ECE 274 Digital Logic

RTL Design Method Examples

Digital Design

Chapter 5:
RTL Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.
http://www.ddvahid.com

Copyright © 2007 Frank Vahid

Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these :hdm for turmmmy course-related activiies,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as df versions on

with animations) may ot be posted to publicly-accessible websites, but may be pmled | for students on internal protected sites or distributed. d.muy fo wderm By other electronic means.
Instructors of the slide ilable to students for a ing charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obi il use permissions from Wiley — see u for informe

Digital Design 5.3
‘THE UNIVERSITY OF
ARIZONA.
® TUCSON ARIZONA|
. 52
RTL Design
RTL Design Method
Step Description

Step 1

Capture a high-level
state machine

Describe the system’s desired behavior as a high-level state machine.
The state machine consists of states and transitions. The state machine
is “high-level” because the transition conditions and the state actions
are more than just Boolean operations on bit inputs and outputs.

Create a datapath

Create a datapath to carry out the data operations of the high-level
state machine.

Connect the datapath
1o a controller

Connect the datapath to a controller block. Connect external Boolean
inputs and outputs to the controller block.

Step 4 |Step 3|Step 2

Derive the
controller’s FSM

Convert the high-level state machine to a finite-state machine (FSM)
for the controller, by replacing data operations with setting and reading
of control signals to and from the datapath.

RTL Design

RTL Example: Video Compression — Sum of Absolute Differences

Only difference: UFO moving

Frame 1 Frame 2 Frame 1 Frame 2
) e o
7
Digitized Digitized Digitized Difference of
frame 1 frame 2 frame 1 2 from 1
== == ==
1 Mbyte @ 1 Mbyte 1 Mbyte 0.01 Mbyt
a i

Just send
difference

o Video is a series of frames (e.g., 30 per second)

o Most frames similar to previous frame
o Compression idea: just send difference from previous frame

RTL Design
RTL Example: Video Compression — Sum of Absolute Differences
compare . .
Erame 1 Fra Each is a pixel, assume

represented as 1 byte
(actually, a color picture
[4 might have 3 bytes per
pixel, for intensity of
red, green, and blue
components of pixel)

o Need to quickly determine whether two frames are similar
enough to just send difference for second frame
o Compare corresponding 16x16 “blocks”
o Treat 16x16 block as 256-byte array
o Compute the absolute value of the difference of each array item

o Sum those differences — if above a threshold, send complete frame
for second frame; if below, can use difference method (using
another technique, not described)

RTL Design

RTL Example: Video Compression — Sum of Absolute Differences

.. L SAD
256-byte array

integer
256-byte array . sad

go—|

>

1(i<256)

o Want fast sum-of-absolute-differences (SAD) component

o When go=1, sums the differences of element pairs in arrays A and
B, outputs that sum

RTL Design
RTL Example: Video Compression — Sum of Absolute Differences
SAD)
Inputs: A, B (256 byte memory); go (bit)
Outputs: sad (32 bits)
s Local registers: sum, sad_reg (32 bits); i (9 bits)
N
b —(_s0))igo
o S0: wait for go sum=0
i=0

o S1: initialize sum and index
o S2: check if done (i>=256) |, .02

(<56
o S83: add difference to sum, i<256 <+ abs(ATB[)
. . sum=sum-+abs 1]-Bl1
increment index i

4: don i
o ?ad_igge, write to output sad.rog = sum

RTL Design

RTL Example: Video Compression — Sum of Absolute Differences

o Step 2: Create datapath

Inputs: A, B (256 byte memory); go (bit) AB_addr A_data B_data
Outputs: sad (32 bits)
Local registers: sum. sad_reg (32 bits); i (9_bits) i_It_256

<256 |—e 8 ks

<256 I(ic
sum=sum-+abs(A[i]-B[i])

i T
;
1< _
| LR 2o N ==

sad

RTL Design

RTL Example: Video Compression — Sum of Absolute Differences

o Step 3: Connect to controller
o Step 4: Replace high-level state machine by FSM

RTL Design

RTL Example: Video Compression — Sum of Absolute Differences

o Comparing software and custom
circuit SAD
o Circuit: Two states (S2 & S3) for
each j, 256 /s> 512 clock cycles
o Software: Loop (for i = 1 to 256), (i<256) Y
but for each j, must move memory to
local registers, subtract, compute <256

absolute value, add to sum, sum=sum-+abs(A[i]-B[il)

increment /- say about 6 cycles per i=i+1
array item > 256*6 = 1536 cytlee56)

o Circuit is about 3 times (300%)

fells_ter)
o LSR5 Row to build SAD
circuit that is even faster

go ABrd AB_addr A_data B data
| [
Y T i It 256
§ — <256 |wa—
N Do = <25 |4 s Jo
go i_inc ‘,
sum=6- Ir=1 - i -
Cenpmommean FHo—= 1 | | - |
sum_Id T l
<256 i_It_256 p— ‘b sum ‘ 32 ’ abs ‘
sum-smbs(—k{w =Bt -
sum_Id=1; AB_rd=1 ' %32 32 _‘ * 8
=t i_inc=1 sa! I_?ezg5_§c?
sad:reg=sun=r sad_reg
1(i<256 | (i s Id=1
i géﬂ— _256) Controller 32
A\
sad
9
RTL Design

Pitfalls and Good Practice

o Considering the high-level state 20% 20% 20% 20% 20%
machine shown to the right, what MM
is the final value of D in state F?

1. 10
2. 11
3. 12
a4 17
5. 20

Inputs:
Outputs: D (8-bits), Q (8-bits)

Local Registers: R (8-bits) R<17 K N g Q B
D=D+1 e
—|
R=10 R=R+1 R =20

11

RTL Design
Pitfalls and Good Practice

o Common pitfall: Assuming
register is update in the state it's
written

o All registers updates in each
state will happen simultaneously
o On the next rising clock edge
o Consider the FSM to the right:
o What is the final value of @?
o What is the final state?
o Answer:
o Value of Q unknown
o Final state is C (not D)
o Why?
o State A: R=99 and Q=R happen
simultaneously

o State B: R not updated with R+1
until next clock cycle,

Local registers: R, Q (8 bits)

simultaneously with state
register being updated

RTL Design
Pitfalls and Good Practice

o Considering the high-level state
machine shown to the right, what
is the final value of D in state F?

10
1
12
17
20

oA Wy

Inputs:
Outputs: D (8-bits), Q (8-bits)
Local Registers: R (8-bits)

\@ . @<3 D+1
—{
=10 R=R+1 R=20

Q=R D=q+1 R>1

20%

7y

20%

20%

&

20%

13

RTL Design
Pitfalls and Good Practice

o Common pitfall:

Reading outputs

o Outputs should only be
written

o Solution: Introduce
additional register,
which can be written
and read

Inputs: A, B (8 bits)
Outputs: P (8 bits)

~(~()

Inputs: A, B (8 bits)
Outputs: P (8 bits)
Local register: R (8 bits)

RTL Design
Pitfalls and Good Practice

o Good practice: Register
all data outputs

o In fig (a), output P would
show spurious values as
addition computes

o Furthermore, longest
register-to-register path,
which determines clock
period, is not known until
that output is connected
to another component

o In fig (b), spurious outputs
reduced, and longest
register-to-register path is
clear

(a)

15

