 bits) 

!go S0 
go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ reg=sum 

S2 
i<256 

(i<256)’ 
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RTL Design 
RTL Example: Video Compression – Sum of Absolute Differences 

  Step 3: Connect to controller 
  Step 4: Replace high-level state machine by FSM 
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RTL Design 
RTL Example: Video Compression – Sum of Absolute Differences 

  Comparing software and custom 
circuit SAD  
  Circuit: Two states (S2 & S3) for 

each i, 256 i’s 512 clock cycles 
  Software: Loop (for i = 1 to 256), 

but for each i, must move memory to 
local registers, subtract, compute 
absolute value, add to sum, 
increment i – say about 6 cycles per 
array item  256*6 = 1536 cycles 

  Circuit is about 3 times (300%) 
faster 

  Later, we’ll see how to build SAD 
circuit that is even faster 

!(i<256) 

!(i<256) (i_lt_256) 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S2 
i<256 

(i<256)’ 

11 

RTL Design  
Pitfalls and Good Practice 

  Considering the high-level state 
machine shown to the right, what 
is the final value of D in state F? 

R = 10 
A 

R = R + 1 
Q = R 

B 
R = 20 

D = Q + 1 
C D = D + 1 D 

D = R E 

R ≤ 17 

R > 17 

Inputs: 
Outputs: D (8-bits), Q (8-bits) 
Local Registers: R (8-bits) 

F 

1.  10  
2.  11  
3.  12 
4.  17 
5.  20  
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RTL Design  
Pitfalls and Good Practice 

  Common pitfall: Assuming 
register is update in the state it’s 
written 
  All registers updates in each 

state will happen simultaneously 
  On the next rising clock edge 

  Consider the FSM to the right: 
  What is the final value of Q? 
  What is the final state? 
  Answer: 

  Value of Q unknown 
  Final state is C (not D) 

  Why? 
  State A: R=99 and Q=R happen 

simultaneously 
  State B: R not updated with R+1 

until next clock cycle, 
simultaneously with state 
register being updated 
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RTL Design  
Pitfalls and Good Practice 

  Considering the high-level state 
machine shown to the right, what 
is the final value of D in state F? 
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RTL Design  
Pitfalls and Good Practice 

  Common pitfall: 
Reading outputs 
  Outputs should only be 

written 
  Solution: Introduce 

additional register, 
which can be written 
and read 

T S 

P=P+B P=A 

( a ) 

Inputs: A, B (8 bits) 
Outputs: P (8 bits) 

Inputs: A, B (8 bits) 
Outputs: P (8 bits) 
Local register: R (8 bits) 

T S 

P=R+B R=A 
P=A 

( b ) 

15 

RTL Design  
Pitfalls and Good Practice 

  Good practice: Register 
all data outputs 
  In fig (a), output P would 

show spurious values as 
addition computes 

  Furthermore, longest 
register-to-register path, 
which determines clock 
period, is not known until 
that output is connected 
to another component 

  In fig (b), spurious outputs 
reduced, and longest 
register-to-register path is 
clear 
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