
1

ECE 274 Digital Logic

RTL Design Method Examples
Digital Design 5.3

Digital Design

Chapter 5:
RTL Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

RTL Design
RTL Design Method

5.2

4

RTL Design
RTL Example: Video Compression – Sum of Absolute Differences

  Video is a series of frames (e.g., 30 per second)
  Most frames similar to previous frame

  Compression idea: just send difference from previous frame

Digitized
frame 2

1 Mbyte

Frame 2

Digitized
frame 1

Frame 1

1 Mbyte
(a)

Digitized
frame 1

Frame 1

1 Mbyte
(b)

Only difference: UFO moving

a Difference of
2 from 1

0.01 Mbyte

Frame 2

Just send
difference

2

5

RTL Design
RTL Example: Video Compression – Sum of Absolute Differences

  Need to quickly determine whether two frames are similar
enough to just send difference for second frame
  Compare corresponding 16x16 “blocks”

  Treat 16x16 block as 256-byte array

  Compute the absolute value of the difference of each array item
  Sum those differences – if above a threshold, send complete frame

for second frame; if below, can use difference method (using
another technique, not described)

Frame 2 Frame 1 compare Each is a pixel, assume
represented as 1 byte
(actually, a color picture
might have 3 bytes per
pixel, for intensity of
red, green, and blue
components of pixel)

6

RTL Design
RTL Example: Video Compression – Sum of Absolute Differences

  Want fast sum-of-absolute-differences (SAD) component
  When go=1, sums the differences of element pairs in arrays A and

B, outputs that sum

!(i<256)

B

A

go

SAD

sad

256-byte array

256-byte array
integer

7

RTL Design
RTL Example: Video Compression – Sum of Absolute Differences

  S0: wait for go
  S1: initialize sum and index
  S2: check if done (i>=256)
  S3: add difference to sum,

increment index
  S4: done, write to output

sad_reg

!(i<256)

B

A

go

SAD

sad

Inputs: A, B (256 byte memory); go (bit)
Outputs: sad (32 bits)
Local registers: sum, sad_reg (32 bits); i (9 bits)

!go S0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ r eg = sum

S2
i<256

(i<256)’

a

8

RTL Design
RTL Example: Video Compression – Sum of Absolute Differences

  Step 2: Create datapath

!(i<256)

!(i<256) (i_lt_256)

i_lt_256

i_inc
i_clr

sum_ld

sum_clr

sad_reg_ld

Datapath

sum

sad_reg

sad

AB_addr A_data B_data

<256
9

32

8

8

8 8

32 32

32

i –

+

abs

Inputs: A, B (256 byte memory); go (bit)
Outputs: sad (32 bits)
Local registers: sum, sad_reg (32 bits); i (9 bits)

!go S0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ reg=sum

S2
i<256

(i<256)’

a

3

9

RTL Design
RTL Example: Video Compression – Sum of Absolute Differences

  Step 3: Connect to controller
  Step 4: Replace high-level state machine by FSM

!(i<256)

!(i<256) (i_lt_256)

S0

S1

S2

S3

S4

go’
go

go AB_ r d

sum=0
i=0

i<256

!(i<256) (i_lt_256)

?
sum=sum+abs(A[i]-B[i])

i=i+1
sad_reg=sum

Controller

i_lt_256

i_inc
i_clr

sum_ld

sum_clr

sad_reg_ld

sum

sad_reg

sad

AB_addr A_data B_data

<256
9

32

8

8

8 8

32 32

32

i –

+

abs

a

sum_ld=1; AB_rd=1

sad_reg_ld=1

i_inc=1

i_lt_256

i_clr=1
sum_clr=1

10

RTL Design
RTL Example: Video Compression – Sum of Absolute Differences

  Comparing software and custom
circuit SAD
  Circuit: Two states (S2 & S3) for

each i, 256 i’s 512 clock cycles
  Software: Loop (for i = 1 to 256),

but for each i, must move memory to
local registers, subtract, compute
absolute value, add to sum,
increment i – say about 6 cycles per
array item 256*6 = 1536 cycles

  Circuit is about 3 times (300%)
faster

  Later, we’ll see how to build SAD
circuit that is even faster

!(i<256)

!(i<256) (i_lt_256)

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S2
i<256

(i<256)’

11

RTL Design
Pitfalls and Good Practice

  Considering the high-level state
machine shown to the right, what
is the final value of D in state F?

R = 10
A

R = R + 1
Q = R

B
R = 20

D = Q + 1
C D = D + 1 D

D = R E

R ≤ 17

R > 17

Inputs:
Outputs: D (8-bits), Q (8-bits)
Local Registers: R (8-bits)

F

1.  10
2.  11
3.  12
4.  17
5.  20

12

RTL Design
Pitfalls and Good Practice

  Common pitfall: Assuming
register is update in the state it’s
written
  All registers updates in each

state will happen simultaneously
  On the next rising clock edge

  Consider the FSM to the right:
  What is the final value of Q?
  What is the final state?
  Answer:

  Value of Q unknown
  Final state is C (not D)

  Why?
  State A: R=99 and Q=R happen

simultaneously
  State B: R not updated with R+1

until next clock cycle,
simultaneously with state
register being updated

4

13

RTL Design
Pitfalls and Good Practice

  Considering the high-level state
machine shown to the right, what
is the final value of D in state F?

R = 10
A

R = R + 1
Q = R

B
R = 20

D = Q + 1
C D = D + 1 D

D = R E

R ≤ 17

R > 17

Inputs:
Outputs: D (8-bits), Q (8-bits)
Local Registers: R (8-bits)

F

1.  10
2.  11
3.  12
4.  17
5.  20

14

RTL Design
Pitfalls and Good Practice

  Common pitfall:
Reading outputs
  Outputs should only be

written
  Solution: Introduce

additional register,
which can be written
and read

T S

P=P+B P=A

(a)

Inputs: A, B (8 bits)
Outputs: P (8 bits)

Inputs: A, B (8 bits)
Outputs: P (8 bits)
Local register: R (8 bits)

T S

P=R+B R=A
P=A

(b)

15

RTL Design
Pitfalls and Good Practice

  Good practice: Register
all data outputs
  In fig (a), output P would

show spurious values as
addition computes

  Furthermore, longest
register-to-register path,
which determines clock
period, is not known until
that output is connected
to another component

  In fig (b), spurious outputs
reduced, and longest
register-to-register path is
clear

+

R
B

P
(a)

+

R

Preg

B

P
(b)

